22. Vectors and Their Properties

Exercise 22

1. Question

Write down the magnitude of each of the following vectors:
A. $\vec{a}=\hat{i}+2 \hat{j}+5 \hat{k}$
B. $\overrightarrow{\mathrm{b}}=5 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
C. $\overrightarrow{\mathrm{c}}=\left(\frac{1}{\sqrt{3}} \hat{\mathrm{i}}-\frac{1}{\sqrt{3}} \hat{\mathrm{j}}+\frac{1}{\sqrt{3}} \hat{\mathrm{k}}\right)$
D. $\overrightarrow{\mathrm{d}}=(\sqrt{2} \hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}}-\sqrt{5} \hat{\mathrm{k}})$

Answer

Tip - For any vector $\vec{a}=a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the magnitude $|\vec{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$
A. $\vec{a}=\hat{\imath}+2 \hat{\jmath}+5 \hat{k}$
$\therefore|\vec{a}|=\sqrt{1^{2}+2^{2}+5^{2}}$
$=\sqrt{30}$ units
B. $\vec{a}=5 \hat{\imath}-4 \hat{\jmath}-3 \hat{k}$
$\therefore|\vec{a}|=\sqrt{5^{2}+4^{2}+3^{2}}$
$=5 \sqrt{2}$ units
C. $\overrightarrow{\mathrm{a}}=\frac{1}{\sqrt{3}} \hat{\mathrm{i}}-\frac{1}{\sqrt{3}} \hat{\mathrm{j}}+\frac{1}{\sqrt{3}} \hat{\mathrm{k}}$
$\therefore|\vec{a}|=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=1$ unit
D. $\vec{a}=\sqrt{2} \hat{\imath}+\sqrt{3} \hat{\jmath}-\sqrt{5} \hat{k}$
$\therefore|\overrightarrow{\mathrm{a}}|=\sqrt{(\sqrt{2})^{2}+(\sqrt{3})^{2}+(\sqrt{5})^{2}}$
$=\sqrt{10}$ units

2. Question

Find a unit vector in the direction of the vector:
A. $(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})$
B. $(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$
C. $(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
D. $(2 \hat{i}+\hat{j}+2 \hat{k})$

Answer

Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the unit vector is represented as $\hat{a}=\frac{a_{x} \hat{i}+a_{y} \hat{\jmath}+a_{z} \hat{k}}{\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}$
A. $\vec{a}=3 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$
$\therefore \hat{\mathrm{a}}=\frac{3 \hat{\imath}+4 \hat{\mathrm{\jmath}}-5 \hat{\mathrm{k}}}{\sqrt{3^{2}+4^{2}+5^{2}}}$
$=\frac{3}{5 \sqrt{2}} \hat{\imath}+\frac{4}{5 \sqrt{2}} \hat{\jmath}-\frac{5}{5 \sqrt{2}} \hat{\mathrm{k}}$
B. $\vec{a}=3 \hat{\imath}-2 \hat{\jmath}+6 \hat{k}$
$\therefore \hat{\mathrm{a}}=\frac{3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{\sqrt{3^{2}+2^{2}+6^{2}}}$
$=\frac{3}{7} \hat{\imath}-\frac{2}{7} \hat{\jmath}+\frac{6}{7} \hat{k}$
C. $\vec{a}=\hat{\imath}+\hat{k}$
$\therefore \hat{\mathrm{a}}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{k}}}{\sqrt{1^{2}+1^{2}}}$
$=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$
D. $\vec{a}=2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
$\therefore \hat{\mathrm{a}}=\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}}}{\sqrt{2^{2}+1^{2}+2^{2}}}$
$=\frac{2}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\frac{2}{3} \hat{\mathrm{k}}$

3. Question

If $\overrightarrow{\mathrm{a}}=(2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$ then find the value of λ so that $\lambda \overrightarrow{\mathrm{a}}$ may be a unit vector.

