Principle Of Mathematical Induction

Exercise 4

Q. 1. Using the principle of mathematical induction, prove each of the following for all $\mathrm{n} \in \mathrm{N}$:
$1+2+3+4+\ldots+n=1 / 2 n(n+1)$
Answer : To Prove:
$1+2+3+4+\ldots+n=1 / 2 n(n+1)$
Steps to prove by mathematical induction:
Let $\mathrm{P}(\mathrm{n})$ be a statement involving the natural number n such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true

Then $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$
Therefore,
Let $\mathrm{P}(\mathrm{n}): 1+2+3+4+\ldots+\mathrm{n}=1 / 2 \mathrm{n}(\mathrm{n}+1)$
Step 1:
$P(1)=1 / 21(1+1)=1 / 2 \times 2=1$
Therefore, $P(1)$ is true
Step 2:
Let $P(k)$ is true Then,
$P(k): 1+2+3+4+\ldots+k=1 / 2 k(k+1)$
Now,

$$
\begin{aligned}
& 1+2+3+4+\ldots+k+(k+1)=1 / 2 k(k+1)+(k+1) \\
& =(k+1)\{1 / 2 k+1\}
\end{aligned}
$$

$=1 / 2(\mathrm{k}+1)(\mathrm{k}+2)$
$=P(k+1)$
Hence, $P(k+1)$ is true whenever $P(k)$ is true
Hence, by the principle of mathematical induction, we have
$1+2+3+4+\ldots+n=1 / 2 n(n+1)$ for all $n \in N$
Hence proved.
Q. 2. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$2+4+6+8+\ldots+2 n=n(n+1)$
Answer : To Prove:
$2+4+6+8+\ldots+2 n=n(n+1)$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number n such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true

Then $P(n)$ is true for all $n \in N$
Therefore,
Let $P(n): 2+4+6+8+\ldots+2 n=n(n+1)$

Step 1:

$P(1)=1(1+1)=1 \times 2=2$
Therefore, $P(1)$ is true

Step 2:

Let $P(k)$ is true Then,
$P(k): 2+4+6+8+\ldots+2 k=k(k+1)$

Now,
$2+4+6+8+\ldots+2 k+2(k+1)=k(k+1)+2(k+1)$
$=k(k+1)+2(k+1)$
$=(\mathrm{k}+1)(\mathrm{k}+2)$
$=P(k+1)$
Hence, $P(k+1)$ is true whenever $P(k)$ is true
Hence, by the principle of mathematical induction, we have
$2+4+6+8+\ldots+2 n=n(n+1)$ for all $n \in N$
Q. 3. Using the principle of mathematical induction, prove each of the following for all $\boldsymbol{n} \in \mathbf{N}$:
$1+3+3^{2}+3^{3}+\ldots+3^{\mathrm{n}-1}=\frac{1}{2}\left(3^{\mathrm{n}}-1\right)$
Answer : To Prove:
$1+3^{1}+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number n such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true

Then $P(n)$ is true for all $n \in N$
Therefore,
Let $P(n):^{1}+3^{1}+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$
Step 1:
$P(1)=\frac{3^{1}-1}{2}=\frac{2}{2}=1$

Therefore, $P(1)$ is true
Step 2:
Let $P(k)$ is true Then,
$\mathrm{P}(\mathrm{k})::^{1}+3^{1}+3^{2}+\ldots+3^{k-1}=\frac{3^{k}-1}{2}$
Now,

$$
\begin{aligned}
& 1+3^{1}+3^{2}+\ldots+3^{k-1}+3^{(k+1)-1}=\frac{3^{(k)}-1}{2}+3^{(k+1)-1} \\
& =\frac{3^{k}-1}{2}+3^{(k)} \\
& =3^{(k)}\left(\frac{1}{2}+1\right)-\frac{1}{2} \\
& =3^{(k)}\left(\frac{3}{2}\right)-\frac{1}{2} \\
& =3^{(k+1)}\left(\frac{1}{2}\right)-\frac{1}{2} \\
& =3^{(k+1)}-1 \\
& =P(\mathrm{k}+1)
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true
Hence, by the principle of mathematical induction, we have
$1+3^{1}+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$ for all $n \in N$
Q. 4. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$2+6+18+\ldots+2 \times 3^{n-1}=\left(3^{n}-1\right)$
Answer : To Prove:
$2+6+18+\ldots+2^{\times} 3^{n-1}=\left(3^{n}-1\right)$
Steps to prove by mathematical induction:
Let $P(n)$ be a statement involving the natural number n such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true

Then $P(n)$ is true for all $n \in N$
Therefore,
Let $P(n): 2+6+18+\ldots+2 \times 3^{n-1}=\left(3^{n}-1\right)$
Step 1:
$P(1)=3^{1}-1=3-1=2$
Therefore, $P(1)$ is true

Step 2:

Let $P(k)$ is true Then,
$P(k): 2+6+18+\ldots+2^{\times} 3^{k-1}=\left(3^{k}-1\right)$
Now,
$2+6+18+\ldots+2 \times 3^{k-1}+2 \times 3^{k+1-1}=\left(3^{k}-1\right)+2 \times 3^{k}$
$=-1+3 \times 3^{k}$
$=3^{\mathrm{k}+1-1}$
$=P(k+1)$
Hence, $P(k+1)$ is true whenever $P(k)$ is true
Hence, by the principle of mathematical induction, we have
$2+6+18+\ldots+2^{\times} 3^{n-1}=\left(3^{n}-1\right)$ for all $n \in N$
Q. 5. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{\mathrm{n}}}=\left(1-\frac{1}{2^{\mathrm{n}}}\right)
$$

Answer : To Prove:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{\mathrm{n}}}=\left(1-\frac{1}{2^{\mathrm{n}}}\right)
$$

Steps to prove by mathematical induction:
Let $\mathrm{P}(\mathrm{n})$ be a statement involving the natural number n such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true

Then $P(n)$ is true for all $n \in N$
Therefore,
Let $\mathrm{P}(\mathrm{n}): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{\mathrm{n}}}=\left(1-\frac{1}{2^{\mathrm{n}}}\right)$
Step 1:
$P(1)=1-\frac{1}{2^{1}}=1-\frac{1}{2}=\frac{1}{2}$
Therefore, $P(1)$ is true

Step 2:

Let $\mathrm{P}(\mathrm{k})$ is true Then,
$\mathrm{P}(\mathrm{k}): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}$
Now,

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}} \\
& =1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}} \\
& =1+\frac{1}{2^{k}}\left(\frac{1}{2}-1\right) \\
& =1+\frac{1}{2^{k}}\left(-\frac{1}{2}\right) \\
& =1-\frac{1}{2^{k+1}} \\
& =\mathrm{P}(\mathrm{k}+1)
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true
Hence, by the principle of mathematical induction, we have

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{n}}=\left(1-\frac{1}{2^{n}}\right) \text { for all } n \in N
$$

Q. 6. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\mathbf{1}^{2}+\mathbf{3}^{2}+\mathbf{5}^{\mathbf{2}}+\mathbf{7}^{\mathbf{2}}+\ldots+\left(\mathbf{2 n} \mathbf{- 1} \mathbf{)}^{2}=\frac{\mathrm{n}(2 \mathrm{n}-1)(2 \mathrm{n}+1)}{3}\right.$

Answer : To Prove:
$1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
Steps to prove by mathematical induction:
Let $\mathrm{P}(\mathrm{n})$ be a statement involving the natural number n such that
(i) $P(1)$ is true
(ii) $P(k+1)$ is true, whenever $P(k)$ is true

Then $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$

Therefore,
Let $\mathrm{P}(\mathrm{n}): 1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=\frac{\mathrm{n}(2 n-1)(2 n+1)}{3}$
Step 1:
$\mathrm{P}(1)=\frac{\frac{1(2-1)(2+1)}{3}}{3}=\frac{3}{3}=1$
Therefore, $P(1)$ is true

Step 2:

Let $P(k)$ is true Then,
$\mathrm{P}(\mathrm{k}): 1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 \mathrm{k}-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}$
Now,

$$
\begin{aligned}
& 1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2(\mathrm{k}+1)-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+2-1)^{2} \\
& =\frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2} \\
& =(2 k+1)\left[\frac{k(2 k-1)}{3}+2 k+1\right] \\
& =(2 k+1)\left[\frac{2 k^{2}-k+6 k+3}{3}\right] \\
& = \\
& =\frac{(2 k+1)\left[\frac{2 k^{2}+5 k+3}{3}\right]}{=} \\
& =\frac{(k+1)(2 k+1)(2 k+3)}{3} \\
& =P(\mathrm{k}+1)
\end{aligned}
$$

Hence, $P(k+1)$ is true whenever $P(k)$ is true
Hence, by the principle of mathematical induction, we have
$1^{2}+3^{2}+5^{2}+7^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$ for all $n \in N$
Q. 7. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$1.2+2.2^{2}+3.2^{3}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$.
Answer : To Prove:
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+\ldots \ldots+n \times 2^{n}=(n-1) 2 n+1+2$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): 1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+\ldots \ldots+n \times 2^{n}$
For $\mathrm{n}=1$
LHS $=1 \times 2=2$
RHS $=(1-1) \times 2^{(1+1)}+2$
$=0+2=2$
Hence, LHS = RHS
$P(n)$ is true for $n 1$
Assume $P(k)$ is true
$1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}=(k-1) \times 2^{k+1}+2$
We will prove that $\mathrm{P}(\mathrm{k}+1)$ is true
1×
$2^{1}+2 \times 2^{2}+3 \times 2^{3}+(k+1) \times 2^{k+1}=((k+1)-1) \times 2^{(k+1)+1}+2$
$1 \times^{2^{1}}+2 \times 2^{2}+3 \times 2^{3}+(k+1) \times 2^{k+1}=(k) \times 2^{k+2}+2$
$1 \times^{2^{1}}+2 \times 2^{2}+3 \times 2^{3}+k 2^{k}+(k+1) \times 2^{k+1}=(k) \times 2^{k+2}+2$
We have to prove $P(k+1)$ from $P(k)$, i.e. (2) from (1)
From (1)
$1 \times^{2^{1}}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}=(k-1) \times 2^{k+1}+2$
Adding $(k+1) \times 2^{k+1}$ both sides,
(1×
$\left.2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}\right)+(k+1) \times 2^{k+1}=(k-1) \times 2^{k+1}+2+$ $(k+1) \times 2^{k+1}$
$=k \times 2^{k+1}-2^{k+1}+2+k \times 2^{k+1}+2^{k+1}$
$=2 k \times 2^{k+1}+2$
$=k \times 2^{k+2}+2$
$\left(1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}+k \times 2^{k}\right)+(k+1) \times 2^{k+1}=k \times 2^{k+2}+2$
Which is the same as $P(k+1)$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $P(n)$ is true for
Where n is a natural number
Put $\mathrm{k}=\mathrm{n}-1$
$\left(1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3}\right)+n \times 2^{n}=(n-1) \times 2^{n+1}+2$
Hence proved.
Q. 8. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \boldsymbol{\in}$:
$3 \cdot 2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\ldots .+3^{n} \cdot 2^{n+1}=\frac{\frac{12}{5}}{}\left(6^{n}-1\right)$.

