Complex Numbers \& Quadratic Equations

Exercise 5A

Q. 1. Evaluate:
(i) i^{19}
(ii) ${ }^{62}$
(ii) i^{373}.

Answer: We all know that $\mathrm{i}=\sqrt{ }(-1)$.
And $\mathrm{i}^{4 \mathrm{n}}=1$
$\mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}$ (where n is any positive integer)
$i^{4 n+2}=-1$
$i^{4 n+3}=-1$
So,
(i) L.H.S $=i^{19}$
$=i^{4 \times 4+3}$
$=i^{4 n+3}$
Since it is of the form $\mathrm{i}^{4 \mathrm{n}+3}$ so the solution would be simply - i
Hence the value of i^{19} is -i .
(ii) L. H.S $=i^{62}$
$\Rightarrow \mathrm{i}^{4 \times 15+2}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+2} \Rightarrow \mathrm{i}^{2}=-1$
so it is of the form $i^{4 n+2}$ so its solution would be -1
(iii) L.H.S. $=i^{373}$
$\Rightarrow \mathrm{i}^{4 \times 93+1}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+1}$
$\Rightarrow \mathrm{i}$
So, it is of the form of $\mathrm{i}^{4 \mathrm{n}+1}$ so the solution would be i .
Q. 2. Evaluate:
(i) $(\sqrt{-1})^{192}$
(ii) $(\sqrt{-1})^{93}$
(iii) $(\sqrt{-1})^{30}$.

Answer : Since $i=\sqrt{-1}$ so
(i) L.H.S. $=(\sqrt{-1})^{192}$
$\Rightarrow \mathrm{i}^{192}$
$\Rightarrow \mathrm{i}^{4 \times 48}=1$

Since it is of the form $\mathrm{i}^{4 \mathrm{n}}=1$ so the solution would be 1
(ii) L.H.S. $=(\sqrt{-1})^{93}$
$\Rightarrow \mathrm{i}^{4 \times 23+1}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+1}$
$\Rightarrow \mathrm{i}^{1}=\mathrm{i}$

Since it is of the form of $\mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}$ so the solution would be simply i .
(iii) L.H.S $=(\sqrt{-1})^{30}$
$\Rightarrow \mathrm{i}^{4 \times 7+2}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+2}$
$\Rightarrow \mathrm{i}^{2}=-1$
Since it is of the form $\mathrm{i}^{4 \mathrm{n}+2}$ so the solution would be -1
Q. 3. Evaluate:
(i) i^{-50}
(ii) i^{-9}
(ii) i^{-131}.

Answer : (i) ${ }^{\text {L.H.S. }=} \mathrm{i}^{-50}$

$$
\begin{aligned}
& \Rightarrow i^{-4 \times 13+2} \\
& \Rightarrow i^{4 n+2} \\
& \Rightarrow-1
\end{aligned}
$$

Since it is of the form $\mathrm{i}^{4 n+2}$ so the solution would be -1
(ii) L.H.S. $=i^{-9}$
$\Rightarrow \mathrm{i}^{-4 \times 3+3}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+3}$
$\Rightarrow \mathrm{i}^{3}=-\mathrm{i}$

Since it is of the form of $\mathrm{i}^{4 \mathrm{n}+3}$ so the solution would be simply -i.
(iii) L.H.S. $=\mathrm{i}^{-131}$
$\Rightarrow \mathrm{i}^{-4 \times 33+1}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+1}$
$\Rightarrow \mathrm{i}^{1}=\mathrm{i}$

Since it is of the form $i^{4 n+1}$. so the solution would be i
Q. 4. Evaluate:
(i) $\left(i^{41}+\frac{1}{i^{71}}\right)$
(ii) $\left(\mathrm{i}^{53}+\frac{1}{\mathrm{i}^{53}}\right)$

Answer:
(i) $\left(i^{41}+\frac{1}{i^{71}}\right)=i^{41}+i^{-71}$

$$
\begin{aligned}
& \Rightarrow i^{4 \times 10+1}+i^{-4 \times 18+1}\left(\text { Since } i^{4 n+1}=i\right) \\
& \Rightarrow i^{1}+i^{1} \\
& \Rightarrow 2 i
\end{aligned}
$$

Hence, $\left(i^{41}+\frac{1}{i^{71}}\right)=2 i$
(ii) $\left(i^{53}+\frac{1}{i^{53}}\right)$
$\Rightarrow \mathrm{i}^{53}+\mathrm{i}^{-53}$
$\Rightarrow i^{4 \times 13+1}+i^{-4 \times 14+3}\left(\right.$ Since $i^{4 n+1}=i$
$\left.\Rightarrow \mathrm{i}^{1}+\mathrm{i}^{3} \mathrm{i}^{4 \mathrm{n}+3}=-1\right)$
$\Rightarrow 0$
Hence, $\left(i^{53}+\frac{1}{i^{53}}\right)=0$
Q. 5. Prove that $1+i^{2}+i^{4}+i^{6}=0$

Answer: L.H.S. $=1+\mathrm{i}^{2}+\mathrm{i}^{4}+\mathrm{i}^{6}$
To Prove: $1+\mathrm{i}^{2}+\mathrm{i}^{4}+\mathrm{i}^{6}=0$
$\Rightarrow 1+(-1)+1+i^{2}$
Since, $i^{4 n}=1$
(Where n is any positive integer)
$\Rightarrow i^{4 n+2}$
$\Rightarrow i^{2}=-1$
$\Rightarrow 1+-1+1+-1=0$
\Rightarrow L.H.S = R.H.S
Hence proved.
Q. 6. Prove that $6 i^{50}+5 i^{33}-2 i^{15}+6 i^{48}=\mathbf{7 i}$.

Answer : Given: $6 i^{50}+5 i^{33}-2 i^{15}+6 i^{48}$
To prove: $6 i^{50}+5 i^{33}-2 i^{15}+6 i^{48}=7 i$
$\Rightarrow 6 i^{4 \times 12+2}+5 i^{4 \times 8+1}-2 i^{4 \times 3+3}+6 i^{4 \times 12}$
$\Rightarrow 6 i^{2}+5 i^{1}-2 i^{3}+6 i^{0}$
$\Rightarrow-6+5 i+2 i+6$
$\Rightarrow 7 \mathrm{i}$
\Rightarrow L.H.S $=$ R.H.S
Hence proved.
Q. 7. Prove that ${ }^{\frac{1}{i}}-\frac{1}{i^{2}}+\frac{1}{i^{3}}-\frac{1}{i^{4}}=\mathbf{0}$.

Answer :

Given: ${ }^{\frac{1}{\mathrm{i}}}-\frac{1}{\mathrm{i}^{2}}+\frac{1}{\mathrm{i}^{3}}-\frac{1}{\mathrm{i}^{4}}$
To prove : $\frac{1}{\mathrm{i}}-\frac{1}{\mathrm{i}^{2}}+\frac{1}{\mathrm{i}^{3}}-\frac{1}{\mathrm{i}^{4}}=0$.
\Rightarrow L.H.S. $=\mathrm{i}^{-1}-\mathrm{i}^{-2}+\mathrm{i}^{-3}-\mathrm{i}^{-4}$
$\Rightarrow \mathrm{i}^{-4 \times 1+3}-\mathrm{i}^{-4 \times 1+2}+\mathrm{i}^{-4 \times 1+3}-\mathrm{i}^{-4 \times 1}$
Since $\mathrm{i}^{4 \mathrm{n}}=1$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+2}=-1$
$\Rightarrow i^{4 n+3}=-1$
So,
$\Rightarrow i^{1}-i^{2}+i^{3}-1$
$\Rightarrow i_{i+1-i-1}$
$\Rightarrow 0$
\Rightarrow L.H.S = R.H.S

Hence Proved

Q. 8. Prove that $\left(1+\mathbf{i}^{10}+\mathbf{i}^{20}+\mathbf{i}^{30}\right)$ is a real number.

Answer: L.H.S $=\left(1+i^{10}+i^{20}+i^{30}\right)$
$=\left(1+i^{4 \times 2+2}+i^{4 \times 5}+i^{4 \times 7+2}\right)$
Since $\Rightarrow i^{4 n}=1$
$\Rightarrow i^{4 n+1}=\mathrm{i}$
$\Rightarrow i^{4 n+2}=-1$
$\Rightarrow i^{4 n+3}=-1$
$=1+i^{2}+1+i^{2}$
$=1+-1+1+-1$
$=0$, which is a real no.
Hence, $\left(1+i^{10}+i^{20}+i^{30}\right)$ is a real number.
Q. 9. Prove that $\left\{i^{21}-\left(\frac{1}{i}\right)^{46}\right\}^{2}=\mathbf{2 i}$.

Answer : L.H.S. $=\left\{\mathrm{i}^{21}-\left(\frac{1}{\mathrm{i}}\right)^{46}\right\}^{2}$

$$
=\left\{i^{4 \times 5+1}-i^{-4 \times 12+2}\right\}^{2}
$$

Since $i^{4 n}=1$
$i^{4 n+1}=i$
$i^{4 n+2}=i^{2}=-1$
$i^{4 n+3}=i^{3}=-1$
$=\left\{i^{1}-i^{2}\right\}^{2}$
$=\{i+1\}^{2}$

Now, applying the formula $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$=i^{2}+1+2 i$.
$=-1+1+2 i$
$=2 \mathrm{i}$
L.H.S = R.H.S

Hence proved.
Q. 10. $\left\{i^{18}+\frac{1}{i^{25}}\right\}^{3}=\mathbf{2 (1 - i)}$.

Answer: L.H.S $=\left\{\mathrm{i}^{18}+\frac{1}{\mathrm{i}^{25}}\right\}^{3}$
$\Rightarrow\left\{i^{4 \times 4+2}+i^{-4 \times 7+3}\right\}^{3}$

Since $i^{4 n}=1$
$i^{4 n+1}=i$
$i^{4 n+2}=-1$
$i^{4 n+3}=-1$
$=\left\{i^{2}+i^{3}\right\}^{3}$.
$=(-1-i)^{3}$.
Applying the formula $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
We have,
$\left.+3 \mathrm{i}^{2}+3 \mathrm{i}+1\right)$
$i+3-3 i-1$
$=2(1-i)$
L.H.S = R.H.S

Hence proved.
Q. 11. Prove that $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}=2^{n}$ for all values of $n \mathbf{N}$

Answer : L.H.S $=(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}$
$=(1-i)^{\mathrm{n}}\left(1-i^{-4^{*} 1+3}\right)^{\mathrm{n}}$
$=(1-i)^{\mathrm{n}}\left(1-\mathrm{i}^{3}\right)^{\mathrm{n}}$
Since, $i^{4 n+3}=-1$
$=(1-\mathrm{i})^{\mathrm{n}}(1+\mathrm{i})^{\mathrm{n}}$.
Applying $a^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}=(\mathrm{ab})^{\mathrm{n}}$
$=((1-\mathrm{i})(1+\mathrm{i}))^{\mathrm{n}}$.
$=\left(1-i^{2}\right)^{n}$
$=2^{n}$
L.H.S = R.H.S
Q. 12. Prove that $\sqrt{-16}+3 \sqrt{-25}+\sqrt{-36}-\sqrt{-625}=0$.