Answer

$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-4 \hat{\jmath}+5 \hat{\mathrm{k}}$
$\therefore \lambda \overrightarrow{\mathrm{a}}=2 \lambda \hat{\mathrm{\imath}}-4 \lambda \hat{\jmath}+5 \lambda \hat{\mathrm{k}}$
For a unit vector, its magnitude equals to 1 .
Tip - For any vector $\vec{a}=a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the magnitude $|\vec{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$
$\therefore|\lambda \vec{a}|=\sqrt{(2 \lambda)^{2}+(4 \lambda)^{2}+(5 \lambda)^{2}}=1$
$\Rightarrow 45 \lambda^{2}=1$
$\Rightarrow \lambda^{2}=\frac{1}{45}=\frac{1}{(3 \sqrt{5})^{2}}$
$\Rightarrow \lambda= \pm \frac{1}{3 \sqrt{5}}$

4. Question

If $\vec{a}=(-\hat{i}+\hat{j}-\hat{k})$ and $\vec{b}=(2 \hat{i}-\hat{j}+2 \hat{k})$ then find the unit vector in the direction of $(\vec{a}+\vec{b})$.

Answer

$\vec{a}=-\hat{\imath}+\hat{\jmath}-\hat{k}$
$\vec{b}=2 \hat{i}-\hat{j}+2 \hat{k}$
$\therefore \vec{a}+\vec{b}$
$=(-\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})+(2 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}})$
$=\hat{\mathrm{i}}+\hat{\mathrm{k}}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the unit vector is represented as $\hat{a}=\frac{a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}}{\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}$
$\therefore(\widehat{\vec{a}+\vec{b}})$
$=\frac{\hat{\mathrm{\imath}}+\hat{\mathrm{k}}}{\sqrt{1^{2}+1^{2}}}$
$=\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\mathrm{k}})$
5. Question

If $\vec{a}=(3 \hat{i}+\hat{j}-5 \hat{k})$ and $\vec{b}=(\hat{i}+2 \hat{j}-\hat{k})$ then find a unit vector in the direction of $(\vec{a}-\vec{b})$.

Answer

$\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{\imath}}+\hat{\jmath}-5 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=\hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}$
$\therefore \vec{a}-\vec{b}$
$=(3 \hat{\imath}+\hat{\jmath}-5 \hat{k})-(\hat{\imath}+2 \hat{\jmath}-\hat{k})$
$=2 \hat{\imath}-\hat{\jmath}-4 \hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the unit vector is represented as $\hat{a}=\frac{a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}}{\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}$
$\therefore(\widehat{a}-\vec{b})$
$=\frac{2 \hat{\imath}-\hat{\jmath}-4 \hat{k}}{\sqrt{2^{2}+1^{2}+4^{2}}}$
$=\frac{1}{\sqrt{21}}(2 \hat{\imath}-\hat{\jmath}-4 \hat{k})$

6. Question

If $\vec{a}=(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{b}=(2 \hat{i}+4 \hat{j}+9 \hat{k})$ then find a unit vector parallel to $(\vec{a}+\vec{b})$.

Answer

$\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
$\overrightarrow{\mathrm{b}}=2 \hat{\imath}+4 \hat{\jmath}+9 \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$
$=(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})+(2 \hat{\imath}+4 \hat{\jmath}+9 \hat{k})$
$=3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the unit vector is represented as $\hat{a}=\frac{a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}}{\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}$
$\therefore(\widehat{\vec{a}+\vec{b}})$
$=\frac{3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}}{\sqrt{3^{2}+6^{2}+6^{2}}}$
$= \pm \frac{1}{9}(3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k})$
$= \pm \frac{1}{3}(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$

7. Question

Find a vector of magnitude 9 units in the direction of the vector $(-2 \hat{i}+\hat{j}+2 \hat{k})$.

Answer

Let λ be an arbitrary constant and the required vector is $-2 \lambda \hat{\mathbf{\imath}}+\lambda \hat{\jmath}+2 \lambda \hat{\mathbf{k}}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the magnitude $|\vec{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$
$\therefore \sqrt{(2 \lambda)^{2}+(\lambda)^{2}+(2 \lambda)^{2}}=9$
$\Rightarrow 3 \lambda=9$
$\Rightarrow \lambda=3$
The required vector is $-6 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$

8. Question

Find a vector of magnitude 8 units in the direction of vector $(5 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$.