Answer : To Prove:
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): 3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}$
For $\mathrm{n}=1$
LHS $=3 \times 2^{2}=12$
RHS $=\left(\frac{12}{5}\right) \times\left(6^{1}-1\right)$
$=\frac{12}{5} \times 5=12$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k} \times 2^{k+1}=\frac{12}{5}\left(6^{k}-1\right)$
We will prove that $\mathrm{P}(\mathrm{k}+1)$ is true
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k+1} \times 2^{k+2}=\frac{12}{5}\left(6^{k+1}-1\right)$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k+1} \times 2^{k+2}=\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k} \times 2^{k+1}+3^{k+1} \times 2^{k+2}=$ $\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}$

We have to prove $P(k+1)$ from $P(k)$ ie (2) from (1)
From (1)
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{k} \times 2^{k+1}=\frac{12}{5}\left(6^{k}-1\right)$
Adding $3^{k+1} \times 2^{k+2}$ both sides

$$
\begin{gathered}
3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots+3^{k} \times 2^{k+1}+3^{k+1} \times 2^{k+2} \\
=\frac{12}{5}\left(6^{k}-1\right)+3^{k+1} \times 2^{k+2}
\end{gathered}
$$

$$
=\frac{12}{5}\left(6^{k}-1\right)+3^{k} \times 2^{k} \times 12
$$

$$
=\frac{12}{5}\left(6^{k}-1\right)+6^{k} \times 12
$$

$$
=\left(6^{k}\left(\frac{12}{5}+12\right)-\frac{12}{5}\right)
$$

$$
=\left(\frac{72}{5}\right)-\frac{12}{5}
$$

$$
=\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}
$$

$$
3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots+3^{k} \times 2^{k+1}+3^{k+1} \times 2^{k+2}
$$

$$
=\frac{12}{5}\left(6^{k+1}\right)-\frac{12}{5}
$$

Which is the same as $\mathrm{P}(\mathrm{k}+1)$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for \times
Where n is a natural number
Put $\mathrm{k}=\mathrm{n}-1$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}=\frac{12}{5}\left(6^{n}\right)-\frac{12}{5}$
$3 \times 2^{2}+3^{2} \times 2^{3}+3^{3} \times 2^{4}+\ldots \ldots \times+3^{n} \times 2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$
Hence proved
Q. 9. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots .+$
Answer : To Prove:
$\frac{1}{1}+\frac{1}{(1+2)}+\frac{1}{(1+2+3+\ldots \ldots+n)}=\frac{2 n}{(n+1)}$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): \frac{1}{1}+\frac{1}{(1+2)}+\frac{1}{(1+2+3+\ldots \ldots+n)}=\frac{2 n}{(n+1)}$
For $\mathrm{n}=1$
LHS $=1$
RHS $=\frac{2 \times 1}{(1+1)}={ }_{1}$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$\frac{1}{1}+\frac{1}{(1+2)}+\ldots \ldots+\frac{1}{(1+2+3+\ldots \ldots x+k)}=\frac{2 k}{(k+1)}$
We will prove that $P(k+1)$ is true
$\mathrm{RHS}=\frac{\frac{2(k+1)}{(k+1+1)}=\frac{2 k+2}{k+2}}{(k+1}$

LHS $={ }^{\frac{1}{1}}+\frac{1}{(1+2)}+\ldots \ldots+\frac{1}{(1+2+3+\ldots \ldots+(k+1))}$
$=\frac{1}{1}+\frac{1}{(1+2)}+\ldots \ldots+\frac{1}{(1+2+3+\ldots \ldots+k)}+\frac{1}{(1+2+3+\ldots \ldots+(k+1))}$ [Writing the last
Second term]
$=\frac{2 k}{(k+1)}+\frac{1}{(1+2+3+\ldots .+(k+1))}$ [From 1]
$=\frac{2 k}{(k+1)}+\frac{1}{\frac{(k+1) \times(k+2)}{2}}$
$\{1+2+3+4+\ldots+n=[n(n+1)] / 2$ put $n=k+1\}$
$=\frac{2 k}{(k+1)}+\frac{2}{(k+1) \times(k+2)}$
$=\frac{2}{(k+1)}\left(\frac{k}{1}+\frac{1}{k+2}\right)$
$=\frac{2}{k+1}\left(\frac{(k+1) \times(k+1)}{k+2}\right)$
[Taking LCM and simplifying]
$=\frac{2(k+1)}{(k+2)}$
$=$ RHS
Therefore, $\frac{1}{1}+\frac{1}{(1+2)}+\ldots \ldots+\frac{1}{(1+2+3+\ldots \ldots x+(k+1))}=\frac{2 k+2}{k+2}$
LHS = RHS
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for \times
Where n is a natural number