Answer : L.H.S $=\sqrt{-16}+3 \sqrt{-25}+\sqrt{-36}-\sqrt{-625}$
Since we know that $\mathrm{i}=\sqrt{-1}$.
So,
$=\sqrt{16} i+3 \sqrt{25} i+\sqrt{36} i-\sqrt{625} ;$
$=4 i+15 i+6 i-25 i$
$=0$
L.H.S = R.H.S

Hence proved.
Q. 13. Prove that $\left(1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots+i^{20}\right)=1$.

Answer: L.H.S $=\left(1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots+i^{20}\right)$
$=\sum_{n=0}^{n=20} i^{n}$
$=1+-1+1+-1+\ldots \ldots \ldots .+1$

As there are 11 times 1 and 6 times it is with positive sign as $\mathrm{i}^{0}=1$ as this is the extra term and there are 5 times 1 with negative sign.

So, these 5 cancel out the positive one leaving one positive value i.e. 1

$$
\sum_{n=0}^{20} i^{n}=1
$$

L.H.S = R.H.S

Hence proved.
Q. 14. Prove that $\mathbf{i}^{53}+\mathbf{i}^{72}+\mathbf{i}^{93}+\mathbf{i}^{\mathbf{1 0 2}}=\mathbf{2 i}$.

Answer: L.H.S $=i^{53}+i^{72}+i^{93}+i^{102}$
$=i^{4 \times 13+1}+i^{4 \times 18}+i^{4 \times 23+1}+i^{4 \times 25+2}$
Since $i^{4 n}=1$
$\Rightarrow i^{4 n+1}=\mathrm{i}$ (where n is any positive integer)
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+2}=-1$
$\Rightarrow i^{4 \mathrm{n}+3}=-1$
$=i+1+i+i^{2}$
$=i+1+i-1$
$=2 i$
L.H.S = R.H.S

Hence proved.

$$
\sum^{13}\left(\mathrm{i}^{\mathrm{n}}+\mathrm{i}^{\mathrm{n}+1}\right)=(-1+\mathrm{i})
$$

Q. 15. Prove that ${ }^{\mathrm{n}=1}$
n N.

Answer : L.H.S $=\mathrm{n}=1$
$=i^{1}+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+\ldots .+i^{13}+i^{14}$
Since $\mathrm{i}^{4 \mathrm{n}}=1$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+1}=\mathrm{i}$
$\Rightarrow i^{4 n+2}=-1$
$\Rightarrow \mathrm{i}^{4 \mathrm{n}+3}=-1$
$=i-1-i+1+i-1 \ldots . . .+i-1$
As, all terms will get cancel out consecutively except the first two terms. So that will get remained will be the answer.
$=\mathrm{i}-1$
L.H.S = R.H.S

Hence proved.

Exercise 5B

Q. 1. A. Simplify each of the following and express it in the form $a+i b:$
$2(3+4 i)+i(5-6 i)$
Answer: Given: $2(3+4 i)+i(5-6 i)$
Firstly, we open the brackets

$$
\begin{aligned}
& 2 \times 3+2 \times 4 i+i \times 5-i \times 6 i \\
& =6+8 i+5 i-6 i^{2} \\
& =6+13 i-6(-1)\left[\because, i^{2}=-1\right] \\
& =6+13 i+6 \\
& = \\
& 12+13 i \\
& \underbrace{1}_{\text {Real }} \underbrace{}_{\text {imaginary }} \\
& \text { part part }
\end{aligned}
$$

Q. 1. B. Simplify each of the following and express it in the form $a+i b:$
$(3+\sqrt{-16})-(4-\sqrt{-9})$

Answer : Given: $(3+\sqrt{-16})-(4-\sqrt{-9})$
We re - write the above equation
$(3+\sqrt{(-1) \times 16})(-1)(4-\sqrt{(-1) \times 9})$
$=\left(3+\sqrt{16 i^{2}}\right)-\left(4-\sqrt{9 i^{2}}\right)\left[\because i^{2}=-1\right]$

$$
=(3+4 i)-(4-3 i)
$$

Now, we open the brackets, we get

$$
\begin{aligned}
& 3+4 i-4+3 i \\
& =-1+7 i
\end{aligned}
$$

Real Imaginary part part
Q. 1. C. Simplify each of the following and express it in the form $\mathbf{a}+\mathrm{ib}$:
$(-5+6 i)-(-2+i)$
Answer : Given: $(-5+6 i)-(-2+i)$
Firstly, we open the brackets

$$
\begin{aligned}
& -5+6+2-i \\
& =-3+5 i \\
& \underbrace{i+\underbrace{i}_{\text {imaginary }}}_{\text {Real }} \underbrace{i}_{\text {part }}
\end{aligned}
$$

Q. 1. D. Simplify each of the following and express it in the form $\mathrm{a}+\mathrm{ib}$:
$(8-4 i)-(-3+5 i)$
Answer : Given: $(8-4 i)-(-3+5 i)$
Firstly, we open the brackets
$8-4 i+3-5 i$
$=11-9 i$

Real Imaginary
part part
Q. 1. E. Simplify each of the following and express it in the form $\mathbf{a}+\mathrm{ib}$:
$(1-i)^{2}(1+i)-(3-4 i)^{2}$
Answer : Given: $(1-i)^{2}(1+i)-(3-4 i)^{2}$
$=\left(1+i^{2}-2 i\right)(1+i)-\left(9+16 i^{2}-24 i\right)$
$\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$=(1-1-2 i)(1+i)-(9-16-24 i)\left[\because i^{2}=-1\right]$
$=(-2 \mathrm{i})(1+\mathrm{i})-(-7-24 \mathrm{i})$
Now, we open the brackets

$$
\begin{aligned}
& -2 i \times 1-2 i \times i+7+24 i \\
& =-2 i-2 i^{2}+7+24 i \\
& =-2(-1)+7+22 i\left[\because, i^{2}=-1\right] \\
& =2+7+22 i \\
& =9+22 i
\end{aligned}
$$

Q.1. F. Simplify each of the following and express it in the form $\mathrm{a}+\mathrm{ib}$:
$(5+\sqrt{-3})(5-\sqrt{-3})$
Answer : Given: $(5+\sqrt{-3})(5-\sqrt{-3})$
We re - write the above equation

$$
\begin{aligned}
& (5+\sqrt{(-1) \times 3})(5-\sqrt{(-1) \times 3}) \\
& =\left(5+\sqrt{3 i^{2}}\right)\left(5-\sqrt{3 i^{2}}\right)\left[\because, i^{2}=-1\right]
\end{aligned}
$$

$=(5+i \sqrt{3})(5-i \sqrt{3})$
Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

Here, $a=5$ and $b=i \sqrt{ } 3$
$=(5)^{2}-(\mathrm{i} \sqrt{ } 3)^{2}$
$=25-\left(3 \mathrm{i}^{2}\right)$
$=25-[3 \times(-1)]$
$=25+3$
$=28+0$
$=28+0 \mathrm{i}$

Real Imaginary part part
Q. 1. G. Simplify each of the following and express it in the form $\mathbf{a}+\mathrm{ib}$:
$(3+4 i)(2-3 i)$
Answer : Given: $(3+4 i)(2-3 i)$
Firstly, we open the brackets
$3 \times 2+3 \times(-3 i)+4 i \times 2-4 i \times 3 i$
$=6-9 i+8 i-12 i^{2}$
$=6-\mathrm{i}-12(-1)\left[\because, \mathrm{i}^{2}=-1\right]$
$=6-i+12$
$=18-\mathrm{i}$

Real Imaginary
part part
Q. 1. H. Simplify each of the following and express it in the form a+ib :

$$
(-2+\sqrt{-3})(-3+2 \sqrt{-3})
$$

Answer : Given: $(-2+\sqrt{-3})(-3+2 \sqrt{-3})$
We re - write the above equation

$$
\begin{aligned}
& (-2+\sqrt{(-1) \times 3})(-3+2 \sqrt{(-1) \times 3}) \\
& =\left(-2+\sqrt{3 i^{2}}\right)\left(-3+2 \sqrt{3 i^{2}}\right)\left[\because, i^{2}=-1\right] \\
& =(-2+i \sqrt{3})(-3+2 i \sqrt{3})
\end{aligned}
$$

Now, open the brackets,

$$
\begin{aligned}
& =-2 \times(-3)+(-2) \times 2 i \sqrt{ } 3+i \sqrt{ } 3 \times(-3)+i \sqrt{ } 3 \times 2 i \sqrt{ } 3 \\
& =6-4 i \sqrt{ } 3-3 i \sqrt{ } 3+6 i^{2} \\
& =6-7 i \sqrt{ } 3+[6 \times(-1)]\left[\because, i^{2}=-1\right] \\
& =6-7 i \sqrt{ } 3-6 \\
& =0-7 i \sqrt{ } 3
\end{aligned}
$$

Real Imaginary part part
Q. 2. A. Simplify each of the following and express it in the form ($\mathbf{a}+\mathrm{ib}$) : $(2+\sqrt{-3})^{2}$

Answer : Given: $(2-\sqrt{ }-3)^{2}$
We know that,
$(a-b)^{2}=a^{2}+b^{2}-2 a b \ldots(i)$
So, on replacing a by 2 and b by $\sqrt{ }-3$ in eq. (i), we get

$$
\begin{aligned}
& (2)^{2}+(\sqrt{ }-3)^{2}-2(2)(\sqrt{ }-3) \\
& =4+(-3)-4 \sqrt{ }-3 \\
& =4-3-4 \sqrt{ }-3 \\
& =1-4 \sqrt{ } 3 i^{2}\left[\because i^{2}=-1\right] \\
& =1-4 i \sqrt{ } 3 \\
& \underbrace{\text { part }}_{\text {Real Imaginary }} \text { part }
\end{aligned}
$$

Q. 2. B. Simplify each of the following and express it in the form (a+ib) : $(5-2 i)^{2}$

Answer : Given: $(5-2 \mathrm{i})^{2}$
We know that,
$(a-b)^{2}=a^{2}+b^{2}-2 a b$
So, on replacing a by 5 and by by 2 in eq. (i), we get
$(5)^{2}+(2 \mathrm{i})^{2}-2(5)(2 \mathrm{i})$
$=25+4 i^{2}-20 i$
$=25-4-20 \mathrm{i}\left[\because \mathrm{i}^{2}=-1\right]$
$=21-20 i$