Answer

Let λ be an arbitrary constant and the required vector is $5 \lambda \hat{\mathbf{i}}-\lambda \hat{\jmath}+2 \lambda \hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the magnitude $|\vec{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$
$\therefore \sqrt{(5 \lambda)^{2}+(\lambda)^{2}+(2 \lambda)^{2}}=8$
$\Rightarrow \sqrt{30} \lambda=8$
$\Rightarrow \lambda=\frac{8}{\sqrt{30}}$

The required vector is $\frac{8}{\sqrt{30}}(5 \hat{\imath}-\hat{\jmath}+2 \hat{k})$

9. Question

Find a vector of magnitude 21 units in the direction of the vector $(2 \hat{i}-3 \hat{j}+6 \hat{k})$.

Answer

Let λ be an arbitrary constant and the required vector is $2 \lambda \hat{\imath}-3 \lambda \hat{\jmath}+6 \lambda \hat{\mathrm{k}}$
Tip - For any vector $\vec{a}=a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the magnitude $|\vec{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$
$\therefore \sqrt{(2 \lambda)^{2}+(3 \lambda)^{2}+(6 \lambda)^{2}}=21$
$\Rightarrow 7 \lambda=21$
$\Rightarrow \lambda=3$
The required vector is $(6 \hat{\imath}-9 \hat{\jmath}+18 \hat{k})$

10. Question

If $\vec{a}=(\hat{i}-2 \hat{j}), \vec{b}=(2 \hat{i}-3 \hat{j})$ and $\vec{c}=(2 \hat{i}+3 \hat{k})$, find $(\vec{a}+\vec{b}+\vec{c})$.

Answer

$\vec{a}=\hat{\imath}-2 \hat{j}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-3 \hat{\jmath}$
$\vec{c}=2 \hat{i}+3 \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}$
$=(\hat{\imath}-2 \hat{\jmath})+(2 \hat{\imath}-3 \hat{\jmath})+(2 \hat{\imath}+3 \hat{k})$
$=5 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}$

11. Question

If $\mathrm{A}(-2,1,2)$ and $\mathrm{B}(2,-1,6)$ are two given points, find a unit vector in the direction of $\overrightarrow{\mathrm{AB}}$.

Answer

$A=(-2,1,2)$
$B=(2,-1,6)$
$\therefore \overrightarrow{\mathrm{AB}}$
$=\{2-(-2)\} \hat{\mathrm{\imath}}+\{(-1)-1\} \hat{\mathrm{j}}+\{6-2\} \hat{\mathrm{k}}$
$=4 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the unit vector is represented as $\hat{a}=\frac{a_{x} \hat{1}+a_{y} \hat{j}+a_{z} \hat{k}}{\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}$
$\therefore \widehat{\mathrm{AB}}$
$=\frac{4 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}}{\sqrt{4^{2}+2^{2}+4^{2}}}$
$=\frac{4}{6} \hat{\imath}-\frac{2}{6} \hat{\jmath}+\frac{4}{6} \hat{k}$
$=\frac{2}{3} \hat{\imath}-\frac{1}{3} \hat{\jmath}+\frac{2}{3} \hat{k}$

12. Question

Find the direction ratios and direction cosines of the vector $\overrightarrow{\mathrm{a}}=(5 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$.

Answer

$\vec{a}=5 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{1}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the direction ratios are represented as (a_{x}, a_{y}, a_{z}) and the direction cosines are given by $\frac{a_{x}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}{ }^{2}}}, \frac{a_{y}}{\sqrt{a_{x}^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}, \frac{a_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}$

The direction ratios are $(5,-3,4)$
The direction cosines are $\frac{5}{\sqrt{5^{2}+3^{2}+4^{2}}}, \frac{-3}{\sqrt{5^{2}+3^{2}+4^{2}}}, \frac{4}{\sqrt{5^{2}+3^{2}+4^{2}}}$
$=\frac{5}{5 \sqrt{2}}, \frac{-3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}$
$=\frac{1}{\sqrt{2}}, \frac{-3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}$

13. Question

Find the direction ratios and the direction cosines of the vector joining the points $A(2,1,-2)$ and $B(3,5,-4)$.

