20. Homogeneous Differential Equations

Exercise 20

1. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x d y=(x+y) d x$

Answer

$X d y=(x+y) d x$
$\frac{d y}{d x}=\frac{x+y}{x}$
$\Rightarrow \frac{d y}{d x}=1+\frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=1+\frac{v x}{x}$
$\Rightarrow x \frac{d v}{d x}=1+v-v$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=1$
$\Rightarrow \mathrm{dv}=\frac{\mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\int d v=\int \frac{d x}{x}+c$
$\mathrm{v}=\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\frac{y}{x}=\ln |x|+c$
$\mathrm{y}=\mathrm{x} \ln |\mathrm{x}|+\mathrm{cx}$
Ans: $\mathrm{y}=\mathrm{xln}|\mathrm{x}|+\mathrm{cx}$

2. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

Answer

$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}=\frac{y}{2 x}-\left(\frac{2 y}{x}\right)^{-1}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v x}{2 x}-\left(\frac{2 v x}{x}\right)^{-1}$
$\Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{v}}{2}-(2 \mathrm{v})^{-1}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{v}}{2}-\frac{1}{2 \mathrm{v}}-\mathrm{v}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{\mathrm{v}}{2}-\frac{1}{2 \mathrm{v}}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\left(\frac{2 \mathrm{v}^{2}+2}{4 \mathrm{v}}\right)$
$\Rightarrow \frac{2 \mathrm{v}}{\mathrm{v}^{2}+1}=-\frac{\mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\int \frac{2 v}{v^{2}+1} d v=-\int \frac{d x}{x}+c$
$\Rightarrow \ln \left|v^{2}+1\right|=-\ln |x|+\ln c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \ln \left|\left(\frac{y}{x}\right)^{2}+1\right|+\ln |x|=\ln c$
$\Rightarrow\left(\left(\frac{y}{x}\right)^{2}+1\right)(x)=c$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{cx}$
Ans: $x^{2}+y^{2}=c x$

3. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x^{2} d y+y(x+y) d x=0$

Answer

$x^{2} d y+y(x+y) d x=0$
$\Rightarrow \frac{d y}{d x}=-\frac{y(x+y)}{x^{2}}=-\left(\frac{y}{x}+\frac{y^{2}}{x^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.

The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=-\left(\frac{v x}{x}+\frac{(v x)^{2}}{x^{2}}\right)$
$\Rightarrow x \frac{d v}{d x}=-v-v^{2}-v=-2 v-v^{2}$
$\Rightarrow \frac{d v}{2 v+v^{2}}=-\frac{d x}{x}$
Integrating both the sides we get:
$\int \frac{d v}{2 v+v^{2}}=-\int \frac{d x}{x}+c$
$\Rightarrow \int \frac{d v}{1+2 v+v^{2}-1}=-\ln |x|+\ln |c|$
$\Rightarrow \int \frac{d v}{(v+1)^{2}-1^{2}}+\ln |x|=\ln |c|$
$\Rightarrow \frac{1}{2} \ln \left|\frac{\mathrm{v}+1-1}{\mathrm{v}+1+1}\right|+\ln |\mathrm{x}|=\ln |c|$
$\Rightarrow \ln \left|\frac{\mathrm{v}+1-1}{\mathrm{v}+1+1}\right|+2 \ln |\mathrm{x}|=2 \ln |\mathrm{c}|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \ln \left|\frac{\frac{y}{x}}{\frac{y}{x}+2}\right|+\ln x^{2}=\ln |c|^{2}$
$\Rightarrow \ln \left|\frac{y}{y+2 x}\right|+\ln x^{2}=\ln |c|^{2}$
$\Rightarrow x^{2} y=c^{2}(y+2 x)$
Ans: $x^{2} y=c^{2}(y+2 x)$

4. Question

In each of the following differential equation show that it is homogeneous and solve it.
$(x-y) d y-(x+y) d x=0$

Answer

$(x-y) d y-(x+y) d x=0$
$\Rightarrow \frac{d y}{d x}=\frac{x+y}{x-y} \Rightarrow \frac{d y}{d x}=\frac{1+\frac{y}{x}}{1-\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{1+\frac{v x}{x}}{1-\frac{v x}{x}}$
$\Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1+\mathrm{v}}{1-\mathrm{v}}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v}{1-v}-v=\frac{1+v-v+v^{2}}{1-v}=\frac{1+v^{2}}{1-v}$
Integrating both the sides we get:
$\int \frac{1-v}{1+v^{2}} d v=\int \frac{d x}{x}+c$
$\Rightarrow \int \frac{1}{1+v^{2}} d v-\int \frac{v}{1+v^{2}} d v=\ln |x|+c$
$\Rightarrow \tan ^{-1} \mathrm{v}-\frac{\ln \left|1+\mathrm{v}^{2}\right|}{2}=\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\tan ^{-1} \frac{y}{x}-\frac{\ln \left|1+\left(\frac{y}{x}\right)^{2}\right|}{2}=\ln |x|+c$
$\Rightarrow \tan ^{-1} \frac{y}{x}=\frac{\ln \left|y^{2}+x^{2}\right|}{2}+c$
Ans: $\tan ^{-1} \frac{\mathrm{y}}{\mathrm{x}}=\frac{\ln \left|\mathrm{y}^{2}+\mathrm{x}^{2}\right|}{2}+\mathrm{c}$