Real Imaginary part part
Q. 2. C. Simplify each of the following and express it in the form (a+ib) :
$(-3+5 i)^{3}$
Answer : Given: $(-3+5 i)^{3}$
We know that,
$(-a+b)^{3}=-a^{3}+3 a^{2} b-3 a b^{2}+b^{3}$
So, on replacing a by 3 and b by $5 i$ in eq. (i), we get

$$
\begin{aligned}
& -(3)^{3}+3(3)^{2}(5 i)-3(3)(5 i)^{2}+(5 i)^{3} \\
& =-27+3(9)(5 i)-3(3)\left(25 i i^{2}\right)+125 i^{3} \\
& =-27+135 i-225 i^{2}+125 i^{3} \\
& =-27+135 i-225 \times(-1)+125 i \times i^{2} \\
& =-27+135 i+225-125 i\left[\because i^{2}=-1\right] \\
& =198+10 i \\
& \underbrace{}_{\text {Real Imaginary }} \\
& \text { part part }
\end{aligned}
$$

Q. 2. D. Simplify each of the following and express it in the form (a+ib) :
$\left(-2-\frac{1}{3} \mathrm{i}\right)^{3}$
Answer : Given: $\left(-2-\frac{1}{3} i\right)^{3}$
We know that,

$$
(-a-b)^{3}=-a^{3}-3 a^{2} b-3 a b^{2}-b^{3} \ldots(i)
$$

So, on replacing a by 2 and by by $1 / 3$ in eq. (i), we get

$$
\begin{aligned}
& -(2)^{3}-3(2)^{2}\left(\frac{1}{3} i\right)-3(2)\left(\frac{1}{3} i\right)^{2}-\left(\frac{1}{3} i\right)^{3} \\
& =-8-4 i-6\left(\frac{1}{9} i^{2}\right)-\left(\frac{1}{27} i^{3}\right) \\
& =-8-4 i-\frac{2}{3} i^{2}-\frac{1}{27} i\left(i^{2}\right) \\
& =-8-4 i-\frac{2}{3}(-1)-\frac{1}{27} i(-1)\left[\because i^{2}=-1\right] \\
& =-8-4 i+\frac{2}{3}+\frac{1}{27} i \\
& =\left(-8+\frac{2}{3}\right)+\left(-4 i+\frac{1}{27} i\right) \\
& =\left(\frac{-24+2}{3}\right)+\left(\frac{-108 i+i}{27}\right) \\
& =-\frac{22}{3}+\left(-\frac{107}{27} i\right) \\
& =-\frac{22}{3}-\frac{107}{27} i \\
& \underbrace{\text { R }}_{\text {Real Imaginary }} \text { (} \underbrace{}_{\text {part }}
\end{aligned}
$$

Q. 2. E. Simplify each of the following and express it in the form (a+ib) : $(4-3 i)^{-1}$

Answer : Given: $(4-3 i)^{-1}$

We can re- write the above equation as

$$
=\frac{1}{4-3 i}
$$

Now, rationalizing

$$
\begin{align*}
& =\frac{1}{4-3 i} \times \frac{4+3 i}{4+3 i} \\
& =\frac{4+3 i}{(4-3 i)(4+3 i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
& =\frac{4+3 i}{(4)^{2}-(3 i)^{2}} \\
& =\frac{4+3 i}{16-9 i^{2}} \\
& =\frac{4+3 i}{16-9(-1)}\left[\because \mathrm{i}^{2}=-1\right]
\end{aligned}
$$

$$
=\frac{4+3 i}{16+9}
$$

$$
=\frac{4+3 i}{25}
$$

$$
\underbrace{L}_{\sim}=\frac{4}{25}+\frac{3}{25} i
$$

Real Imaginary
part part
Q. 2. F. Simplify each of the following and express it in the form $(a+i b)$: $(-2+\sqrt{-3})^{-1}$

Answer : Given: $(-2+\sqrt{ }-3)^{-1}$
We can re- write the above equation as

$$
\begin{aligned}
& =\frac{1}{-2+\sqrt{-3}} \\
& =\frac{1}{-2+\sqrt{3 i^{2}}}\left[\because i^{2}=-1\right] \\
& =\frac{1}{-2+i \sqrt{3}}
\end{aligned}
$$

Now, rationalizing

$$
\begin{align*}
& =\frac{1}{-2+i \sqrt{3}} \times \frac{-2-i \sqrt{3}}{-2-i \sqrt{3}} \\
& =\frac{-2-i \sqrt{3}}{(-2+i \sqrt{3})(-2-i \sqrt{3})} \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
& =\frac{-2-i \sqrt{3}}{(-2)^{2}-(i \sqrt{3})^{2}} \\
& =\frac{-2-i \sqrt{3}}{4-\left(3 i^{2}\right)} \\
& =\frac{-2-i \sqrt{3}}{4-3(-1)}\left[\because i^{2}=-1\right] \\
& =\frac{-2-i \sqrt{3}}{4+3}
\end{aligned}
$$

$=\frac{-2-i \sqrt{3}}{7}$
$=-\frac{2+i \sqrt{3}}{7}$
$=-\frac{2}{7}-\frac{\sqrt{3}}{7} i$

Real Imaginary part part
Q. 2. G. Simplify each of the following and express it in the form (a+ib) : $(2+i)^{-2}$

Answer : Given: $(2+i)^{-2}$
Above equation can be re - written as
$=\frac{1}{(2+i)^{2}}$
Now, rationalizing

$$
\begin{align*}
& =\frac{1}{(2+i)^{2}} \times \frac{(2-i)^{2}}{(2-i)^{2}} \\
& =\frac{(2-i)^{2}}{(2+i)^{2}(2-i)^{2}} \\
& =\frac{4+i^{2}-4 i}{\left(4+i^{2}+4 i\right)\left(4+i^{2}-4 i\right)}\left[\because(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}\right] \\
& =\frac{4-1-4 i}{(4-1+4 i)(4-1-4 i)}\left[\because i^{2}=-1\right] \\
& =\frac{3-4 i}{(3+4 i)(3-4 i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
&= \frac{3-4 i}{(3)^{2}-(4 i)^{2}} \\
&= \frac{3-4 i}{9-16 i^{2}} \\
&= \frac{3-4 i}{9-16(-1)} \\
&= \frac{3-4 i}{25} \\
& \underbrace{}_{\text {Real Imaginary }} \\
& \text { part part }
\end{aligned}
$$

Q. 2. H. Simplify each of the following and express it in the form (a+ib) : $(1+2 i)^{-3}$

Answer : Given: $(1+2)^{-3}$
Above equation can be re - written as

$$
=\frac{1}{(1+2 i)^{3}}
$$

Now, rationalizing

$$
\begin{aligned}
& =\frac{1}{(1+2 i)^{3}} \times \frac{(1-2 i)^{3}}{(1-2 i)^{3}} \\
& =\frac{(1-2 i)^{3}}{(1+2 i)^{3}(1-2 i)^{3}}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& =\frac{(1)^{3}-3(1)^{2}(2 i)+3(1)(2 i)^{2}-(2 i)^{3}}{\left[(1)^{3}+3(1)^{2}(2 i)+3(1)(2 i)^{2}+(2 i)^{3}\right]\left[(1)^{3}-3(1)^{2}(2 i)+3(1)(2 i)^{2}-(2 i)^{3}\right]} \\
& =\frac{1-6 i+6 i^{2}-8 i^{3}}{\left[1+6 i+6 i^{2}+8 i^{3}\right]\left[1-6 i+6 i^{2}-8 i^{3}\right]} \\
& =\frac{1-6 i+6(-1)-8 i(-1)}{[1+6 i+6(-1)+8 i(-1)][1-6 i+6(-1)-8 i(-1)]}\left[\because i^{2}=-1\right] \\
& =\frac{1-6 i-6+8 i}{[1+6 i-6-8 i][1-6 i-6+8 i]} \\
& =\frac{-5+2 i}{[-5-2 i][-5+2 i]} \\
& =\frac{-5+2 i}{-5(-5)-5(2 i)-2 i(-5)-2 i(2 i)} \\
& =\frac{-5+2 i}{25-10 i+10 i-4 i^{2}} \\
& =\frac{-5+2 i}{25-4(-1)}\left[\because: i^{2}=-1\right] \\
& =\frac{-5+2 i}{29} \\
& =-\frac{5}{29}+\frac{2}{29} i \\
& \text { R } \\
& \text { Real Imaginary } \\
& \text { part } \\
& \text { part }
\end{aligned}
$$

Q. 2. I. Simplify each of the following and express it in the form $(a+i b)$:
$(1+i)^{3}-(1-i)^{3}$
Answer : Given: $(1+i)^{3}-(1-i)^{3} \ldots(i)$
We know that,

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{aligned}
$$

By applying the formulas in eq. (i), we get

$$
\begin{aligned}
& (1)^{3}+3(1)^{2}(i)+3(1)(i)^{2}+(i)^{3}-\left[(1)^{3}-3(1)^{2}(i)+3(1)(i)^{2}-(i)^{3}\right] \\
& =1+3 i+3 i^{2}+i^{3}-\left[1-3 i+3 i^{2}-i^{3}\right] \\
& =1+3 i+3 i^{2}+i^{3}-1+3 i-3 i^{2}+i^{3} \\
& =6 i+2 i^{3} \\
& =6 i+2 i\left(i^{2}\right) \\
& =6 i+2 i(-1)\left[\because i^{2}=-1\right] \\
& =6 i-2 i \\
& =4 i \\
& = \\
& 0+4 i \\
& \\
& \text { 每 } \\
& \text { Real Imaginary } \\
& \text { part part }
\end{aligned}
$$