Answer

$A=(2,1,-2)$
$B=(3,5,-4)$
$\therefore \overrightarrow{\mathrm{AB}}$
$=\{3-2\} \hat{\imath}+\{5-1\} \hat{\jmath}+\{(-4)-(-2)\} \hat{\mathrm{k}}$
$=\hat{\imath}+4 \hat{\jmath}-2 \hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the direction ratios are represented $a s\left(a_{x}, a_{y}, a_{z}\right)$ and the direction cosines are given by $\frac{a_{x}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \frac{a_{y}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}{ }^{2}}}, \frac{a_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}$

The direction ratios are ($1,4,-2$)
The direction cosines are $\frac{1}{\sqrt{1^{2}+4^{2}+2^{2}}}, \frac{4}{\sqrt{1^{2}+4^{2}+2^{2}}}, \frac{-2}{\sqrt{1^{2}+4^{2}+2^{2}}}$
$=\frac{1}{\sqrt{21}}, \frac{4}{\sqrt{21}}, \frac{-2}{\sqrt{21}}$

14. Question

Show that the points A, B and C having position vectors $(\hat{i}+2 \hat{j}+7 \hat{k}),(2 \hat{i}+6 \hat{j}+3 \hat{k})$ and $(3 \hat{i}+10 \hat{j}-3 \hat{k})$ respectively, are collinear.

Answer

$A=\hat{\imath}+2 \hat{\jmath}+7 \hat{k}$
$B=2 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$
$C=3 \hat{\imath}+10 \hat{\jmath}-3 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}$
$=(2 \hat{\imath}+6 \hat{\jmath}+2 \hat{k})-(\hat{\imath}+2 \hat{\jmath}+7 \hat{k})$
$=\hat{\imath}+4 \hat{\jmath}-5 \hat{k}$
$\therefore \overrightarrow{\mathrm{BC}}$
$=(3 \hat{\imath}+10 \hat{\jmath}-3 \hat{k})-(2 \hat{\imath}+6 \hat{\jmath}+2 \hat{k})$
$=\hat{\imath}+4 \hat{\jmath}-5 \hat{k}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{BC}}$
So, the points A, B and C are collinear.

15. Question

The position vectors of the points A, B and C are $(2 \hat{i}+\hat{j}-\hat{k}),(3 \hat{i}-2 \hat{j}+\hat{k})$ and $(\hat{i}+4 \hat{j}-3 \hat{k})$ respectively. Show that the points A, B and C are collinear.

Answer

$A=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
$B=3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$
$C=\hat{\imath}+4 \hat{\jmath}-3 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}$
$=(3 \hat{\imath}-2 \hat{\jmath}+\hat{k})-(2 \hat{\imath}+\hat{\jmath}-\hat{k})$
$=\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$
$\therefore \overrightarrow{\mathrm{BC}}$
$=(\hat{\imath}+4 \hat{\jmath}-3 \hat{k})-(3 \hat{\imath}-2 \hat{\jmath}+\hat{k})$
$=-2 \hat{\imath}+6 \hat{\jmath}-4 \hat{k}$
$(-3) \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{BC}}$
So, the points A, B and C are collinear.

16. Question

If the position vectors of the vertices A, B and C of a $\Delta A B C$ be $(\hat{i}+2 \hat{j}+3 \hat{k}),(2 \hat{i}+3 \hat{j}+\hat{k})$ and $(3 \hat{i}+\hat{j}+2 \hat{k})$ respectively, prove that $\triangle A B C$ is equilateral.

Answer

$A=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$B=2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$
$C=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}$
$=(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})$
$=\hat{\imath}+\hat{\jmath}-2 \hat{k}$
$\therefore \overrightarrow{\mathrm{BC}}$
$=(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})-(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})$
$=\hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{CA}}$
$=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})-(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})$
$=-2 \hat{\imath}+\hat{\jmath}+\hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the magnitude $|\vec{a}|=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}$
$\therefore|\overrightarrow{\mathrm{AB}}|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6}$
$\therefore|\overrightarrow{B C}|=\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6}$
$\therefore|\overrightarrow{C A}|=\sqrt{2^{2}+1^{2}+1^{2}}=\sqrt{6}$
$\therefore|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{BC}}|=|\overrightarrow{\mathrm{CA}}|$
The three sides of the triangle are equal in magnitude, so the triangle is equilateral.

17. Question

Show that the points A, B and C having position vectors $(3 \hat{i}-4 \hat{j}-4 \hat{k}),(2 \hat{i}-\hat{j}+\hat{k})$ and $(\hat{i}-3 \hat{j}-5 \hat{k})$ respectively, form the vertices of a right-angled triangle.