Put $k=n-1$
$\frac{1}{1}+\frac{1}{(1+2)}+\ldots \ldots+\frac{1}{(1+2+3+\ldots \ldots \times+n)}=\frac{2 n}{n+1}$
Hence proved
Q. 10. Using the principle of mathematical induction, prove each of the following for all $n \in N$:
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
Answer : To Prove:
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
For $n=1$
LHS $=\frac{1}{2 \times 5}=\frac{1}{10}$
$R H S=\frac{1 \times 1}{(6+4)}=\frac{1}{10}$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true

$$
\begin{equation*}
\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}=\frac{k}{(6 k+4)} . \tag{1}
\end{equation*}
$$

We will prove that $P(k+1)$ is true
$\mathrm{RHS}=\frac{k+1}{(6(k+1)+4)}=\frac{k+1}{(6 k+10)}$
$\mathrm{LHS}=\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}$
[Writing the Last second term]

$$
\begin{aligned}
& =\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)} \\
& =\frac{k}{(6 k+4)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)} \text { [Using 1] } \\
& =\frac{k}{(6 k+4)}+\frac{1}{(3 k+2) \times(3 k+5)} \\
& =\frac{k}{(6 k+4)}+\frac{1}{(3 k+2) \times(3 k+5)} \\
& =\frac{1}{(3 k+2)} \times\left[\frac{(3 k+2) \times(k+1)}{2 \times(3 k+5)}\right] \text { (Taking LCM and simplifying) } \\
& =\frac{k+1}{(6 k+10)} \\
& =\text { RHS }
\end{aligned}
$$

Therefore, $\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}=$ $\frac{k+1}{(6 k+10)}$

LHS = RHS
Therefore, $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
By the principle of mathematical induction, $P(n)$ is true for
Where n is a natural number
Put $k=n-1$
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots \times+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$

Hence proved.
Q. 11. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$.

Answer : To Prove:

$$
\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 n-2) \times(3 n+1)}=\frac{n}{(3 n+1)}
$$

Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): \frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 n-2) \times(3 n+1)}=\frac{n}{(3 n+1)}$
For $\mathrm{n}=1$
LHS $=\frac{1}{1 \times 4}=\frac{1}{4}$
RHS $=\frac{1}{(3+1)}=\frac{1}{4}$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true

$$
\begin{equation*}
=\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 k-2) \times(3 k+1)}=\frac{k}{(3 k+1)} \tag{1}
\end{equation*}
$$

We will prove that $P(k+1)$ is true
RHS $=\frac{k+1}{(3(k+1)+1)}=\frac{k+1}{(3 k+4)}$
LHS $=\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3(k+1)-2) \times(3(k+1)+1)}$
$=\frac{1}{1 \times 4}+\frac{1}{(4 \times 7)}+\ldots \ldots+\frac{1}{(3 k-2) \times(3 k+1)}+\frac{1}{(3 k+1) \times(3 k+4)}$
[Writing the second last term]
$=\frac{k}{(3 k+1)}+\frac{1}{(3 k+1) \times(3 k+4)}$ [Using 1]
$=\frac{1}{(3 k+1)}\left(k+\frac{1}{(3 k+4)}\right)$
$=\frac{1}{(3 k+1)}\left(\frac{\left(3 k^{2}+4 k+1\right)}{(3 k+4)}\right)$
$=\frac{k+1}{(3 k+4)}$
(Splitting the numerator and cancelling the common factor)
$=$ RHS
LHS = RHS
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for
Where n is a natural number
Hence proved.
Q. 12. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots .+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{(2 n+1)}
$$

Answer : To Prove:
$\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{(2 n+1)}$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}): \frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{(2 n+1)}$
For $n=1$
LHS $=\frac{1}{1 \times 3}=\frac{1}{3}$
RHS $=\frac{1}{(2+1)}=\frac{1}{3}$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$=\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 k-1) \times(2 k+1)}=\frac{k}{(2 k+1)}$
We will prove that $P(k+1)$ is true
RHS $=\frac{k+1}{(2(k+1)+1)}=\frac{k+1}{(2 k+3)}$
$\mathrm{LHS}=\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2(k+1)-1) \times(2(k+1)+1)}$
$=\frac{1}{1 \times 3}+\frac{1}{(3 \times 5)}+\ldots \ldots+\frac{1}{(2 k-1) \times(2 k+1)}+\frac{1}{(2 k+1) \times(2 k+3)}$
[Writing the second last term]
$=\frac{k}{(2 k+1)}+\frac{1}{(2 k+1) \times(2 k+3)}[$ Using 1]
$=\frac{1}{(2 k+1)}\left(k+\frac{1}{(2 k+3)}\right)$
$=\frac{1}{(2 k+1)}\left(\frac{\left(2 k^{2}+3 k+1\right)}{(2 k+3)}\right)$
$=\frac{k+1}{(2 k+3)}$
(Splitting the numerator and cancelling the common factor)
$=$ RHS
LHS = RHS
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $P(n)$ is true for x
Where n is a natural number
Hence proved.
Q. 13. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
Answer : To Prove:
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
For $n=1$
LHS $=\frac{1}{2 \times 5}=\frac{1}{10}$
RHS $=\frac{1 \times 1}{(6+4)}=\frac{1}{10}$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}=\frac{k}{(6 k+4)}$
We will prove that $P(k+1)$ is true
$\mathrm{RHS}=\frac{k+1}{(6(k+1)+4)}=\frac{k+1}{(6 k+10)}$
$\mathrm{LHS}=\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}$ [Writing the Last second term]