Q. 3. A. Express each of the following in the form $(a+i b)$:

$$
\frac{1}{(4+3 i)}
$$

Answer : Given: ${ }^{\frac{1}{4+3 i}}$

Now, rationalizing

$$
\begin{align*}
& =\frac{1}{4+3 i} \times \frac{4-3 i}{4-3 i} \\
& =\frac{4-3 i}{(4+3 i)(4-3 i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
& =\frac{4-3 i}{(4)^{2}-(3 i)^{2}} \\
& =\frac{4-3 i}{16-9 i^{2}} \\
& =\frac{4-3 i}{16-9(-1)}\left[\because i^{2}=-1\right]
\end{aligned}
$$

$$
=\frac{4-3 i}{16+9}
$$

$$
=\frac{4-3 i}{25}
$$

$$
\underbrace{L}_{\sim}=\frac{4}{25}-\frac{3}{25} i
$$

Real Imaginary
part part
Q. 3. B. Express each of the following in the form $(a+i b)$:

$$
\frac{(3+4 i)}{(4+5 i)}
$$

Answer : Given: $\frac{3+4 i}{4+5 i}$

Now, rationalizing

$$
\begin{align*}
& =\frac{3+4 i}{4+5 i} \times \frac{4-5 i}{4-5 i} \\
& =\frac{(3+4 i)(4-5 i)}{(4+5 i)(4-5 i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
=\frac{(3+4 i)(4-5 i)}{(4)^{2}-(5 i)^{2}}
$$

$$
=\frac{3(4)+3(-5 i)+4 i(4)+4 i(-5 i)}{16-25 i^{2}}
$$

$$
=\frac{12-15 i+16 i-20 i^{2}}{16-25(-1)} \quad\left[\because i^{2}=-1\right]
$$

$$
=\frac{12+i-20(-1)}{16+25}
$$

$$
=\frac{12+i+20}{41}
$$

$$
=\frac{32+i}{41}
$$

$$
\underbrace{L}_{r}=\frac{32}{41}+\frac{1}{41} i
$$

Real Imaginary part part
Q. 3. C. Express each of the following in the form $(a+i b)$:

$$
\frac{(5+\sqrt{2} i)}{(1-\sqrt{2} i)}
$$

Answer : Given: ${ }^{\frac{5+\sqrt{2} i}{1-\sqrt{2} i}}$
Now, rationalizing

$$
\begin{align*}
& =\frac{5+\sqrt{2} i}{1-\sqrt{2} i} \times \frac{1+\sqrt{2} i}{1+\sqrt{2} i} \\
& =\frac{(5+\sqrt{2} i)(1+\sqrt{2} i)}{(1-\sqrt{2} i)(1+\sqrt{2} i)} \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
=\frac{(5+\sqrt{2} i)(1+\sqrt{2} i)}{(1)^{2}-(\sqrt{2} i)^{2}}
$$

$$
=\frac{5(1)+5(\sqrt{2} i)+\sqrt{2} i(1)+\sqrt{2} i(\sqrt{2} i)}{1-2 i^{2}}
$$

$$
=\frac{5+5 \sqrt{2} i+\sqrt{2} i+2 i^{2}}{1-2(-1)} \quad\left[\because \mathrm{i}^{2}=-1\right]
$$

$$
=\frac{5+6 i \sqrt{2}+2(-1)}{1+2}
$$

$$
=\frac{3+6 i \sqrt{2}}{3}
$$

$$
=\frac{3(1+2 i \sqrt{2})}{3}
$$

Real Imaginary
part part
Q. 3. D. Express each of the following in the form $(a+i b)$:
$\frac{(-2+5 \mathrm{i})}{(3-5 \mathrm{i})}$

Answer : Given: ${ }^{\frac{-2+5 i}{3-5 i}}$
Now, rationalizing
$=\frac{-2+5 i}{3-5 i} \times \frac{3+5 i}{3+5 i}$
$=\frac{(-2+5 i)(3+5 i)}{(3-5 i)(3+5 i)}$
Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
& =\frac{(-2+5 i)(3+5 i)}{(3)^{2}-(5 i)^{2}} \\
& =\frac{-2(3)+(-2)(5 i)+5 i(3)+5 i(5 i)}{9-25 i^{2}} \\
& =\frac{-6-10 i+15 i+25 i^{2}}{9-25(-1)}\left[\because i^{2}=-1\right] \\
& =\frac{-6+5 i+25(-1)}{9+25} \\
& =\frac{-31+5 i}{34}
\end{aligned}
$$

$$
\underbrace{4}_{r}=-\frac{31}{34}+\frac{5}{34} i
$$

Real Imaginary part part
Q.3. E. Express each of the following in the form $(a+i b)$:

$$
\frac{(3-4 i)}{(4-2 i)(1+i)}
$$

Answer : Given: $\frac{}{\frac{3-4 i}{(4-2 i)(1+i)}}$
Solving the denominator, we get

$$
\begin{aligned}
& \frac{3-4 i}{(4-2 i)(1+i)}=\frac{3-4 i}{4(1)+4(i)-2 i(1)-2 i(i)} \\
& =\frac{3-4 i}{4+4 i-2 i-2 i^{2}} \\
& =\frac{3-4 i}{4+2 i-2(-1)} \\
& =\frac{3-4 i}{6+2 i}
\end{aligned}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $6+2 \mathrm{i}$

$$
\begin{align*}
& =\frac{3-4 i}{6+2 i} \times \frac{6-2 i}{6-2 i} \\
& =\frac{(3-4 i)(6-2 i)}{(6+2 i)(6-2 i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
& =\frac{(3-4 i)(6-2 i)}{(6)^{2}-(2 i)^{2}} \\
& =\frac{3(6)+3(-2 i)+(-4 i)(6)+(-4 i)(-2 i)}{36-4 i^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{18-6 i-24 i+8 i^{2}}{36-4(-1)}\left[\because i^{2}=-1\right] \\
& =\frac{18-30 i+8(-1)}{36+4} \\
& =\frac{18-30 i-8}{40} \\
& =\frac{10-30 i}{40} \\
& =\frac{10(1-3 i)}{40} \\
& =\frac{1-3 i}{4} \\
& =\frac{1}{4}-\frac{3}{4} i \\
& \underbrace{}_{\text {Real Imaginary }} \\
& \text { Rert part }
\end{aligned}
$$

Q. 3. F. Express each of the following in the form $(a+i b)$:

$$
\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}
$$

Answer : Given: ${ }^{\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}}$
Firstly, we solve the given equation

$$
=\frac{3(2)+3(3 i)-2 i(2)+(-2 i)(3 i)}{(1)(2)+1(-i)+2 i(2)+2 i(-i)}
$$

$$
\begin{aligned}
& =\frac{6+9 i-4 i-6 i^{2}}{2-i+4 i-2 i^{2}} \\
& =\frac{6+5 i-6(-1)}{2+3 i-2(-1)} \\
& =\frac{6+6+5 i}{2+3 i+2} \\
& =\frac{12+5 i}{4+3 i}
\end{aligned}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $4+3 i$

$$
\begin{align*}
& =\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i} \\
& =\frac{(12+5 i)(4-3 i)}{(4+3 i)(4-3 i)} \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
=\frac{(12+5 i)(4-3 i)}{(4)^{2}-(3 i)^{2}}
$$

$$
=\frac{12(4)+12(-3 i)+5 i(4)+5 i(-3 i)}{16-9 i^{2}}
$$

$$
=\frac{48-36 i+20 i-15 i^{2}}{19-9(-1)} \quad\left[\because \mathrm{j}^{2}=-1\right]
$$

$$
=\frac{48-16 i-15(-1)}{16+9}\left[\because \mathrm{j}^{2}=-1\right]
$$

$$
\begin{aligned}
& =\frac{48-16 i+15}{25} \\
& =\frac{63-16 i}{25} \\
& \underbrace{6}_{\text {Real Imaginary }}=\frac{63}{25}-\frac{16}{25} i \\
& \text { part part }
\end{aligned}
$$

Q. 3. G. Express each of the following in the form $(a+i b)$:

$$
\frac{(2+3 i)^{2}}{(2-i)}
$$

Answer : Given: ${ }^{\frac{(2+3 i)^{2}}{(2-i)}}$
Now, we rationalize the above equation by multiply and divide by the conjugate of (2-i)

$$
\begin{aligned}
& =\frac{(2+3 i)^{2}}{(2-i)} \times \frac{(2+i)}{(2+i)} \\
& =\frac{(2+3 i)^{2}(2+i)}{(2-i)(2+i)} \\
& =\frac{\left(4+9 i^{2}+12 i\right)(2+i)}{(2)^{2}-(i)^{2}}
\end{aligned}
$$

$$
\left[\because(a+b)(a-b)=\left(a^{2}-b^{2}\right)\right]
$$

$$
=\frac{[4+9(-1)+12 i](2+i)}{4-i^{2}}\left[\because i^{2}=-1\right]
$$

$$
=\frac{[4-9+12 i](2+i)}{4-(-1)}
$$

$$
=\frac{(-5+12 i)(2+i)}{5}
$$

$$
\begin{aligned}
&= \frac{-10-5 i+24 i+12 i^{2}}{5} \\
&= \frac{-10+19 i+12(-1)}{5} \\
&= \frac{-10-12+19 i}{5} \\
&= \frac{-22+19 i}{5} \\
& \underbrace{\text { part part }}_{\text {Real Imaginary }}
\end{aligned}
$$

Q. 3. H. Express each of the following in the form $(a+i b)$:

$$
\frac{(1-i)^{3}}{\left(1-i^{3}\right)}
$$

Answer : Given: ${ }^{\frac{(1-i)^{3}}{\left(1-i^{3}\right)}}$
The above equation can be re-written as

$$
\begin{aligned}
& =\frac{(1)^{3}-(i)^{3}-3(1)^{2}(i)+3(1)(i)^{2}}{\left(1-i \times i^{2}\right)} \\
& {\left[\because(\mathrm{a}-\mathrm{b})^{3}=\mathrm{a}^{3}-\mathrm{b}^{3}-3 \mathrm{a}^{2} \mathrm{~b}+3 \mathrm{ab}^{2}\right]} \\
& =\frac{1-i^{3}-3 i+3 i^{2}}{[1-i(-1)]}\left[\because i^{2}=-1\right] \\
& =\frac{1-i \times i^{2}-3 i+3(-1)}{(1+i)} \\
& =\frac{1-i(-1)-3 i-3}{1+i}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-2+i-3 i}{1+i} \\
& =\frac{-2-2 i}{1+i} \\
& =\frac{-2(1+i)}{1+i} \\
& \underbrace{\text { Rear }}_{\text {Real Imaginary }}=-2+0 i_{\text {part }}
\end{aligned}
$$

Q. 3. I. Express each of the following in the form $(a+i b):$

$$
\frac{(1+2 i)^{3}}{(1+i)(2-i)}
$$

Answer : Given: $\frac{(1+2 i)^{3}}{(1+i)(2-i)}$
We solve the above equation by using the formula

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2} \\
& =\frac{(1)^{3}+(2 i)^{3}+3(1)^{2}(2 i)+3(1)(2 i)^{2}}{1(2)+1(-i)+i(2)+i(-i)}
\end{aligned}
$$

$$
=\frac{1+8 i^{3}+6 i+12 i^{2}}{2-i+2 i-i^{2}}
$$

$$
=\frac{1+8 i \times i^{2}+6 i+12(-1)}{2+i-(-1)} \quad\left[\because i^{2}=-1\right]
$$

$$
=\frac{1+8 i(-1)+6 i-12}{2+i+1}
$$

$$
=\frac{1-8 i+6 i-12}{3+i}
$$

$$
=\frac{-11-2 i}{3+i}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $3+\mathrm{i}$

$$
\begin{align*}
& =\frac{-11-2 i}{3+i} \times \frac{3-i}{3-i} \\
& =\frac{(-11-2 i)(3-i)}{(3+i)(3-i)} \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become
$=\frac{(-11-2 i)(3-i)}{(3)^{2}-(i)^{2}}$
$=\frac{-11(3)+(-11)(-i)+(-2 i)(3)+(-2 i)(-i)}{9-i^{2}}$
$=\frac{-33+11 i-6 i+2 i^{2}}{9-(-1)}\left[\because i^{2}=-1\right]$
$=\frac{-33+5 i+2(-1)}{9+1}\left[\because i^{2}=-1\right]$
$=\frac{-33+5 i-2}{10}$
$=\frac{-35+5 i}{10}$
$=\frac{5(-7+i)}{10}$
$=\frac{-7+i}{2}$
لـــا

$$
=\frac{-7}{2}+\frac{1}{2} i
$$

Real Imaginary part part
Q. 4. Simplify each of the following and express it in the form $(a+i b)$:
(i) $\left(\frac{5}{-3+2 \mathrm{i}}+\frac{2}{1-\mathrm{i}}\right)\left(\frac{4-5 \mathrm{i}}{3+2 \mathrm{i}}\right)$
(ii) $\left(\frac{1}{1+4 \mathrm{i}}-\frac{2}{1+\mathrm{i}}\right)\left(\frac{1-\mathrm{i}}{5+3 \mathrm{i}}\right)$