Answer

$A=3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k}$
$B=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$C=\hat{\imath}-3 \hat{\jmath}-5 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}$
$=(2 \hat{\imath}-\hat{\jmath}+\hat{k})-(3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})$
$=-\hat{\imath}+3 \hat{\jmath}+5 \hat{k}$
$\therefore \overrightarrow{\mathrm{BC}}$
$=(\hat{\imath}-3 \hat{\jmath}-5 \hat{k})-(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
$=-\hat{\imath}-2 \hat{\jmath}-6 \hat{k}$
$\therefore \overrightarrow{\mathrm{CA}}$
$=(3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})-(\hat{\imath}-3 \hat{\jmath}-5 \hat{k})$
$=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
Tip - For any 2 perpendicular vectors $\vec{a} \& \vec{b}, \vec{a} \cdot \vec{b}=0$
$\therefore \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CA}}$
$=(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k}) \cdot(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
$=-2-3+5$
$=0$
The triangle is right-angled.

18. Question

Using vector method, show that the points $A(1,-1,0), B(4,-3,1)$ and $C(2,-4,5)$ are the vertices of a rightangled triangle.

Answer

$\mathrm{A}=(1,-1,0)$
$B=(4,-3,1)$
$C=(2,-4,5)$
$\therefore \overrightarrow{\mathrm{AB}}$
$=(4-1) \hat{\imath}+(-3+1) \hat{\mathrm{j}}+(1-0) \hat{\mathrm{k}}$
$=3 \hat{i}-2 \hat{j}+\hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{BC}}$
$=(2-4) \hat{\imath}+(-4+3) \hat{\jmath}+(5-1) \hat{k}$
$=-2 \hat{\mathbf{i}}-\hat{\mathrm{j}}+4 \hat{\mathbf{k}}$
$\therefore \overrightarrow{\mathrm{CA}}$
$=(1-2) \hat{\imath}+(-1+4) \hat{\mathrm{\jmath}}+(0-5) \hat{\mathrm{k}}$
$=-\hat{1}+3 \hat{j}-5 \hat{k}$
Tip - For any 2 perpendicular vectors $\vec{a} \& \vec{b}, \vec{a} \cdot \vec{b}=0$
$\therefore \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}$
$=(3 \hat{\imath}-2 \hat{\jmath}+\hat{k}) \cdot(-2 \hat{\imath}-\hat{\jmath}+4 \hat{k})$
$=-6+2+4$
$=0$
The triangle is right-angled.

19. Question

Find the position vector of the point which divides the join of the points $(2 \vec{a}-3 \vec{b})$ and $(3 \vec{a}-2 \vec{b})$ (i) internally and (ii) externally in the ratio $2: 3$.

Answer

$\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{a}}-3 \hat{\mathrm{~b}}$
$\vec{B}=3 \hat{a}-2 \hat{b}$
Formula to be used - The point dividing a line joining points a and b in a ratio m:n internally or externally is given by $\frac{\mathrm{mb} \pm \mathrm{na}}{\mathrm{m}+\mathrm{b}}$ respectively.

The position vector of the point dividing the line internally
$=\frac{2 \times(3 \hat{a}-2 \hat{b})+3 \times(2 \hat{a}-3 \hat{b})}{2+3}$
$=\frac{12}{5} \hat{a}-\frac{13}{5} \hat{b}$
The position vector of the point dividing the line externally
$=\frac{2 \times(3 \hat{a}-2 \hat{b})-3 \times(2 \hat{a}-3 \hat{b})}{2-3}$
$=-5 \hat{b}$

20. Question

The position vectors of two points A and B are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ respectively. Find the position vector of a point C which divides $A B$ externally in the ratio $1: 2$. Also, show that A is the mid-point of the line segment CB.

Answer

$\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{a}}+\hat{\mathrm{b}}$
$\vec{B}=\hat{a}-3 \hat{b}$
Formula to be used - The point dividing a line joining points a and b in a ratio $m: n$ externally is given by $\frac{\mathrm{mb}-\mathrm{na}}{\mathrm{m}-\mathrm{b}}$ respectively.

The position vector of the point C dividing the line externally
$=\frac{1 \times(\hat{a}-3 \hat{b})-2 \times(2 \hat{a}+\hat{b})}{2-3}$
$=3 \hat{a}+5 \hat{b}$
The midpoint of B and C may be given by
$\frac{(\hat{a}-3 \hat{b})+(3 \hat{a}+5 \hat{b})}{2}$
$=2 \hat{a}+\hat{b}$ i.e. point A
A is the midpoint of B and C.