5. Question

In each of the following differential equation show that it is homogeneous and solve it.
$(x+y) d y+(y-2 x) d x=0$

Answer

$(x+y) d y+(y-2 x) d x=0$
$\Rightarrow \frac{d y}{d x}=\frac{2 x-y}{x+y}=\frac{2-\frac{y}{x}}{1+\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{2-\frac{v x}{x}}{1+\frac{v x}{x}}=\frac{2-v}{1+v}$
$\Rightarrow x \frac{d v}{d x}=\frac{2-v}{1+v}-v=\frac{2-v-v-v^{2}}{1+v}=\frac{2-2 v-v^{2}}{1+v}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2-2 \mathrm{v}-\mathrm{v}^{2}}{1+\mathrm{v}}$
$\Rightarrow \frac{1+v}{2-2 v-v^{2}} d v=\frac{d x}{x}$
Integrating both the sides we get:
$\int \frac{1+v}{2-2 v-v^{2}} d v=\int \frac{d x}{x}+c$
$\Rightarrow-\frac{\ln \left|-2+2 \mathrm{v}+\mathrm{v}^{2}\right|}{2}=\ln |\mathrm{x}|+\ln |\mathrm{c}|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow-\frac{\ln \left|-2+2\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}\right|}{2}=\ln |x|+\ln |c|$
$\Rightarrow-\frac{\ln \frac{\left|-2 x+2 y+y^{2}\right|}{x}}{2}=\ln |x|+\ln |c|$
$\Rightarrow y^{2}+2 x y-2 x^{2}=c$
Ans: $y^{2}+2 x y-2 x^{2}=c$

6. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0$

Answer

$\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}+3 x y+y^{2}}{x^{2}}=1+3 \frac{y}{x}+\frac{y^{2}}{x^{2}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=1+3 \frac{\mathrm{vx}}{\mathrm{x}}+\frac{(\mathrm{vx})^{2}}{\mathrm{x}^{2}}$
$\Rightarrow x \frac{d v}{d x}=1+3 v+v^{2}-v=1+2 v+v^{2}$
$\Rightarrow \frac{d v}{1+2 v+v^{2}}=\frac{d x}{x}$
Integrating both the sides we get:
$\int \frac{d v}{1+2 v+v^{2}}=\int \frac{d x}{x}+c^{\prime}$
$\Rightarrow \int \frac{d v}{(v+1)^{2}}=\int \frac{d x}{x}+c^{\prime}$
$\Rightarrow \frac{(\mathrm{v}+1)^{-2+1}}{-2+1}=\ln |\mathrm{x}|+\mathrm{c}^{\prime}$
$\Rightarrow \frac{-1}{v+1}=\ln |x|+c^{\prime}$
$\Rightarrow \frac{1}{v+1}+\ln |x|=c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{1}{\frac{\mathrm{y}}{\mathrm{x}}+1}+\ln |\mathrm{x}|=\mathrm{c}$
$\Rightarrow \frac{x}{y+x}+\ln |x|=c$

7. Question

In each of the following differential equation show that it is homogeneous and solve it.
$2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$

Answer

$2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$
$\Rightarrow \frac{d y}{d x}=-\frac{2 x y}{x^{2}+2 y^{2}}=-\frac{2}{\left(\frac{y}{x}\right)^{-1}+2 \frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{2}{\left(\frac{\mathrm{vx}}{\mathrm{x}}\right)^{-1}+2 \frac{\mathrm{vx}}{\mathrm{x}}}=-\frac{2 \mathrm{v}}{1+2 \mathrm{v}^{2}}$
$\Rightarrow x \frac{d v}{d x}=-\frac{2 v}{1+2 v^{2}}-v=-\frac{2 v+v+2 v^{3}}{1+2 v^{2}}=-\frac{3 v+2 v^{3}}{1+2 v^{2}}$
$\Rightarrow \frac{1+2 v^{2}}{3 v+2 v^{3}} d v=-\frac{d x}{x}$
Integrating both the sides we get:
$\int \frac{1+2 v^{2}}{3 v+2 v^{3}} d v=\int \frac{d x}{x}+c^{\prime}$
$\Rightarrow \frac{\ln \left|3 \mathrm{v}+2 \mathrm{v}^{3}\right|}{3}=\ln |\mathrm{x}|+\mathrm{c}^{\prime}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{\ln \left|3 \frac{\mathrm{y}}{\mathrm{x}}+2\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{3}\right|}{3}=\ln |\mathrm{x}|+\mathrm{c}^{t}$
$\Rightarrow 3 x^{2} y+2 y^{3}=C$

Ans: $3 x^{2} y+2 y^{3}=C$

8. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\frac{d y}{d x}+\frac{x-2 y}{2 x-y}=0$