Answer : Given:

$$
\begin{aligned}
& \left(\frac{5}{-3+2 i}+\frac{2}{1-i}\right)\left(\frac{4-5 i}{3+2 i}\right) \\
& =\left[\frac{5(1-i)+2(-3+2 i)}{(-3+2 i)(1-i)}\right]\left(\frac{4-5 i}{3+2 i}\right) \\
& =\left[\frac{5-5 i-6+4 i}{(-3)(1-i)+2 i(1-i)}\right]\left(\frac{4-5 i}{3+2 i}\right) \\
& =\left[\frac{-1-i}{-3+3 i+2 i-2 i^{2}}\right]\left(\frac{4-5 i}{3+2 i}\right) \\
& =\left[\frac{-(1+i)}{-3+5 i-2(-1)}\right]\left(\frac{4-5 i}{3+2 i}\right) \\
& =\left(\frac{-(1+i)}{-1+5 i}\right)\left(\frac{4-5 i}{3+2 i}\right) \\
& =\frac{-1(4-5 i)-i(4-5 i)}{-1(3+2 i)+5 i(3+2 i)} \\
& =\frac{-4+5 i-4 i+5 i^{2}}{-3-2 i+15 i+10 i^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{-4+i+5(-1)}{-3+13 i+10(-1)} \text { [Putting } \mathrm{i}^{2}=-1\right] \\
& =\frac{-9+i}{-13+13 i} \\
& =\frac{-(9-i)}{-(13-13 i)} \\
& =\frac{9-i}{13-13 i}
\end{aligned}
$$

Now, rationalizing by multiply and divide by the conjugate of (13-13i)

$$
\begin{aligned}
& =\frac{9-i}{13-13 i} \times \frac{13+13 i}{13+13 i} \\
& =\frac{(9-i)(13+13 i)}{(13-13 i)(13+13 i)} \\
& =\frac{117+117 i-13 i-13 i^{2}}{(13)^{2}-(13 i)^{2}}\left[\because(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\right] \\
& =\frac{117+104 i-13(-1)}{169-169 i^{2}} \quad\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{130+104 i}{169\left(1-i^{2}\right)} \\
& =\frac{13(10+8 i)}{169[1-(-1)]}[\text { Taking } 13 \text { common }] \\
& =\frac{10+8 i}{13 \times 2} \\
& =\frac{5+4 i}{13} \\
& =\frac{5}{13}+\frac{4}{13} i
\end{aligned}
$$

(ii) Given:

$$
\begin{aligned}
& \left(\frac{1}{1+4 i}-\frac{2}{1+i}\right)\left(\frac{1-i}{5+3 i}\right) \\
& =\left[\frac{1(1+i)-2(1+4 i)}{(1+4 i)(1+i)}\right]\left(\frac{1-i}{5+3 i}\right) \\
& =\left[\frac{1+i-2-8 i}{(1)(1+i)+4 i(1+i)}\right]\left(\frac{1-i}{5+3 i}\right) \\
& =\left[\frac{-1-7 i}{1+i+4 i+4 i^{2}}\right]\left(\frac{1-i}{5+3 i}\right) \\
& =\left[\frac{-1-7 i}{1+5 i+4(-1)}\right]\left(\frac{1-i}{5+3 i}\right) \\
& =\left(\frac{-1-7 i}{-3+5 i}\right)\left(\frac{1-i}{5+3 i}\right) \\
& =\frac{-1(1-i)-7 i(1-i)}{-3(5+3 i)+5 i(5+3 i)} \\
& =\frac{-1+i-7 i+7 i^{2}}{-15-9 i+25 i+15 i^{2}} \\
& =\frac{-1-6 i+7(-1)}{16 i-30} \\
& =\frac{-2(4+3 i)}{-2(15-8 i)} \\
& =\frac{4+3 i}{15-8 i} \\
& =15(-1) \\
& =15
\end{aligned}
$$

Now, rationalizing by multiply and divide by the conjugate of (15 + 8i)

$$
\begin{aligned}
& =\frac{4+3 i}{15-8 i} \times \frac{15+8 i}{15+8 i} \\
& =\frac{(4+3 i)(15+8 i)}{(15)^{2}-(8 i)^{2}}\left[\because(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\right] \\
& =\frac{4(15+8 i)+3 i(15+8 i)}{225-64 i^{2}} \\
& =\frac{60+32 i+45 i+24 i^{2}}{225-64(-1)}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{60+77 i+24(-1)}{225+64} \\
& =\frac{36+77 i}{289} \\
& =\frac{36}{289}+\frac{77}{289} i \\
& \mathrm{Q} .5 . \text { Show that }
\end{aligned}
$$

(i) $\left\{\frac{(3+2 i)}{(2-3 i)}+\frac{(3-2 i)}{(2+3 i)}\right\}$ is purely real,
(ii) $\left\{\frac{(\sqrt{7}+\mathrm{i} \sqrt{3})}{(\sqrt{7}-\mathrm{i} \sqrt{3})}+\frac{(\sqrt{7}-\mathrm{i} \sqrt{3})}{(\sqrt{7}+\mathrm{i} \sqrt{3})}\right\}$ is purely real.

Answer : Given: $\frac{3+2 i}{2-3 i}+\frac{3-2 i}{2+3 i}$
Taking the L.C.M, we get
$=\frac{(3+2 i)(2+3 i)+(3-2 i)(2-3 i)}{(2-3 i)(2+3 i)}$

$$
=\frac{3(2)+3(3 i)+2 i(2)+2 i(3 i)+3(2)+3(-3 i)-2 i(2)+(-2 i)(-3 i)}{(2)^{2}-(3 i)^{2}}
$$

$$
\left[\because(a+b)(a-b)=\left(a^{2}-b^{2}\right)\right]
$$

$$
=\frac{6+9 i+4 i+6 i^{2}+6-9 i-4 i+6 i^{2}}{4-9 i^{2}}
$$

$$
=\frac{12+12 i^{2}}{4-9 i^{2}}
$$

Putting $\mathrm{i}^{2}=-1$

$$
\begin{aligned}
& =\frac{12+12(-1)}{4-9(-1)} \\
& =\frac{12-12}{4+9} \\
& =0+0 i
\end{aligned}
$$

Hence, the given equation is purely real as there is no imaginary part.

Taking the L.C.M, we get

$$
\begin{align*}
& =\frac{(\sqrt{7}+i \sqrt{3})(\sqrt{7}+i \sqrt{3})+(\sqrt{7}-i \sqrt{3})(\sqrt{7}-i \sqrt{3})}{(\sqrt{7}-i \sqrt{3})(\sqrt{7}+i \sqrt{3})} \\
& =\frac{(\sqrt{7}+i \sqrt{3})^{2}+(\sqrt{7}-i \sqrt{3})^{2}}{(\sqrt{7})^{2}-(i \sqrt{3})^{2}} \ldots \text { (i) } \tag{i}
\end{align*}
$$

$\left[\because(a+b)(a-b)=\left(a^{2}-b^{2}\right)\right]$
Now, we know that,

$$
(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)
$$

So, by applying the formula in eq. (i), we get

$$
\begin{aligned}
& =\frac{2\left[(\sqrt{7})^{2}+(i \sqrt{3})^{2}\right]}{7-3 i^{2}} \\
& =\frac{2\left[7+3 i^{2}\right]}{7-3(-1)}
\end{aligned}
$$

Putting $i^{2}=-1$
$=\frac{2[7+3(-1)]}{7+3}$
$=\frac{2[7-3]}{10}$
$=\frac{8}{10}+0 i$
$=\frac{4}{5}+0 i$
Hence, the given equation is purely real as there is no imaginary part.
Q. 6. Find the real values of θ for which $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is purely real.

Answer : Since $\frac{\frac{1+i \cos \theta}{1-2 i \cos \theta}}{\text { is purely real }}$
Firstly, we need to solve the given equation and then take the imaginary part as 0

$$
\frac{1+i \cos \theta}{1-2 i \cos \theta}
$$

We rationalize the above by multiply and divide by the conjugate of $(1-2 i \cos \theta)$

$$
\begin{aligned}
& =\frac{1+i \cos \theta}{1-2 i \cos \theta} \times \frac{1+2 i \cos \theta}{1+2 i \cos \theta} \\
& =\frac{(1+i \cos \theta)(1+2 i \cos \theta)}{(1-2 i \cos \theta)(1+2 i \cos \theta)}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& (\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\
& =\frac{1(1)+1(2 i \cos \theta)+i \cos \theta(1)+i \cos \theta(2 i \cos \theta)}{(1)^{2}-(2 i \cos \theta)^{2}} \\
& =\frac{1+2 i \cos \theta+i \cos \theta+2 i^{2} \cos ^{2} \theta}{1-4 i^{2} \cos ^{2} \theta} \\
& =\frac{1+3 i \cos \theta+2(-1) \cos ^{2} \theta}{1-4(-1) \cos ^{2} \theta}\left[\because i^{2}=-1\right] \\
& =\frac{1+3 i \cos \theta-2 \cos ^{2} \theta}{1+4 \cos ^{2} \theta} \\
& =\frac{1-2 \cos ^{2} \theta}{1+4 \cos ^{2} \theta}+i \frac{3 \cos \theta}{1+4 \cos ^{2} \theta}
\end{aligned}
$$

Since $\frac{\frac{1+i \cos \theta}{1-2 i \cos \theta}}{\text { is purely real [given] }}$
Hence, imaginary part is equal to 0
i.e. $\frac{3 \cos \theta}{1+4 \cos ^{2} \theta}=0$
$\Rightarrow 3 \cos \theta=0 \times\left(1+4 \cos ^{2} \theta\right)$
$\Rightarrow 3 \cos \theta=0$
$\Rightarrow \cos \theta=0$
$\Rightarrow \cos \theta=\cos 0$
Since, $\cos \theta=\cos y$
Then $\theta=(2 n+1) \frac{\pi}{2} \pm y$ where $n \in Z$
Putting $y=0$
$\theta=(2 n+1) \frac{\pi}{2} \pm 0$
$\theta=(2 n+1) \frac{\pi}{2}$ where $\mathrm{n} \in \mathrm{Z}$
Hence, for $\theta=(2 n+1) \frac{\pi}{2}$. where $n \in Z \frac{1+i \cos \theta}{1-2 i \cos \theta}$ is purely real.
Q. 7. If $|z+i|=|z-i|$, prove that z is real.