$$
\begin{aligned}
& =\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)} \\
& =\frac{k}{(6 k+4)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}[\text { Using 1] }
\end{aligned}
$$

$=\frac{k}{(6 k+4)}+\frac{1}{(3 k+2) \times(3 k+5)}$
$=\frac{k}{(6 k+4)}+\frac{1}{(3 k+2) \times(3 k+5)}$
$=\frac{1}{(3 k+2)} \times\left[\frac{(3 k+2) \times(k+1)}{2 \times(3 k+5)}\right]$ (Taking LCM and simplifying)
$=\frac{k+1}{(6 k+10)}$
$=$ RHS
Therefore, $\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots+\frac{1}{(3 k-1) \times(3 k+2)}+\frac{1}{(3(k+1)-1) \times(3(k+1)+2)}=$ $\frac{k+1}{(6 k+10)}$

LHS = RHS
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for
Where n is a natural number
Put $k=n-1$
$\frac{1}{2 \times 5}+\frac{1}{(5 \times 8)}+\ldots \ldots \times+\frac{1}{(3 n-1) \times(3 n+2)}=\frac{n}{(6 n+4)}$
Hence proved.
Q. 14. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \boldsymbol{\epsilon} \mathbf{N}$:

$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \cdots \cdot\left\{1+\frac{(2 n+1)}{n^{2}}\right\}=(n+1)^{2} .
$$

Answer : To Prove:
$\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 n+1}{n^{2}}\right\}=(n+1)^{2}$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}):\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 n+1}{n^{2}}\right\}=(n+1)^{2}$
For $n=1$
LHS $=1+\frac{3}{1}=4$
RHS $=(1+1)^{2}=4$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true

$$
\begin{equation*}
=\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 k+1}{k^{2}}\right\}=(k+1)^{2} \tag{1}
\end{equation*}
$$

We will prove that $P(k+1)$ is true

$$
\begin{aligned}
& \mathrm{RHS}=((k+1)+1)^{2}=(k+2)^{2} \\
& \mathrm{LHS}=\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2(k+1)+1}{(k+1)^{2}}\right\}
\end{aligned}
$$

[Now writing the second last term]

$$
\begin{aligned}
& =\left(1+\frac{3}{1}\right) \times\left(1+\frac{5}{4}\right) \times\left(1+\frac{7}{9}\right) \times \ldots \ldots \times\left\{1+\frac{2 k+1}{k^{2}}\right\} \times\left\{1+\frac{2(k+1)+1}{(k+1)^{2}}\right\} \\
& =(k+1)^{2} \times\left\{1+\frac{2(k+1)+1}{(k+1)^{2}}\right\}[\text { Using 1] } \\
& =(k+1)^{2} \times\left\{1+\frac{(2 k+3)}{(k+1)^{2}}\right\} \\
& =(k+1)^{2} \times\left\{\frac{(k+1)^{2}+(2 k+3)}{(k+1)^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =(k+1)^{2}+(2 k+3) \\
& =k^{2}+2 k+1+2 k+3 \\
& =(k+2)^{2} \\
& =\text { RHS } \\
& \text { LHS }=\text { RHS }
\end{aligned}
$$

Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for
Where n is a natural number
Hence proved.
Q. 15. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:

$$
\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \cdots\left\{1+\frac{1}{\mathrm{n}}\right\}_{=(n+1)} .
$$

Answer: To Prove:
$\left(1+\frac{1}{1}\right) \times\left(1+\frac{1}{2}\right) \times\left(1+\frac{1}{3}\right) \times \ldots \ldots \times\left\{1+\frac{1}{n^{1}}\right\}=(n+1)^{1}$
Let us prove this question by principle of mathematical induction (PMI)
Let $\mathrm{P}(\mathrm{n}):\left(1+\frac{1}{1}\right) \times\left(1+\frac{1}{2}\right) \times\left(1+\frac{1}{3}\right) \times \ldots \ldots \times\left\{1+\frac{1}{n^{1}}\right\}=(n+1)^{1}$
For $\mathrm{n}=1$
LHS $=1+\frac{1}{1}=2$
RHS $=(1+1)^{1}=2$
Hence, LHS = RHS
$P(n)$ is true for $n=1$
Assume $P(k)$ is true

$$
\begin{equation*}
=\left(1+\frac{1}{1}\right) \times\left(1+\frac{1}{2}\right) \times\left(1+\frac{1}{3}\right) \times \ldots \ldots \times\left\{1+\frac{1}{k^{1}}\right\}=(k+1)^{1} . \tag{1}
\end{equation*}
$$