Answer

$\Rightarrow \frac{d y}{d x}=-\frac{x-2 y}{2 x-y}=-\frac{1-2 \frac{y}{x}}{2-\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=-\frac{1-2 \frac{v x}{x}}{2-\frac{v x}{x}}$
$\Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{1-2 \mathrm{v}}{2-\mathrm{v}}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{1-2 \mathrm{v}}{2-\mathrm{v}}-\mathrm{v}=-\frac{1-2 \mathrm{v}+2 \mathrm{v}-\mathrm{v}^{2}}{2-\mathrm{v}}=-\frac{1-\mathrm{v}^{2}}{2-\mathrm{v}}$
$\Rightarrow \frac{2-\mathrm{v}}{\mathrm{v}^{2}-1} \mathrm{dv}=\frac{\mathrm{dx}}{\mathrm{x}}$
$\Rightarrow \frac{\mathrm{v}-2}{\mathrm{v}^{2}-1} \mathrm{dv}=-\frac{\mathrm{dx}}{\mathrm{x}}$
$\Rightarrow \frac{v}{v^{2}-1} d v-\frac{2}{v^{2}-1} d v=-\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{v}{v^{2}-1} d v-\int \frac{2}{v^{2}-1} d v=-\int \frac{d x}{x}+c$
$\Rightarrow \frac{\ln \left|\mathrm{v}^{2}-1\right|}{2}-2 \times \frac{1}{2} \ln \left|\frac{\mathrm{v}-1}{\mathrm{v}+1}\right|=-\ln |\mathrm{x}|+\ln |\mathrm{c}|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{\ln \left|\left(\frac{y}{x}\right)^{2}-1\right|}{2}-2 \times \frac{1}{2} \ln \left|\frac{\left(\frac{y}{x}\right)-1}{\left(\frac{y}{x}\right)+1}\right|=-\ln |x|+\ln |c|$
$\Rightarrow(y-x)=C(y+x)^{3}$
Ans: $(y-x)=C(y+x)^{3}$

9. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\frac{d y}{d x}+\frac{x^{2}-y^{2}}{3 x y}=0$

Answer

$\frac{d y}{d x}=-\frac{x^{2}-y^{2}}{3 x y}$
$\Rightarrow \frac{d y}{d x}=-\left(\frac{y}{3 x}\right)^{-1}+\left(\frac{y}{3 x}\right)$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=-\left(\frac{v x}{3 x}\right)^{-1}+\left(\frac{v x}{3 x}\right)$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}==-\left(\frac{\mathrm{v}}{3}\right)^{-1}+\left(\frac{\mathrm{v}}{3}\right)$
$\Rightarrow x \frac{d v}{d x}==-\frac{3}{v}+\left(\frac{v}{3}\right)=\frac{-9+v^{2}}{3 v}$
$\Rightarrow \frac{3 v}{v^{2}-9} d v=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{3 v}{v^{2}-9} d v=\int \frac{d x}{x}+c$
$\Rightarrow \frac{3}{2} \ln \left|v^{2}-9\right|=\ln |x|+\ln |c|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{3}{2} \ln \left|\left(\frac{y}{x}\right)^{2}-9\right|=\ln |x|+\ln |c|$
$\Rightarrow\left(x^{2}+2 y^{2}\right)^{3}=C x^{2}$
Ans: $\left(x^{2}+2 y^{2}\right)^{3}=C x^{2}$

10. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$

Answer

$\frac{d y}{d x}=-\frac{x^{2}+y^{2}}{2 x y}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{y}}{2 \mathrm{x}}\right)^{-1}-\left(\frac{\mathrm{y}}{2 \mathrm{x}}\right)$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=-\left(\frac{v x}{2 x}\right)^{-1}-\left(\frac{v x}{2 x}\right)$
$\Rightarrow x \frac{d v}{d x}=-\left(\frac{v}{2}\right)^{-1}+\left(\frac{v}{2}\right)$
$\Rightarrow x \frac{d v}{d x}=-\frac{2}{v}+\left(\frac{v}{2}\right)=\frac{-4+v^{2}}{2 v}$
$\Rightarrow \frac{2 v}{v^{2}-4} d v=\frac{d x}{X}$
Integrating both the sides we get:
$\Rightarrow \int \frac{2 v}{v^{2}-4} d v=\int \frac{d x}{x}+c$
$\Rightarrow \frac{2}{2} \ln \left|v^{2}-4\right|=\ln |x|+\ln |c|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \ln \left|\left(\frac{y}{x}\right)^{2}-4\right|=\ln |x|+\ln |c|$
$\Rightarrow\left(x^{2}-y^{2}\right)=c x$
Ans: $\left(x^{2}-y^{2}\right)=c x$
11. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\frac{d y}{d x}=\frac{2 x y}{\left(x^{2}-y^{2}\right)}$

Answer

$\Rightarrow \frac{d y}{d x}=\frac{2 x y}{x^{2}-y^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\left(\frac{y}{x}\right)^{-1}-\left(\frac{y}{x}\right)}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{2}{\left(\frac{v x}{x}\right)^{-1}-\left(\frac{v x}{x}\right)}=\frac{2}{(v)^{-1}-(v)}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{2 \mathrm{v}}{(\mathrm{v})^{2}-1}$
$\Rightarrow \frac{2 \mathrm{v}}{(\mathrm{v})^{2}-1} \mathrm{dv}=-\frac{\mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\Rightarrow \int \frac{2 \mathrm{v}}{(\mathrm{v})^{2}-1} \mathrm{dv}=-\int \frac{\mathrm{dx}}{\mathrm{x}}+\mathrm{c}$
$\Rightarrow \ln \left|(\mathrm{v})^{2}-1\right|=\ln |\mathrm{x}|+\ln |\mathrm{c}|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \ln \left|\left(\frac{y}{x}\right)^{2}-1\right|=\ln |x|+\ln |c|$
$\Rightarrow y=C\left(y^{2}+x^{2}\right)$
Ans: $y=C\left(y^{2}+x^{2}\right)$

12. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x^{2} \frac{d y}{d x}=2 x y+y^{2}$

Answer

$\Rightarrow x^{2} \frac{d y}{d x}=2 x y+y^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x y+y^{2}}{x^{2}}$
$\Rightarrow \frac{d y}{d x}=2\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=2\left(\frac{v x}{x}\right)+\left(\frac{v x}{x}\right)^{2}=2(v)+(v)^{2}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=2 \mathrm{v}-\mathrm{v}+(\mathrm{v})^{2}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{v}+(\mathrm{v})^{2}$
$\Rightarrow \frac{d v}{v+(v)^{2}}=\frac{d x}{x}$

Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{v+(v)^{2}}=\int \frac{d x}{x}+c$
$\Rightarrow \int \frac{d v}{\frac{1}{4}+v+(v)^{2}-\frac{1}{4}}=\ln |x|+\ln |c|$
$\Rightarrow \int \frac{d v}{\left(v+\frac{1}{2}\right)^{2}-\frac{1}{2}^{2}}=\ln |x|+\ln |c|$
$\Rightarrow \frac{1}{2 \times \frac{1}{2}} \ln \left|\frac{v+\frac{1}{2}-\frac{1}{2}}{v+\frac{1}{2}+\frac{1}{2}}\right|=\ln |x c|$
$\Rightarrow \ln \left|\frac{\mathrm{V}}{\mathrm{V}+1}\right|=\ln |\mathrm{xc}|$
$\Rightarrow \frac{v}{v+1}=x c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{\frac{y}{x}}{\frac{y}{x}+1}=x c$
$\Rightarrow y=x(y+x) c$
Ans: $y=x(y+x) c$
13. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$

Answer

$\Rightarrow x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$
$\Rightarrow \frac{d y}{d x}=1+\frac{y}{x}+\left(\frac{y}{x}\right)^{2}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=1+\frac{v x}{x}+\left(\frac{v x}{x}\right)^{2}=1+v+(v)^{2}$
$\Rightarrow x \frac{d v}{d x}=1+v+(v)^{2}-v=1+(v)^{2}$
$\Rightarrow \frac{d v}{1+(v)^{2}}=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{1+(v)^{2}}=\int \frac{d x}{x}+c$
$\Rightarrow \tan ^{-} \mathrm{v}=\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \tan ^{-}(y / x)=\ln |x|+c$
Ans: $\tan ^{-}(y / x)=\ln |x|+c$

14. Question

In each of the following differential equation show that it is homogeneous and solve it.
$y^{2}+\left(x^{2}-x y\right) \frac{d y}{d x}=0$

Answer

$\frac{d x}{d y}=\frac{x y-x^{2}}{y^{2}}=\frac{x}{y}-\left(\frac{x}{y}\right)^{2}$
$\Rightarrow \frac{d x}{d y}=f\left(\frac{x}{y}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $x=v y$
$\Rightarrow \frac{d x}{d y}=v+y \frac{d v}{d y}$
$\Rightarrow v+y \frac{d v}{d y}=\frac{v y}{y}-\left(\frac{v y}{y}\right)^{2}$
$\Rightarrow y \frac{d v}{d y}=v-v^{2}-v$
$\Rightarrow y \frac{d v}{d y}=-v^{2}$
$\Rightarrow \frac{d v}{v^{2}}=-\frac{d y}{y}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{v^{2}}=-\int \frac{d y}{y}+c^{\prime}$
$\Rightarrow \frac{-1}{\frac{x}{y}}=-\ln |y|+c^{\prime}$
$\Rightarrow \frac{y}{x}=\ln |y|+c$
$\Rightarrow y=x(\ln |y|+c)$
Ans: $y=x(\ln |y|+c)$

15. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x \frac{d y}{d x}-y=2 \sqrt{y^{2}-x^{2}}$
Answer
$\Rightarrow x \frac{d y}{d x}-y=2 \sqrt{y^{2}-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{y+2 \sqrt{y^{2}-x^{2}}}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}+2 \sqrt{\left(\frac{y}{x}\right)^{2}-1}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}+2 \sqrt{\left(\frac{v x}{x}\right)^{2}-1}$
$\Rightarrow x \frac{d v}{d x}=v-v+2 \sqrt{(v)^{2}-1}$
$\Rightarrow x \frac{d v}{d x}=2 \sqrt{(v)^{2}-1}$
$\Rightarrow \frac{d v}{\sqrt{(v)^{2}-1}}=2 \frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{\sqrt{(v)^{2}-1}}=2 \int \frac{d x}{x}+c^{\prime}$
$\Rightarrow \ln \left|v+\sqrt{(v)^{2}-1}\right|=2 \ln |x|+\ln \left|c^{\prime}\right|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \ln \left|\left(\frac{y}{x}\right)+\sqrt{\left(\frac{y}{x}\right)^{2}-1}\right|=2 \ln |x|+\ln \left|c^{\prime}\right|$
$\Rightarrow y+\sqrt{y^{2}-x^{2}}=C|x|^{3}$
Ans: $y+\sqrt{y^{2}-x^{2}}=\mathrm{C}|x|^{3}$

16. Question

In each of the following differential equation show that it is homogeneous and solve it.
$y^{2} d x+\left(x^{2}+x y+y^{2}\right) d y=0$