Answer: Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
Consider, $|\mathrm{z}+\mathrm{i}|=\mid \mathrm{z}$ - $\mathrm{i} \mid$
$\Rightarrow|\mathrm{x}+\mathrm{iy}+\mathrm{i}|=|\mathrm{x}+\mathrm{iy}-\mathrm{i}|$
$\Rightarrow|\mathrm{x}+\mathrm{i}(\mathrm{y}+1)|=|\mathrm{x}+\mathrm{i}(\mathrm{y}-1)|$
$\Rightarrow \sqrt{(x)^{2}+(y+1)^{2}}=\sqrt{(x)^{2}+(y-1)^{2}}$
$\left[\because|\mathrm{z}|=\right.$ modulus $\left.=\sqrt{a^{2}+b^{2}}\right]$
$\Rightarrow \sqrt{x^{2}+y^{2}+1+2 y}=\sqrt{x^{2}+y^{2}+1-2 y}$
Squaring both the sides, we get
$\Rightarrow x^{2}+y^{2}+1+2 y=x^{2}+y^{2}+1-2 y$
$\Rightarrow x^{2}+y^{2}+1+2 y-x^{2}-y^{2}-1+2 y=0$
$\Rightarrow 2 \mathrm{y}+2 \mathrm{y}=0$
$\Rightarrow 4 \mathrm{y}=0$
$\Rightarrow \mathrm{y}=0$
Putting the value of y in eq. (i), we get
$z=x+i(0)$
$\Rightarrow \mathrm{z}=\mathrm{x}$
Hence, z is purely real.
Q. 8. Give an example of two complex numbers z_{1} and z_{2} such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=$ $\left|z_{2}\right|$.

Answer : Let $\mathrm{z}_{1}=3-4 \mathrm{i}$ and $\mathrm{z}_{2}=4-3 \mathrm{i}$
Here, $z_{1} \neq z_{2}$
Now, calculating the modulus, we get,
$\left|z_{1}\right|=\sqrt{3^{2}+(4)^{2}}=\sqrt{25}=5$
$\left|z_{2}\right|=\sqrt{4^{2}+(3)^{2}}=\sqrt{25}=5$
Q. 9. A. Find the conjugate of each of the following:
(-5-2i)
Answer : Given: z = (-5 - 2i)
Here, we have to find the conjugate of $(-5-2 \mathrm{i})$
So, the conjugate of $(-5-2 \mathrm{i})$ is $(-5+2 \mathrm{i})$
Q. 9. B. Find the conjugate of each of the following:

$$
\frac{1}{(4+3 i)}
$$

Answer : Given: $\frac{1}{4+3 i}$
First, we calculate ${ }^{\frac{1}{4+3 i}}$ and then find its conjugate
Now, rationalizing

$$
\begin{align*}
& =\frac{1}{4+3 i} \times \frac{4-3 i}{4-3 i} \\
& =\frac{4-3 i}{(4+3 i)(4-3 i)} \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become
$=\frac{4-3 i}{(4)^{2}-(3 i)^{2}}$
$=\frac{4-3 i}{16-9 i^{2}}$
$=\frac{4-3 i}{16-9(-1)}\left[\because i^{2}=-1\right]$
$=\frac{4-3 i}{16+9}$
$=\frac{4-3 i}{25}$
$=\frac{4}{25}-\frac{3}{25} i$

Hence, $\frac{1}{4+3 i}=\frac{4}{25}-\frac{3}{25} i$
So, a conjugate of $\frac{1}{4+3 i}$ is $\frac{4}{25}+\frac{3}{25} i$
Q. 9. C. Find the conjugate of each of the following:

Answer : Given: ${ }^{\frac{(1+i)^{2}}{(3-i)}}$
Firstly, we calculate ${ }^{\frac{(1+i)^{2}}{(3-i)}}$ and then find its conjugate
$\frac{(1+i)^{2}}{(3-i)}=\frac{1+i^{2}+2 i}{(3-i)}\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$

$$
\begin{aligned}
& =\frac{1+(-1)+2 i}{3-i}\left[\because i^{2}=-1\right] \\
& =\frac{2 i}{3-i}
\end{aligned}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $3-\mathrm{i}$

$$
\begin{align*}
& =\frac{2 i}{3-i} \times \frac{3+i}{3+i} \\
& =\frac{(2 i)(3+i)}{(3+i)(3-i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
=\frac{(2 i)(3+i)}{(3)^{2}-(i)^{2}}
$$

$$
=\frac{2 i(3)+2 i(i)}{9-i^{2}}
$$

$$
=\frac{6 i+2 i^{2}}{9-(-1)}\left[\because \mathrm{i}^{2}=-1\right]
$$

$$
=\frac{6 i+2(-1)}{9+1}\left[\because i^{2}=-1\right]
$$

$$
=\frac{6 i-2}{10}
$$

$$
=\frac{2(3 i-1)}{10}
$$

$$
=\frac{(-1+3 i)}{5}
$$

$=-\frac{1}{5}+\frac{3}{5} i$
Hence, ${ }^{\frac{(1+i)^{2}}{(3-i)}}=-\frac{1}{5}+\frac{3}{5} i$
So, the conjugate of $\frac{(1+i)^{2}}{(3-i)}$ is $-\frac{1}{5}-\frac{3}{5} i$
Q. 9. D. Find the conjugate of each of the following:
$\frac{(1+i)(2+i)}{(3+i)}$
Answer : Given: $\frac{(1+i)(2+i)}{(3+i)}$
Firstly, we calculate $\frac{(1+i)(2+i)}{(3+i)}$ and then find its conjugate
$\frac{(1+i)(2+i)}{(3+i)}=\frac{1(2)+1(i)+i(2)+i(i)}{(3+i)}$
$=\frac{2+i+2 i+i^{2}}{3+i}$
$=\frac{2+3 i-1}{3+i}\left[\because \dot{j}^{2}=-1\right]$
$=\frac{1+3 i}{3+i}$
Now, we rationalize the above by multiplying and divide by the conjugate of $3+\mathrm{i}$
$=\frac{1+3 i}{3+i} \times \frac{3-i}{3-i}$
$=\frac{(1+3 i)(3-i)}{(3+i)(3-i)}$
Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
=\frac{(1+3 i)(3-i)}{(3)^{2}-(i)^{2}}
$$

$$
=\frac{1(3)+1(-i)+3 i(3)+3 i(-i)}{9-i^{2}}
$$

$$
=\frac{3-i+9 i-3 i^{2}}{9-(-1)} \quad\left[\because i^{2}=-1\right]
$$

$$
=\frac{3+8 i-3(-1)}{9+1}\left[\because \mathrm{i}^{2}=-1\right]
$$

$$
=\frac{3+8 i+3}{10}
$$

$$
=\frac{6+8 i}{10}
$$

$$
=\frac{2(3+4 i)}{10}
$$

$$
=\frac{3+4 i}{5}
$$

$$
=\frac{3}{5}+\frac{4}{5} i
$$

Hence, $\frac{(1+i)(2+i)}{(3+i)}=\frac{3}{5}+\frac{4}{5} i$
So, the conjugate of $\frac{(1+i)^{2}}{(3-i)}$ is $\frac{3}{5}-\frac{4}{5} i$
Q. 9. E. Find the conjugate of each of the following:
$\sqrt{-3}$
Answer: Given: $z=\sqrt{ }-3$

The above can be re - written as
$z=\sqrt{(-1) \times 3}$
$Z=\sqrt{3 i^{2}}\left[\because \dot{j}^{2}=-1\right]$
$z=0+i \sqrt{ } 3$
So, the conjugate of $z=0+i \sqrt{ } 3$ is
$\bar{z}=0-i \sqrt{3}$
Or $\bar{z}=-i \sqrt{3}=-\sqrt{-3}$
Q. 9. F. Find the conjugate of each of the following:
$\sqrt{2}$
Answer: Given: $z=\sqrt{ } 2$
The above can be re - written as
$z=\sqrt{ } 2+0 i$
Here, the imaginary part is zero
So, the conjugate of $z=\sqrt{ } 2+0 i$ is
$\bar{z}=\sqrt{2}-0 i$
$\operatorname{Or}^{\bar{z}}=\sqrt{2}$
Q. 9. G. Find the conjugate of each of the following:
$-\sqrt{-1}$
Answer: Given: $z=-\sqrt{ }-1$
The above can be re - written as
$z=-\sqrt{i^{2}}\left[\because i^{2}=-1\right]$
$z=0-i$
So, the conjugate of $z=(0-i)$ is
$\bar{z}=0+i$

Or $\bar{z}=i$
Q. 9. H. Find the conjugate of each of the following:
$(2-5 i)^{2}$
Answer : Given: $z=(2-5 i)^{2}$
First we calculate $(2-5 i)^{2}$ and then we find the conjugate
$(2-5 i)^{2}=(2)^{2}+(5 i)^{2}-2(2)(5 i)$
$=4+25 i^{2}-20 i$
$=4+25(-1)-20 i\left[\because i^{2}=-1\right]$
$=4-25-20 i$
$=-21-20 \mathrm{i}$
Now, we have to find the conjugate of $(-21-20 \mathrm{i})$
So, the conjugate of $(-21-20 i)$ is $(-21+20 i)$
Q. 10. A. Find the modulus of each of the following:
$(3+\sqrt{-5})$
Answer : Given: $z=(3+\sqrt{ }-5)$
The above can be re - written as
$z=3+\sqrt{(-1) \times 5}$
$z=3+i \sqrt{ } 5\left[\because i^{2}=-1\right]$

Now, we have to find the modulus of $(3+i \sqrt{ } 5)$
So, $|z|=|3+i \sqrt{5}|=\sqrt{(3)^{2}+(\sqrt{5})^{2}}=\sqrt{9+5}=\sqrt{14}$
Hence, the modulus of $(3+\sqrt{ }-5)$ is $\sqrt{ } 14$
Q. 10. B. Find the modulus of each of the following:
$(-3-4 i)$
Answer : Given: z = (-3 - 4i)
Now, we have to find the modulus of $(-3-4 i)$
So, $|z|=|-3-4 i|=\sqrt{(-3)^{2}+(-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
Hence, the modulus of $(-3-4 i)$ is 5
Q. 10. C. Find the modulus of each of the following:
$(7+24 i)$
Answer : Given: z = $(7+24 i)$
Now, we have to find the modulus of $(7+24 i)$
So, $|z|=|7+24 i|=\sqrt{(7)^{2}+(24)^{2}}=\sqrt{49+576}=\sqrt{625}=25$
Hence, the modulus of $(7+24 i)$ is 25
Q. 10. D. Find the modulus of each of the following:

$3 i$

Answer : Given: z = 3i
The above equation can be re - written as
$z=0+3 i$
Now, we have to find the modulus of $(0+3 \mathrm{i})$

So, $|z|=|0+3 i|=\sqrt{(0)^{2}+(3)^{2}}=\sqrt{9}=3$
Hence, the modulus of (3i) is 3
Q. 10. E. Find the modulus of each of the following:

$$
\frac{(3+2 i)^{2}}{(4-3 i)}
$$

Answer : Given: ${ }^{\frac{(3+2 i)^{2}}{(4-3 i)}}$
Firstly, we calculate ${ }^{\frac{(3+2 i)^{2}}{(4-3 i)}}$ and then find its modulus

$$
\begin{aligned}
& \frac{(3+2 i)^{2}}{(4-3 i)}=\frac{9+4 i^{2}+12 i}{(4-3 i)}\left[\because(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}\right] \\
& =\frac{9+4(-1)+12 i}{4-3 i}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{5+12 i}{4-3 i}
\end{aligned}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $4+3 \mathrm{i}$

$$
\begin{align*}
& =\frac{5+12 i}{4-3 i} \times \frac{4+3 i}{4+3 i} \\
& =\frac{(5+12 i)(4+3 i)}{(4-3 i)(4+3 i)} \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become
$=\frac{5(4)+(5)(3 i)+12 i(4)+12 i(3 i)}{(4)^{2}-(3 i)^{2}}$

$$
\begin{aligned}
& =\frac{20+15 i+48 i+36 i^{2}}{16-9 i^{2}} \\
& =\frac{20+63 i+36(-1)}{16-9(-1)}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{20-36+63 i}{16+9}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{-16+63 i}{25} \\
& =-\frac{16}{25}+\frac{63}{25} i
\end{aligned}
$$

Now, we have to find the modulus of $\left(-\frac{16}{25}+\frac{63}{25} i\right)$
So, $|z|=\left|-\frac{16}{25}+\frac{63}{25} i\right|=\sqrt{\left(-\frac{16}{25}\right)^{2}+\left(\frac{63}{25}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{256}{625}+\frac{3969}{625}} \\
& =\sqrt{\frac{4225}{625}} \\
& =\frac{65}{25} \\
& =\frac{13}{5}
\end{aligned}
$$

Hence, the modulus of $\frac{(3+2 i)^{2}}{(4-3 i)}$ is $\frac{13}{5}$

Q. 10. F. Find the modulus of each of the following:

$$
\frac{(2-i)(1+i)}{(1+i)}
$$

Answer : Given: $\frac{(2-i)(1+i)}{(1+i)}$
Firstly, we calculate $\frac{(2-i)(1+i)}{(1+i)}$ and then find its modulus

$$
\begin{aligned}
& \frac{(2-i)(1+i)}{(1+i)}=\frac{2(1)+2(i)+(-i)(1)+(-i)(i)}{(1+i)} \\
& =\frac{2+2 i-i-i^{2}}{1+i} \\
& =\frac{2+i-(-1)}{1+i}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{3+i}{1+i}
\end{aligned}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $1+\mathrm{i}$

$$
\begin{align*}
& =\frac{3+i}{1+i} \times \frac{1-i}{1-i} \\
& =\frac{(3+i)(1-i)}{(1+i)(1-i)} \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become
$=\frac{3(1-i)+i(1-i)}{(1)^{2}-(i)^{2}}$

$$
\begin{aligned}
& =\frac{3(1)+3(-i)+i(1)+i(-i)}{1-i^{2}} \\
& =\frac{3-3 i+i-i^{2}}{1-(-1)}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{3-2 i-(-1)}{1+1}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{3-2 i+1}{2} \\
& =\frac{4-2 i}{2} \\
& =2-\mathrm{i}
\end{aligned}
$$

Now, we have to find the modulus of $(2-i)$
So, $|z|=|2-i|=|2+(-1) i|=\sqrt{(2)^{2}+(-1)^{2}}=\sqrt{4+1}=\sqrt{5}$
Q. 10. G. Find the modulus of each of the following:

5

Answer : Given: z = 5
The above equation can be re - written as
$z=5+0 i$
Now, we have to find the modulus of $(5+0 \mathrm{i})$
So, $|z|=|5+0 i|=\sqrt{(5)^{2}+(0)^{2}}=5$
Q. 10. H. Find the modulus of each of the following:
$(1+2 i)(i-1)$
Answer : Given: $z=(1+2 i)(i-1)$
Firstly, we calculate the $(1+2 \mathrm{i})(\mathrm{i}-1)$ and then find the modulus

So, we open the brackets,

$$
\begin{aligned}
& 1(i-1)+2 i(i-1) \\
& =1(i)+(1)(-1)+2 i(i)+2 i(-1) \\
& =i-1+2 i^{2}-2 i \\
& =-i-1+2(-1)\left[\because i^{2}=-1\right] \\
& =-i-1-2 \\
& =-i-3
\end{aligned}
$$

Now, we have to find the modulus of $(-3-i)$
So, $|z|=|-3-i|=|-3+(-1) i|=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{9+1}=\sqrt{10}$
Q. 11. A. Find the multiplicative inverse of each of the following:
$(1-\sqrt{3} \mathrm{i})$
Answer : Given: (1-i $\sqrt{ } 3$)
To find: Multiplicative inverse
We know that,
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{Z}$
Putting $z=1-i \sqrt{ } 3$
So, Multiplicative inverse of $1-\mathrm{i} \sqrt{3}=\frac{1}{1-\mathrm{i} \sqrt{3}}$
Now, rationalizing by multiply and divide by the conjugate of ($1-\mathrm{i} \sqrt{ } 3$)
$=\frac{1}{1-i \sqrt{3}} \times \frac{1+i \sqrt{3}}{1+i \sqrt{3}}$

$$
\begin{aligned}
& =\frac{1+i \sqrt{3}}{(1-i \sqrt{3})(1+i \sqrt{3})} \\
& \text { Using }(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\
& =\frac{1+i \sqrt{3}}{(1)^{2}-(i \sqrt{3})^{2}} \\
& =\frac{1+i \sqrt{3}}{1-3 i^{2}} \\
& =\frac{1+i \sqrt{3}}{1-3(-1)}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{1+i \sqrt{3}}{1+3} \\
& =\frac{1+i \sqrt{3}}{4} \\
& =\frac{1}{4}+\frac{\sqrt{3}}{4} i
\end{aligned}
$$

Hence, Multiplicative Inverse of $(1-\mathrm{i} \sqrt{3})$ is $\frac{1}{4}+\frac{\sqrt{3}}{4} \mathrm{i}$
Q. 11. B. Find the multiplicative inverse of each of the following:
$(2+5 i)$
Answer: Given: $2+5 \mathrm{i}$
To find: Multiplicative inverse
We know that,
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{z}$

Putting $z=2+5 i$
So, Multiplicative inverse of $2+5 i=\frac{1}{2+5 i}$
Now, rationalizing by multiply and divide by the conjugate of $(2+5 i)$

$$
\begin{aligned}
& =\frac{1}{2+5 i} \times \frac{2-5 i}{2-5 i} \\
& =\frac{2-5 i}{(2+5 i)(2-5 i)} \\
& \text { Using (a-b)(a+b) }=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\
& =\frac{2-5 i}{(2)^{2}-(5 i)^{2}} \\
& =\frac{2-5 i}{4-25 i^{2}} \\
& =\frac{2-5 i}{4-25(-1)}\left[\because \mathrm{i}^{2}=-1\right] \\
& =\frac{2-5 i}{4+25} \\
& =\frac{2-5 i}{29} \\
& =\frac{2}{29}-\frac{5}{29} i
\end{aligned}
$$

Hence, Multiplicative Inverse of $(2+5 \mathrm{i})$ is $\frac{2}{29}-\frac{5}{29} \mathrm{i}$
Q. 11. C. Find the multiplicative inverse of each of the following:

$$
\frac{(2+3 i)}{(1+i)}
$$

$\frac{2+3 i}{1+i}$
 Answer : Given: $1+i$

To find: Multiplicative inverse
We know that,
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{Z}$
Putting $\mathrm{z}=\frac{2+3 i}{1+i}$
So, Multiplicative inverse of $\frac{2+3 i}{1+i}=\frac{1}{\frac{2+3 i}{1+i}}=\frac{1+i}{2+3 i}$
Now, rationalizing by multiply and divide by the conjugate of (2+3i)
$=\frac{1+i}{2+3 i} \times \frac{2-3 i}{2-3 i}$
$=\frac{(1+i)(2-3 i)}{(2+3 i)(2-3 i)}$
Using $(a-b)(a+b)=\left(a^{2}-b^{2}\right)$
$=\frac{1(2-3 i)+i(2-3 i)}{(2)^{2}-(3 i)^{2}}$
$=\frac{2-3 i+2 i-3 i^{2}}{4-9 i^{2}}$
$=\frac{2-i-3(-1)}{4-9(-1)}\left[\because \mathrm{i}^{2}=-1\right]$
$=\frac{5-i}{4+9}$
$=\frac{5-i}{13}$
$=\frac{5}{13}-\frac{1}{13} i$
Hence, Multiplicative Inverse of $\frac{(2+3 i)}{1+i}$ is $\frac{5}{13}-\frac{1}{13} i$
Q.11. D. Find the multiplicative inverse of each of the following:

$$
\frac{(1+i)(1+2 i)}{(1+3 i)}
$$

Answer: Given: $\frac{(1+i)(1+2 i)}{(1+3 i)}$
To find: Multiplicative inverse
We know that,
Multiplicative Inverse of $z=z^{-1}$
$=\frac{1}{Z}$
Putting $z=\frac{(1+\mathrm{i})(1+2 \mathrm{i})}{(1+3 \mathrm{i})}$
So, Multiplicative inverse of $\frac{(1+i)(1+2 i)}{(1+3 i)}=\frac{1}{\frac{(1+i)(1+2 i)}{(1+3 i)}}$

$$
=\frac{(1+3 i)}{(1+i)(1+2 i)}
$$

We solve the above equation

$$
=\frac{1+3 i}{1(1)+1(2 i)+i(1)+i(2 i)}
$$

$$
\begin{aligned}
& =\frac{1+3 i}{1+2 i+i+2 i^{2}} \\
& =\frac{1+3 i}{1+3 i+2(-1)}\left[\because \dot{j}^{2}=-1\right] \\
& =\frac{1+3 i}{-1+3 i}
\end{aligned}
$$

Now, we rationalize the above by multiplying and divide by the conjugate of $(-1+3 i)$

$$
\begin{align*}
& =\frac{1+3 i}{-1+3 i} \times \frac{-1-3 i}{-1-3 i} \\
& =\frac{(1+3 i)(-1-3 i)}{(-1+3 i)(-1-3 i)} \tag{i}
\end{align*}
$$

Now, we know that,

$$
(a+b)(a-b)=\left(a^{2}-b^{2}\right)
$$

So, eq. (i) become

$$
\begin{aligned}
& =\frac{1(-1-3 i)+3 i(-1-3 i)}{(-1)^{2}-(3 i)^{2}} \\
& =\frac{-1-3 i-3 i-9 i^{2}}{1-9 i^{2}} \\
& =\frac{-1-6 i-9(-1)}{1-9(-1)}\left[\because i^{2}=-1\right] \\
& =\frac{-1-6 i+9}{1+9} \\
& =\frac{8-6 i}{10} \\
& =\frac{2(4-3 i)}{10}
\end{aligned}
$$

$=\frac{4-3 i}{5}$
$=\frac{4}{5}-\frac{3}{5} i$
Hence, Multiplicative inverse of $\frac{(1+i)(1+2 i)}{(1+3 i)}=\frac{4}{5}-\frac{3}{5} i$
Q. 12. If $\left(\frac{1-i}{1+i}\right)^{100}=(a+i b)$, find the values of a and b.