21. Question

Find the position vector of a point R which divides the line joining $A(-2,1,3)$ and $B(3,5,-2)$ in the ratio $2: 1$ (i) internally (ii) externally.

Answer

$A=(-2,1,3)$
$B=(3,5,-2)$
$\therefore \overrightarrow{O A}=-2 \hat{\mathrm{i}}+\hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
$\therefore \overrightarrow{O B}=3 \hat{\mathrm{I}}+5 \hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}$
Formula to be used - The point dividing a line joining points a and b in a ratio m:n internally or externally is given by $\frac{\mathrm{mb} \pm \mathrm{na}}{\mathrm{m}+\mathrm{b}}$ respectively.

The position vector of the point dividing the line internally
$=\frac{2 \times(-2 \hat{\imath}+\hat{\jmath}+3 \hat{k})+1 \times(3 \hat{\imath}+5 \hat{\jmath}-2 \hat{k})}{2+1}$
$=\frac{4}{3} \hat{\imath}+\frac{11}{3} \hat{\mathrm{\jmath}}-\frac{1}{3} \hat{\mathrm{k}}$

The position vector of the point dividing the line externally
$=\frac{2 \times(-2 \hat{\imath}+\hat{\jmath}+3 \hat{k})-1 \times(3 \hat{\imath}+5 \hat{\jmath}-2 \hat{k})}{2-1}$
$=8 \hat{i}+9 \hat{\jmath}-7 \hat{k}$

22. Question

Find the position vector of the mid-point of the vector joining the points $A(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\mathrm{B}(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$.

Answer

$\overrightarrow{\mathrm{OA}}=3 \hat{\mathrm{\imath}}+2 \hat{\jmath}+6 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{OB}}=\hat{\imath}+4 \hat{\jmath}-2 \hat{\mathrm{k}}$
Formula to be used - The midpoint of a line joining points a and b is given by $\frac{a+b}{2}$.
The position vector of the midpoint
$=\frac{(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})+(\hat{\imath}+4 \hat{\jmath}-2 \hat{k})}{2}$
$=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}$

23. Question

If $\overrightarrow{\mathrm{AB}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})$ and $\mathrm{A}(1,2,-1)$ is the given point, find the coordinates of B.

Answer

$A=(1,2,-1)$
Let the co-ordinates of point B be $\left(b_{1}, b_{2}, b_{3}\right)$
$\overrightarrow{\mathrm{AB}}=2 \hat{\imath}+\hat{\jmath}-3 \hat{\mathrm{k}}$
$\Rightarrow\left[\left(\mathrm{b}_{1}-1\right) \hat{\mathrm{\imath}}+\left(\mathrm{b}_{2}-2\right) \hat{\mathrm{\jmath}}+\left(\mathrm{b}_{3}+1\right) \hat{\mathrm{k}}\right]=2 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}}$
Comparing the respective co-efficient,
$b_{1}-1=2$ i.e. $b_{1}=3$
$b_{2}-2=1$ i.e. $b_{2}=3$
$b_{3}+1=-3$ i.e. $b_{3}=-4$
The required co-ordinates of B are $(3,3,-4)$

24. Question

Write a unit vector in the direction of $\overrightarrow{P Q}$, where P and Q are the points $(1,3,0)$ and $(4,5,6)$ respectively.

Answer

$P=(1,3,0)$
$Q=(4,5,6)$
$\therefore \overrightarrow{\mathrm{PQ}}$
$=(4-1) \hat{\imath}+(5-3) \hat{\jmath}+(6-0) \hat{k}$
$=3 \hat{i}+2 \hat{j}+6 \hat{k}$
Tip - For any vector $\vec{a}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}$ the unit vector is represented as $\hat{a}=\frac{a_{x} \hat{1}+a_{y} \hat{j}+a_{z} \hat{k}}{\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}}$ $\therefore \widehat{\mathrm{PQ}}$
$=\frac{3 \hat{1}+2 \hat{\jmath}+6 \hat{k}}{\sqrt{3^{2}+2^{2}+6^{2}}}$
$=\frac{1}{7}(3 \hat{i}+2 \hat{\jmath}+6 \hat{k})$