Answer

$\Rightarrow y^{2} d x+\left(x^{2}+x y+y^{2}\right) d y=0$
$\Rightarrow \frac{d x}{d y}=-\frac{x^{2}+x y+y^{2}}{x^{2}}$
$\Rightarrow \frac{d x}{d y}=-\left(1+\frac{y}{x}+\left(\frac{y}{x}\right)^{2}\right)$
$\Rightarrow \frac{d x}{d y}=f\left(\frac{x}{y}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $x=v y$
$\Rightarrow \frac{d x}{d y}=v+y \frac{d v}{d y}$
$\Rightarrow v+y \frac{d v}{d y}=-\left(1+\frac{y}{v y}+\left(\frac{y}{v y}\right)^{2}\right)$
$\Rightarrow \mathrm{v}+\mathrm{y} \frac{\mathrm{dv}}{\mathrm{dy}}=-\left(1+\frac{1}{\mathrm{v}}+\left(\frac{1}{\mathrm{v}}\right)^{2}\right)=-\left(\frac{1+\mathrm{v}+\mathrm{v}^{2}}{\mathrm{v}^{2}}\right)$
$\Rightarrow \mathrm{y} \frac{\mathrm{dv}}{\mathrm{dy}}=-\left(\frac{1+\mathrm{v}+\mathrm{v}^{2}}{\mathrm{v}^{2}}\right)-\mathrm{v}=-\left(\frac{1+\mathrm{v}+\mathrm{v}^{2}+\mathrm{v}^{3}}{\mathrm{v}^{2}}\right)$
$\Rightarrow \frac{v^{2} d v}{1+v+v^{2}+v^{3}}=-\frac{d y}{y}$
Integrating both the sides we get:
$\Rightarrow \int \frac{v^{2} d v}{1+v+v^{2}+v^{3}}=-\int \frac{d y}{y}+c$
Resubstituting the value of $x=$ vy we get
$\Rightarrow \log \left|\frac{y}{y+x}\right|+\log |x|+\frac{x}{(y+x)}=c$
Ans: $\log \left|\frac{y}{y+x}\right|+\log |x|+\frac{x}{(y+x)}=c$

17. Question

In each of the following differential equation show that it is homogeneous and solve it.
$(x-y) \frac{d y}{d x}=x+3 y$

Answer

$\Rightarrow \frac{d y}{d x}=\frac{x+3 y}{x-y}$
$\Rightarrow \frac{d y}{d x}=\frac{1+3 \frac{y}{x}}{1-\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{1+3 \frac{v x}{x}}{1-\frac{v x}{x}}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+3 v}{1-v}-v=\frac{1+3 v-v+v^{2}}{1-v}=\frac{1+2 v+v^{2}}{1-v}$
$\Rightarrow \frac{1-v}{1+2 v+v^{2}} d v=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{1-v}{1+2 v+v^{2}} d v=\int \frac{d x}{x}+c$
$\Rightarrow \int \frac{v-1}{1+2 v+v^{2}} d v=-\int \frac{d x}{x}+c$
$\Rightarrow \frac{\ln \left|1+2 v+\mathrm{v}^{2}\right|}{2}=-\ln |\mathrm{x}|+\ln \mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{\ln \left|1+2 \frac{y}{x}+\left(\frac{y}{x}\right)^{2}\right|}{2}=-\ln |x|+\ln c$
$\Rightarrow \log |x+y|+\frac{2 x}{(x+y)}=C$
Ans: $\log |x+y|+\frac{2 x}{(x+y)}=C$

18. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\left(x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0$

Answer

$\Rightarrow\left(x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0$
$\Rightarrow \frac{d y}{d x}=-\frac{\left(x^{3}+3 x y^{2}\right)}{\left(y^{3}+3 x^{2} y\right)}=-\frac{3 x y^{2}}{3 x^{2} y} \frac{\left(\frac{x^{3}}{3 x y^{2}}+1\right)}{\left(\frac{y^{3}}{3 x^{2} y}+1\right)}=-\frac{y}{x} \frac{\left(\frac{x^{2}}{3 y^{2}}+1\right)}{\left(\frac{y^{2}}{3 x^{2}}+1\right)}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.

The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=-\frac{v x}{x} \frac{\left(\frac{x^{2}}{3(v x)^{2}}+1\right)}{\left(\frac{(v x)^{2}}{3 x^{2}}+1\right)}=-v \frac{\left(\frac{1}{3(v)^{2}}+1\right)}{\left(\frac{(v)^{2}}{3}+1\right)}=-\frac{1+3(v)^{2}}{3+(v)^{2}} \times \frac{1}{v}$

$$
=-\frac{1+3(v)^{2}}{3 v+(v)^{3}}
$$

$\Rightarrow x \frac{d v}{d x}=-\frac{1+3(v)^{2}}{3 v+(v)^{3}}-v=-\frac{1+3(v)^{2}+3(v)^{2}+(v)^{4}}{3 v+(v)^{3}}$

$$
=\frac{1+6(v)^{2}+(v)^{4}}{3 v+(v)^{3}}
$$

$\Rightarrow \frac{3 v+(v)^{3}}{1+6(v)^{2}+(v)^{4}} d v=-\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{3 v+(v)^{3}}{1+6(v)^{2}+(v)^{4}} d v=-\int \frac{d x}{x}+c$
$\Rightarrow \frac{\ln \left|1+6(\mathrm{v})^{2}+(\mathrm{v})^{4}\right|}{4}+\ln |x|=\ln |c|$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{\ln \left|1+6\left(\frac{y}{x}\right)^{2}+\left(\frac{y}{x}\right)^{4}\right|}{4}+\ln |x|=\ln |c|$
$\Rightarrow y^{4}+6 x^{2} y^{2}+x^{4}=C$
Ans: $y^{4}+6 x^{2} y^{2}+x^{4}=C$