We will prove that $P(k+1)$ is true
$\mathrm{RHS}=((k+1)+1)^{1}=(k+2)^{1}$
LHS $=\left(1+\frac{1}{1}\right) \times\left(1+\frac{1}{2}\right) \times\left(1+\frac{1}{3}\right) \times \ldots \ldots \times\left\{1+\frac{1}{(k+1)^{1}}\right\}$
[Now writing the second last term]

$$
\begin{aligned}
& =\left(1+\frac{1}{1}\right) \times\left(1+\frac{1}{2}\right) \times\left(1+\frac{1}{3}\right) \times \ldots \ldots \times\left\{1+\frac{1}{k^{1}}\right\} \times\left\{1+\frac{1}{(k+1)^{1}}\right\} \\
& =(k+1)^{1} \times\left\{1+\frac{1}{(k+1)^{1}}\right\}[\text { Using 1] } \\
& =(k+1)^{1} \times\left\{\frac{(k+1)+1}{(k+1)^{1}}\right\} \\
& =(k+1)^{2} \times\left\{\frac{(k+2)^{1}}{(k+1)^{2}}\right\} \\
& =\text { k + 2 } \\
& =\text { RHS } \\
& \text { LHS = RHS }
\end{aligned}
$$

Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for
Where n is a natural number
Hence proved.
Q. 16. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$n \times(n+1) \times(n+2)$ is multiple of 6
Answer : To Prove:
$\mathrm{n} \times(\mathrm{n}+1) \times(\mathrm{n}+2)$ is multiple of 6
Let us prove this question by principle of mathematical induction (PMI) for all natural numbers
$\mathrm{n} \times(\mathrm{n}+1) \times(\mathrm{n}+2)$ is multiple of 6
Let $\mathrm{P}(\mathrm{n}): \mathrm{n} \times(\mathrm{n}+1) \times(\mathrm{n}+2)$, which is multiple of 6
For $n=1 P(n)$ is true since $1 \times(1+1) \times(1+2)=6$, which is multiple of 6
Assume $P(k)$ is true for some positive integer k, ie,
$=k \times(k+1) \times(k+2)=6 \mathrm{~m}$, where $\mathrm{m} \in \mathrm{N}$
We will now prove that $P(k+1)$ is true whenever $P(k)$ is true
Consider,
$=(k+1) \times((k+1)+1) \times((k+1)+2)$
$=(\mathrm{k}+1) \times\{\mathrm{k}+2\} \times\{(\mathrm{k}+2)+1\}$
$=[(k+1) \times(k+2) \times(k+2)]+(k+1) \times(k+2)$
$=[k \times(k+1) \times(k+2)+2 \times(k+1) \times(k+2)]+(k+1) \times(k+2)$
$=[6 m+2 \times(k+1) \times(k+2)]+(k+1) \times(k+2)$
$=6 \mathrm{~m}+3 \times(\mathrm{k}+1) \times(\mathrm{k}+2)$
Now, $(k+1) \&(k+2)$ are consecutive integers, so their product is even
Then, $(k+1) \times(k+2)=2 \times w($ even $)$
Therefore,
$=6 \mathrm{~m}+3 \times[2 \times \mathrm{w}]$
$=6 \mathrm{~m}+6 \times \mathrm{w}$
$=6(\mathrm{~m}+\mathrm{w})$
$=6 \times \mathrm{q}$ where $\mathrm{q}=(\mathrm{m}+\mathrm{w})$ is some natural number
Therefore
$(\mathrm{k}+1) \times((\mathrm{k}+1)+1) \times((\mathrm{k}+1)+2)$ is multiple of 6
Therefore, $P(k+1)$ is true whenever $P(k)$ is true.
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, ie, N Hence proved.
Q. 17. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\left(x^{2 n}-y^{2 n}\right)$ is divisible by $(x+y)$.
Answer : To Prove:
$x^{2 n}-y^{2 n}$ is divisible by $x+y$
Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let $\mathrm{P}(\mathrm{n})::^{x^{2 n}}-y^{2 n}$ is divisible by $x+y$
For $\mathrm{n}=1 \mathrm{P}(\mathrm{n})$ is true since $x^{2 n}-y^{2 n}=x^{2}-y^{2}=(x+y) \times(x-y)$
Which is divisible by $\mathrm{x}+\mathrm{y}$
Assume $P(k)$ is true for some positive integer k, ie,
$=x^{2 k}-y^{2 k}$ is divisible by $x+y$
Let $x^{2 k}-y^{2 k}=m \times(x+y)$, where $\mathrm{m} \in \mathrm{N}$.
We will now prove that $P(k+1)$ is true whenever $P(k)$ is true
Consider,
$=x^{2(k+1)}-y^{2(k+1)}$
$=x^{2 k} \times x^{2}-y^{2 k} \times y^{2}$
$=x^{2}\left(x^{2 k}-y^{2 k}+y^{2 k}\right)-y^{2 k} \times y^{2}$ [Adding and subtracting $y^{2 k}$]
$=x^{2}\left(\mathrm{~m} \times(\mathrm{x}+\mathrm{y})+y^{2 k}\right)-y^{2 k} \times y^{2}$ [Using 1]
$=m \times(x+y) x^{2}+y^{2 k} x^{2}-y^{2 k} y^{2}$
$=m \times(x+y) x^{2}+y^{2 k}\left(x^{2}-y^{2}\right)$
$=m \times(x+y) x^{2}+y^{2 k}(x-y)(x+y)$
$=(x+y)\left\{m x^{2}+y^{2 k}(x-y)\right\}$, which is factor of $(x+y)$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers ie, N Hence proved
Q. 18. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\left(x^{2 n}-1\right)-1$ is divisible by $(x-y)$, where $x \neq 1$.
Answer : To Prove:
$x^{2 n-1}-1$ is divisible by $x-1$
Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let $\mathrm{P}(\mathrm{n})::^{2 n-1}-1$ is divisible by $x-1$
For $n=1$
$\mathrm{P}(\mathrm{n})$ is true since $x^{2 n-1}-1=x^{2-1}-1=(x-1)$
Which is divisible by $x-1$
Assume $P(k)$ is true for some positive integer k, ie,
$=x^{2 k-1}-1$ is divisible by $x-1$
Let $x^{2 k-1}-1=m \times(x-1)$, where $\mathrm{m} \in \mathrm{N}$
We will now prove that $P(k+1)$ is true whenever $P(k)$ is true Consider,
$=x^{2(k+1)-1}-1$
$=x^{2 k-1} \times x^{2}-1$
$=x^{2}\left(x^{2 k-1}\right)-1$
$=x^{2}\left(x^{2 k-1}-1+1\right)-1$ [Adding and subtracting 1]
$=x^{2}(\mathrm{~m} \times(\mathrm{x}-1)+1)-1$ [Using 1]
$=x^{2}(\mathrm{~m} \times(\mathrm{x}-1))+x^{2} \times 1-1$
$=x^{2}(\mathrm{~m} \times(\mathrm{x}-1))+x^{2}-1$
$=x^{2}(\mathrm{~m} \times(\mathrm{x}-1))+\left(x^{1}-1\right)(\mathrm{x}+1)$
$=(x-1)\left\{m x^{2}+(x+1)\right\}$, which is factor of $(x-1)$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, ie, N .
Hence proved.
Q. 19. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\left\{(41)^{\mathrm{n}}-(14)^{\mathrm{n}}\right\}$ is divisible by 27 .
Answer: To Prove:
$41^{n}-14^{n}$ is a divisible of 27

Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let $\mathrm{P}(\mathrm{n}): 41^{n}-14^{n}$ is a divisible of 27
For $\mathrm{n}=1 \mathrm{P}(\mathrm{n})$ is true since $41^{n}-14^{n}=41^{1}-14^{1}=27$
Which is multiple of 27
Assume $\mathrm{P}(\mathrm{k})$ is true for some positive integer k , ie,
$=41^{n}-14^{n}$ is a divisible of 27
$\therefore 41^{k}-14^{k}=m \times 27$, where $\mathrm{m} \in \mathrm{N}$.
We will now prove that $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Consider,
$=41^{k+1}-14^{k+1}$
$=41^{k} \times 41-14^{k} \times 14$
$=41\left(41^{k}-14^{k}+14^{k}\right)-14^{k} \times 14$ [Adding and subtracting 14^{k}]
$=41\left(41^{k}-14^{k}\right)+41 \times 14^{k}-14^{k} \times 14$
$=41(27 \mathrm{~m})+14^{k}(41-14)$ [Using 1]
$=41(27 \mathrm{~m})+14^{k}(27)$
$=27\left(41 m+14^{k}\right)$
$=27 \times r$, where $\mathrm{r}=\left(41 m+14^{k}\right)$ is a natural number
Therefore $41^{k+1}-14^{k+1}$ is divisible of 27
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, ie, N .

Hence proved.
Q. 20. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\left(4^{n}+15 n-1\right)$ is divisible by 9 .
Answer : To Prove:
$4^{n}+15 n-1$ is a divisible of 9
Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let $\mathrm{P}(\mathrm{n}): 4^{n}+15 n-1$ is a divisible of 9
For $\mathrm{n}=1 \mathrm{P}(\mathrm{n})$ is true since $4^{n}+15 n-1=4^{1}+15 \times 1-1=18$
Which is divisible of 9
Assume $P(k)$ is true for some positive integer k, ie,
$=4^{k}+15 k-1$ is a divisible of 9
$\therefore 4^{k}+15 k-1=m \times 9$, where $\mathrm{m} \in \mathrm{N}$.
We will now prove that $P(k+1)$ is true whenever $P(k)$ is true.
Consider,
$=4^{k+1}+15(k+1)-1$
$=4^{k} \times 4+15 k+15-1$
$=4^{k} \times 4+15 k+14+(60 k+4)-(60 k+4)$ [Adding and subtracting
$60 k+4$]
$=\left(4^{k+1}+60 k-4\right)+15 k+14-(60 k-4)$
$=4\left(4^{k}+15 k-1\right)+15 k+14-(60 k-4)$
$=4(9 \mathrm{~m})-45 k+18$ [Using 1]
$=4(9 \mathrm{~m})-9(5 k-2)$
$=9[(4 m)-(5 k-2)]$
$=9 \times r$, where $\mathrm{r}=[(4 \mathrm{~m})-(5 k-2)]$ is a natural number
Therefore $4^{k}+15 k-1$ is a divisible of 9
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, ie, N.
Hence proved.
Q. 21. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \boldsymbol{\in}$:
$\left(3^{2 n+2}-8 n-9\right)$ is divisible by 8 .
Answer : To Prove:
$3^{2 n+2}-8 n-9$ is a divisible of 8
Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let $\mathrm{P}(\mathrm{n}): 3^{3^{2 n+2}-8 n-9}$ is a divisible of 8
For $n=1 P(n)$ is true since