19. Question

In each of the following differential equation show that it is homogeneous and solve it.
$(x-\sqrt{x y}) d y=y d x$

Answer

$\Rightarrow \frac{d y}{d x}=\frac{y}{x-\sqrt{x y}}=\frac{1}{\frac{x}{y}-\sqrt{\frac{x}{y}}}=\frac{1}{\left(\frac{y}{x}\right)^{-1}-\sqrt{\left(\frac{y}{x}\right)^{-1}}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{1}{\left(\frac{v x}{x}\right)^{-1}-\sqrt{\left(\frac{v x}{x}\right)^{-1}}}=\frac{1}{\frac{1}{v}-\frac{1}{\sqrt{v}}}=\frac{v \sqrt{v}}{\sqrt{v}-v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v \sqrt{v}}{\sqrt{v}-v}-v=\frac{v \sqrt{v}-v \sqrt{v}+v^{2}}{\sqrt{v}-v}=\frac{v^{2}}{\sqrt{v}-v}$
$\Rightarrow \frac{\sqrt{v}-v}{v^{2}} d v=\frac{d x}{x}$
$\Rightarrow \frac{1}{V^{\frac{3}{2}}} \mathrm{dv}-\frac{1}{\mathrm{~V}} \mathrm{dv}=\frac{\mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\Rightarrow \int \frac{1}{v^{\frac{3}{2}}} d v-\int \frac{1}{v} d v=\int \frac{d x}{x}+c$
$\Rightarrow \frac{-1}{\sqrt{v}}-\ln |v|=\ln |x|+c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{-1}{\sqrt{\left(\frac{y}{x}\right)}}-\ln \left(\frac{y}{x}\right)=\ln |x|+c$
$\Rightarrow 2 \sqrt{\frac{x}{y}}+\log |y|=C$
Ans: $2 \sqrt{\frac{\mathrm{x}}{\mathrm{y}}}+\log |\mathrm{y}|=\mathrm{C}$

20. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x^{2} \frac{d y}{d x}+y^{2}=x y$

Answer

$\Rightarrow \frac{d y}{d x}=\frac{x y-y^{2}}{x^{2}}=\frac{y}{x}-\left(\frac{y}{x}\right)^{2}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}-\left(\frac{v x}{X}\right)^{2}=v-v^{2}$
$\Rightarrow x \frac{d v}{d x}=-v^{2}$
$\Rightarrow \frac{d v}{-v^{2}}=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{-v^{2}}=\int \frac{d x}{x}+c$
$\Rightarrow \frac{1}{\mathrm{~V}}=\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{1}{\frac{\mathrm{y}}{\mathrm{x}}}=\ln |\mathrm{x}|+\mathrm{c}$
$\Rightarrow \frac{x}{y}=\ln |x|+\ln |c|$
$\Rightarrow \frac{x}{y}=\ln |x c|$
$\Rightarrow e^{\frac{x}{y}}=x c$
Ans: $\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{y}}}=\mathrm{xc}$

21. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x \frac{d y}{d x}=y(\log y-\log x+1)$

Answer

$\Rightarrow \frac{d y}{d x}=\frac{y}{x}\left(\log \left(\frac{y}{x}\right)+1\right)$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}\left(\log \left(\frac{v x}{x}\right)+1\right)=v(\log (v)+1)$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{vlog} \mathrm{v}$
$\Rightarrow \frac{d v}{v \log v}=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{v \log v}=\int \frac{d x}{x}+c$
$\Rightarrow \log |\log v|=\log |x c|$
$\Rightarrow \log |\mathrm{v}|=\mathrm{xc}$
$\Rightarrow \mathrm{v}=\mathrm{e}^{\mathrm{xc}}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \mathrm{y}=\mathrm{xe}^{\mathrm{xc}}$
Ans: $\mathrm{y}=\mathrm{xe}^{\mathrm{xc}}$

22. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x \frac{d y}{d x}-y+x \sin \frac{y}{x}=0$

Answer

$\Rightarrow x \frac{d y}{d x}-y+x \sin \frac{y}{x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{y-x \sin \frac{y}{x}}{x}=\frac{y}{x}-\sin \frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}-\sin \frac{v x}{x}=v-\sin v$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\sin \mathrm{v}$
$\Rightarrow \frac{d v}{\sin v}=-\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{\sin v}=-\int \frac{d x}{x}+c$
$\Rightarrow \log \tan \left(\frac{\mathrm{V}}{2}\right)=-\log |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \log \tan \left(\frac{\mathrm{y}}{2 \mathrm{x}}\right)=-\log |\mathrm{x}|+\log \mathrm{c}$
$\Rightarrow X \tan \left(\frac{\mathrm{y}}{2 \mathrm{x}}\right)=\mathrm{C}$
Ans: $\operatorname{Xtan}\left(\frac{\mathrm{y}}{2 \mathrm{x}}\right)=\mathrm{C}$

23. Question

In each of the following differential equation show that it is homogeneous and solve it.
$x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

Answer

$\Rightarrow \frac{d y}{d x}=\frac{y-x \cos ^{2}\left(\frac{y}{x}\right)}{x}=\left(\frac{y}{x}\right)-\cos ^{2}\left(\frac{y}{x}\right)$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\left(\frac{v x}{X}\right)-\cos ^{2}\left(\frac{v x}{x}\right)=v-\cos ^{2} v$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\cos ^{2} v$
$\Rightarrow \frac{d v}{\cos ^{2} v}=-\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{\cos ^{2} v}=-\int \frac{d x}{x}+c$
$\Rightarrow \operatorname{tanv}=-\ln |x|+c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \tan \left(\frac{y}{x}\right)+\ln |x|=c$
Ans: $\tan \left(\frac{y}{x}\right)+\ln |x|=c$

24. Question

In each of the following differential equation show that it is homogeneous and solve it.
$\left(x \cos \frac{y}{x}\right) \frac{d y}{d x}=\left(y \cos \frac{y}{x}\right)+x$

Answer

$\Rightarrow\left(x \cos \frac{y}{x}\right) \frac{d y}{d x}=y \cos \frac{y}{x}+x$
$\Rightarrow \frac{d y}{d x}=\frac{y \cos \frac{y}{x}+x}{x \cos \frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}+\sec \frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}+\sec \frac{v x}{x}=v+\sec v$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\operatorname{secv}$
$\Rightarrow \frac{d v}{\sec v}=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{\mathrm{dv}}{\sec \mathrm{v}}=\int \frac{\mathrm{dx}}{\mathrm{x}}+\mathrm{c}$
$\Rightarrow \sin v=\ln |x|+c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \sin \left(\frac{y}{x}\right)=\ln |x|+c$
Ans: $\sin \left(\frac{y}{x}\right)=\ln |x|+c$

25. Question

Find the particular solution of the different equation. $2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0$, it being given that $y=2$ when x $=1$

Answer

$2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}=\frac{y}{x}+\frac{y^{2}}{2 x^{2}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $\mathrm{y}=\mathrm{vx}$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}+\frac{(v x)^{2}}{2 x^{2}}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{v}^{2}}{2}$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{v}^{2}}=\frac{2 \mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\Rightarrow \int \frac{\mathrm{dv}}{\mathrm{v}^{2}}=2 \int \frac{\mathrm{dx}}{\mathrm{x}}+\mathrm{c}$
$\Rightarrow \frac{-1}{\mathrm{v}}=2 \ln |\mathrm{x}|+\mathrm{c}$

Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{-x}{y}=2 \ln |x|+c$
Now,
$y=2$ when $x=1$
$\Rightarrow \frac{-1}{2}=2 \ln |1|+c$
$\Rightarrow c=\left(-\frac{1}{2}\right) \Rightarrow y=\frac{2 x}{(1-\log |x|)}$
Ans: $y=\frac{2 x}{(1-\log |x|)}$

26. Question

Find the particular solution of the differential equation $\left\{x \sin ^{2} \frac{y}{x}-y\right\} d x+x d y=0$, it being given that $y=$ $\frac{\pi}{4}$ when $x=1$.

Answer

$\Rightarrow \frac{d y}{d x}=\frac{y-x \sin ^{2}\left(\frac{y}{x}\right)}{x}=\left(\frac{y}{x}\right)-\sin ^{2}\left(\frac{y}{x}\right)$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\left(\frac{y}{x}\right)-\sin ^{2}\left(\frac{y}{x}\right)=v-\sin ^{2} v$
$\Rightarrow x \frac{d v}{d x}=-\sin ^{2} v$
$\Rightarrow \frac{d v}{\sin ^{2} v}=-\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{\sin ^{2} v}=-\int \frac{d x}{x}+c$
\Rightarrow cotv $=\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \cot \left(\frac{y}{x}\right)=\ln |x|+c$
$y=\frac{\pi}{4}$ when $x=1$
$\Rightarrow \cot \left(\frac{\frac{\pi}{4}}{1}\right)=\ln |1|+c$
$\Rightarrow \mathrm{c}=1$
Ans: $\cot \left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\ln |\mathrm{x}|+1$

27. Question

Find the particular solution of the differential equation $\frac{d y}{d x}=\frac{y(2 y-x)}{x(2 y+x)}$ given that $y=1$ when $x=1$.