$$
3^{2 n+2}-8 n-9=3^{2+2}-8 \times 1-9=81-17=64
$$

Which is divisible of 8
Assume $P(k)$ is true for some positive integer k, ie,
$=3^{2 k+2}-8 k-9$ is a divisible of 8
$\therefore 3^{2 k+2}-8 k-9=m \times 8$, where $\mathrm{m} \in \mathrm{N}$.

We will now prove that $P(k+1)$ is true whenever $P(k)$ is true
Consider,
$=3^{2(k+1)+2}-8(k+1)-9$
$=3^{2(k+1)} \times 3^{2}-8 k-8-9$
$=3^{2}\left(3^{2(k+1)}-8 k-9+8 k+9\right)-8 k-8-9$
[Adding and subtracting $8 \mathrm{k}+9$]
$=3^{2}\left(3^{2(k+1)}-8 k-9\right)+3^{2}(8 k+9)-8 k-17$
$=9\left(3^{2 k+2}-8 k-9\right)+9(8 k+9)-8 k-17$
$=9(8 \mathrm{~m})+72 \mathrm{k}+81-8 \mathrm{k}-17[$ Using 1]
$=9(8 m)+64 \mathrm{k}+64$
$=8(9 m+8 k+8)$
$=8 \times r$, where $r=9 m+8 k+8$ is a natural number
Therefore $3^{2 k+2}-8 k-9$ is a divisible of 8
Therefore, $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, ie, N .
Hence proved.
Q. 22. Using the principle of mathematical induction, prove each of the following for all $\mathbf{n} \in \mathbf{N}$:
$\left(2^{3 n}-1\right)$ is a multiple of 7
Answer : To Prove:
$2^{3 n}-1$, which is multiple of 7
Let us prove this question by principle of mathematical induction (PMI) for all natural numbers
$2^{3 n}-1$ is multiple of 7
Let $\mathrm{P}(\mathrm{n}): 2^{2^{3 n}-1}$, which is multiple of 7
For $n=1 \mathrm{P}(\mathrm{n})$ is true since $2^{2}-1=8-1=7$, which is multiple of 7
Assume $P(k)$ is true for some positive integer k, ie,
$=2^{3 k}-1=7 m$, where $\mathrm{m} \in \mathrm{N}$.
We will now prove that $P(k+1)$ is true whenever $P(k)$ is true
Consider,
$=2^{3(k+1)}-1$
$=2^{3 k} \times 2^{3}-1$
$=2^{3 k} \times 2^{3}+2^{3}-2^{3}-1$ [Adding and subtracting 2^{3}]
$=2^{3}\left(2^{3 k}-1\right)+2^{3}-1$
$=2^{3}(7 m)+2^{3}-1$ [Using 1]
$=2^{3}(7 m)+7$
$=7\left(2^{3} m+1\right)$
$=7 \times r$, where $\mathrm{r}=2^{3} m+1$ is a natural number
Therefore $2^{2 n}-1$ is multiple of 7
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers ie, N Hence proved
Q. 23. Using the principle of mathematical induction, prove each of the following for all $\mathrm{n} \in \mathrm{N}$:
$3^{n} \geq 2^{n}$.
Answer: To Prove:
$3^{n} \geq 2^{n}$

Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let $\mathrm{P}(\mathrm{n}): 3^{3^{n}} \geq 2^{n}$
For $\mathrm{n}=1 \mathrm{P}(\mathrm{n})$ is true since $3^{n} \geq 2^{n} i \times e \times 3 \geq 2$, which is true
Assume $P(k)$ is true for some positive integer k, ie,
$=3^{k} \geq 2^{k}$
We will now prove that $P(k+1)$ is true whenever $P(k)$ is true Consider,
$=3^{(k+1)}$
$\therefore 3^{(k+1)}=3^{k} \times 3>2^{k} \times 3$ [Using 1]
$=3^{k} \times 3>2^{k} \times 2 \times \frac{3}{2}$ [Multiplying and dividing by 2 on RHS]
$=3^{k+1}>2^{k+1} \times \frac{3}{2}$
Now, $2^{k+1} \times \frac{3}{2}>2^{k+1}$
$\therefore 3^{k+1}>2^{k+1}$
Therefore, $P(k+1)$ is true whenever $P(k)$ is true
By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, ie, N . Hence proved.