Answer

$\Rightarrow \frac{d y}{d x}=\frac{y(2 y-x)}{x(2 y+x)}$
$\Rightarrow \frac{d y}{d x}=\frac{y\left(2 \frac{y}{x}-1\right)}{x\left(2 \frac{y}{x}+1\right)}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x\left(2 \frac{v x}{x}-1\right)}{x\left(2 \frac{v x}{x}+1\right)}=v\left(\frac{2 v-1}{2 v+1}\right)$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{v}\left(\frac{2 \mathrm{v}-1}{2 \mathrm{v}+1}\right)-\mathrm{v}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{v}\left(\frac{2 \mathrm{v}-1-2 \mathrm{v}-1}{2 \mathrm{v}+1}\right) \Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{-2 \mathrm{v}}{2 \mathrm{v}+1}$
$\Rightarrow \frac{2 \mathrm{v}+1}{2 \mathrm{v}} \mathrm{dv}=\frac{-\mathrm{dx}}{\mathrm{x}}$
$\Rightarrow d v+\left(\frac{1}{2 v}\right) d v=\frac{-d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int\left(d v+\left(\frac{1}{2 v}\right) d v\right)=-\int \frac{d x}{x}+c$
$\Rightarrow \mathrm{v}+\frac{\ln |\mathrm{v}|}{2}=-\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}+\frac{\ln \left|\frac{\mathrm{y}}{\mathrm{x}}\right|}{2}=-\ln |\mathrm{x}|+\mathrm{c}$
$y=1$ when $x=1$
$1+0=-0+c$
$\Rightarrow c=1$
$\Rightarrow \frac{y}{x}+\frac{1}{2} \log |x y|=1$
Ans: $\frac{\mathrm{y}}{\mathrm{x}}+\frac{1}{2} \log |\mathrm{xy}|=1$

28. Question

Find the particular solution of the differential equation $x e^{y / x}-y+x \frac{d y}{d x}=0$, given that $y(1)=0$.

Answer

$\Rightarrow x e^{\frac{y}{x}}-y+x \frac{d y}{d x}=0$
$\Rightarrow x \frac{d y}{d x}=y-x e^{\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=\left(\frac{y}{x}\right)-e^{\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\left(\frac{v x}{x}\right)-e^{\frac{v x}{x}}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\mathrm{e}^{\mathrm{v}}$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{e}^{\mathrm{v}}}=\frac{-\mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{e^{v}}=-\int \frac{d x}{x}+c$
$\Rightarrow-\mathrm{e}^{-\mathrm{v}}=-\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow-\mathrm{e}^{-\left(\frac{y}{x}\right)}=-\ln |\mathrm{x}|+\mathrm{c}$
Now, $y(1)=0$
$\Rightarrow-\mathrm{e}^{-(0)}=-\ln |1|+\mathrm{c}$
$\Rightarrow \mathrm{c}=-1$
$\Rightarrow \log |x|+e^{-y / x}=1$
Ans: $\log |x|+e^{-y / x}=1$

29. Question

Find the particular solution of the differential equation $x e^{y / x}-y+x \frac{d y}{d x}=0$, given that $y(e)=0$.

Answer

$\Rightarrow x e^{\frac{y}{x}}-y+x \frac{d y}{d x}=0$
$\Rightarrow x \frac{d y}{d x}=y-x e^{\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=\left(\frac{y}{x}\right)-e^{\frac{y}{x}}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\left(\frac{v x}{X}\right)-e^{\frac{v x}{x}}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\mathrm{e}^{\mathrm{v}}$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{e}^{\mathrm{v}}}=\frac{-\mathrm{dx}}{\mathrm{x}}$
Integrating both the sides we get:
$\Rightarrow \int \frac{\mathrm{dv}}{\mathrm{e}^{\mathrm{v}}}=-\int \frac{\mathrm{dx}}{\mathrm{x}}+\mathrm{c}$
$\Rightarrow-\mathrm{e}^{-\mathrm{v}}=-\ln |\mathrm{x}|+\mathrm{c}$
Resubstituting the value of $y=v x$ we get
$\Rightarrow-\mathrm{e}^{-\left(\frac{\mathrm{y}}{\mathrm{x}}\right)}=-\ln |\mathrm{x}|+\mathrm{c}$
Now, $y(e)=0$
$\Rightarrow-\mathrm{e}^{-(0)}=-\ln |\mathrm{e}|+\mathrm{c}$
$\Rightarrow \mathrm{c}=0$
$\Rightarrow y=-x \log (\log |x|)$
Ans: $y=-x \log (\log |x|)$

30. Question

The slope of the tangent to a curve at any point (x, y) on it is given by $\frac{y}{x}-\left(\cot \frac{y}{x}\right)\left(\cos \frac{y}{x}\right)$, where $x>0$ and $y>0$. If the curve passes through the point $\left(1, \frac{\pi}{4}\right)$, find the equation of the curve.

It is given that:
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}-\cot \frac{y}{x} \cos \frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=f\left(\frac{y}{x}\right)$
\Rightarrow the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put $y=v x$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \frac{d v}{d x}=\frac{v x}{x}-\cot \frac{v x}{x} \cos \frac{v x}{x}$
$\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=-\operatorname{cotv} \cos \mathrm{v}$
$\Rightarrow \frac{d v}{-\operatorname{cotv} \cos v}=\frac{d x}{x}$
Integrating both the sides we get:
$\Rightarrow \int \frac{d v}{-\operatorname{cotvcos} v}=\int \frac{d x}{x}+c$
$\Rightarrow \frac{-1}{\cos V}=\ln |x|+c$
Resubstituting the value of $y=v x$ we get
$\Rightarrow \frac{-1}{\cos \frac{y}{x}}=\ln |x|+c$
the curve passes through the point $\left(1, \frac{\pi}{4}\right)$
$\Rightarrow \frac{-1}{\cos \frac{\pi}{1}}=\ln |1|+c$
$\Rightarrow c=-\sqrt{2}$
$\Rightarrow \sec \frac{y}{x}+\log |x|=\sqrt{2}$

Ans:The equation of the curve is: $\sec \frac{y}{x}+\log |x|=\sqrt{2}$