Answer : Given: ${ }^{a+i b=\left(\frac{1-i}{1+i}\right)^{100}}$
Consider the given equation,
$a+i b=\left(\frac{1-i}{1+i}\right)^{100}$
Now, we rationalize
$=\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^{100}$
[Here, we multiply and divide by the conjugate of $1+\mathrm{i}$]
$=\left(\frac{(1-i)^{2}}{(1+i)(1-i)}\right)^{100}$
$=\left(\frac{1+i^{2}-2 i}{(1+i)(1-i)}\right)^{100}$
Using $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=\left(\frac{1+(-1)-2 i}{(1)^{2}-(i)^{2}}\right)^{100}$

$$
\begin{aligned}
& =\left(\frac{-2 i}{1-i^{2}}\right)^{100} \\
& =\left(\frac{-2 i}{1-(-1)}\right)^{100}\left[\because i^{2}=-1\right] \\
& =\left(\frac{-2 i}{2}\right)^{100} \\
& =(-i)^{100} \\
& =\left[(-i)^{4}\right]^{25} \\
& =\left(i^{4}\right)^{25} \\
& =(1)^{25} \\
& {\left[\because i^{4}=i^{2} \times i^{2}=-1 \times-1=1\right]} \\
& (a+i b)=1+0 i
\end{aligned}
$$

On comparing both the sides, we get
$a=1$ and $b=0$
Hence, the value of a is 1 and b is 0
Q. 13. If $\left(\frac{1+i}{1-i}\right)^{93}-\left(\frac{1-i}{1+i}\right)^{3}=x+i y$, find x and y.

Answer : Consider,
$x+i y=\left(\frac{1+i}{1-i}\right)^{93}-\left(\frac{1-i}{1+i}\right)^{3}$
Now, rationalizing
$x+i y=\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{93}-\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^{3}$

$$
=\left(\frac{(1+i)^{2}}{(1-i)(1+i)}\right)^{93}-\left(\frac{(1-i)^{2}}{(1+i)(1-i)}\right)^{3}
$$

In denominator, we use the identity

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

$$
=\left(\frac{1+i^{2}+2 i}{(1)^{2}-(i)^{2}}\right)^{93}-\left(\frac{1+i^{2}-2 i}{(1)^{2}-(i)^{2}}\right)^{3}
$$

$$
=\left(\frac{1+(-1)+2 i}{1-i^{2}}\right)^{93}-\left(\frac{1+(-1)-2 i}{1-i^{2}}\right)^{3}
$$

$$
=\left(\frac{2 i}{1-(-1)}\right)^{93}-\left(\frac{-2 i}{1-(-1)}\right)^{3}
$$

$$
=\left(\frac{2 i}{2}\right)^{93}-\left(\frac{-2 i}{2}\right)^{3}
$$

$$
=(i)^{93}-(-i)^{3}
$$

$$
=(i)^{92+1}-\left[-(i)^{3}\right]
$$

$$
=\left[(i)^{92}(i)\right]-\left[-\left(i^{2} \times i\right)\right]
$$

$$
=\left[\left(i^{4}\right)^{23}(i)\right]-[-(-i)]
$$

$$
=\left[(1)^{23}(i)\right]-\mathrm{i}
$$

$$
=\mathrm{i}-\mathrm{i}
$$

$$
x+i y=0
$$

$\therefore \mathrm{x}=0$ and $\mathrm{y}=0$

Answer : Consider the given equation,
$x+i y=\frac{a+i b}{a-i b}$
Now, rationalizing
$x+i y=\frac{a+i b}{a-i b} \times \frac{a+i b}{a+i b}$
$=\frac{(a+i b)(a+i b)}{(a-i b)(a+i b)}$
$=\frac{a(a+i b)+i b(a+i b)}{(a)^{2}-(i b)^{2}}$
$\left[(a-b)(a+b)=a^{2}-b^{2}\right]$
$=\frac{a^{2}+i a b+i a b+i^{2} b^{2}}{a^{2}-i^{2} b^{2}}$
$=\frac{a^{2}+i a b+i a b+(-1) b^{2}}{a^{2}-(-1) b^{2}} \quad\left[i^{2}=-1\right]$
$x+i y=\frac{a^{2}+2 i a b-b^{2}}{a^{2}+b^{2}}$
$x+i y=\frac{\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}+i \frac{2 a b}{a^{2}+b^{2}}$
On comparing both the sides, we get
$x=\frac{\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}} \& y=\frac{2 a b}{a^{2}+b^{2}}$
Now, we have to prove that $x^{2}+y^{2}=1$
Taking LHS,
$x^{2}+y^{2}$
Putting the value of x and y, we get

$$
\begin{aligned}
& {\left[\frac{\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}\right]^{2}+\left[\frac{2 a b}{a^{2}+b^{2}}\right]^{2}} \\
& =\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left[\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}\right] \\
& =\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left[a^{4}+b^{4}-2 a^{2} b^{2}+4 a^{2} b^{2}\right] \\
& =\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left[a^{4}+b^{4}+2 a^{2} b^{2}\right] \\
& =\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left[\left(a^{2}+b^{2}\right)^{2}\right] \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

Q. 15. If $(a+i b)=\frac{c+i}{c-i}$, where \boldsymbol{c} is real, prove that $\mathbf{a}^{2}+b^{2}=\mathbf{1}$ and ${ }^{\frac{b}{a}}=\frac{2 c}{c^{2}-1}$.

Answer : Consider the given equation,
$a+i b=\frac{c+i}{c-i}$
Now, rationalizing

$$
\begin{aligned}
& a+i b=\frac{c+i}{c-i} \times \frac{c+i}{c+i} \\
& =\frac{(c+i)(c+i)}{(c-i)(c+i)} \\
& =\frac{(c+i)^{2}}{(c)^{2}-(i)^{2}} \\
& {\left[(a-b)(a+b)=a^{2}-b^{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{c^{2}+2 i c+i^{2}}{c^{2}-i^{2}} \\
& a+i b=\frac{c^{2}+2 i c+(-1)}{c^{2}-(-1)}\left[i^{2}=-1\right] \\
& a+i b=\frac{c^{2}+2 i c-1}{c^{2}+1} \\
& a+i b=\frac{\left(c^{2}-1\right)}{c^{2}+1}+i \frac{2 c}{c^{2}+1}
\end{aligned}
$$

On comparing both the sides, we get

$$
a=\frac{\left(c^{2}-1\right)}{c^{2}+1} \& b=\frac{2 c}{c^{2}+1}
$$

Now, we have to prove that $a^{2}+b^{2}=1$
Taking LHS,
$a^{2}+b^{2}$
Putting the value of a and b, we get

$$
\begin{aligned}
& {\left[\frac{\left(c^{2}-1\right)}{c^{2}+1}\right]^{2}+\left[\frac{2 c}{c^{2}+1}\right]^{2}} \\
& =\frac{1}{\left(c^{2}+1\right)^{2}}\left[\left(c^{2}-1\right)^{2}+(2 c)^{2}\right] \\
& =\frac{1}{\left(c^{2}+1\right)^{2}}\left[c^{4}+1-2 c^{2}+4 c^{2}\right] \\
& =\frac{1}{\left(c^{2}+1\right)^{2}}\left[c^{4}+1+2 c^{2}\right] \\
& =\frac{1}{\left(c^{2}+1\right)^{2}}\left[\left(c^{2}+1\right)^{2}\right]
\end{aligned}
$$

$$
=1
$$

= RHS

Now, we have to prove $\frac{b}{a}=\frac{2 c}{c^{2}-1}$
Taking LHS, $\frac{b}{a}$
Putting the value of a and b, we get
$\frac{b}{a}=\frac{\frac{2 c}{c^{2}+1}}{\frac{\left(c^{2}-1\right)}{c^{2}+1}}=\frac{2 c}{c^{2}+1} \times \frac{c^{2}+1}{c^{2}-1}=\frac{2 c}{c^{2}-1}=$ RHS
Hence Proved
Q. 16. Show that

$$
(1-\mathrm{i})^{\mathrm{n}}\left(1-\frac{1}{\mathrm{i}}\right)^{\mathrm{n}}=2^{\mathrm{n}}
$$ for all $\mathbf{n} \mathbf{N}$.

Answer : To show: $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}=2^{n}$
Taking LHS,

$$
\begin{aligned}
& (1-i)^{n}\left(1-\frac{1}{i}\right)^{n} \\
& =(1-i)^{n}\left(1-\frac{1}{i} \times \frac{i}{i}\right)^{n} \quad \text { [rationalize] } \\
& =(1-i)^{n}\left(1-\frac{i}{i^{2}}\right)^{n} \\
& =(1-i)^{n}\left(1-\frac{i}{-1}\right)^{n}\left[\because i^{2}=-1\right] \\
& =(1-i)^{n}(1+i)^{n} \\
& =[(1-i)(1+i)]^{n}
\end{aligned}
$$

$=\left[(1)^{2}-(i)^{2}\right]^{n}\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\left(1-i^{2}\right)^{n}$
$=[1-(-1)]^{n}\left[\because i^{2}=-1\right]$
$=(2)^{\mathrm{n}}$
$=2^{n}$
$=$ RHS
Hence Proved
Q. 17. Find the smallest positive integer n for which $(1+i)^{2 n}=(1-i)^{2 n}$.

Answer :

Given: $(1+i)^{2 n}=(1-i)^{2 n}$
Consider the given equation,
$(1+i)^{2 n}=(1-i)^{2 n}$
$\Rightarrow \frac{(1+i)^{2 n}}{(1-i)^{2 n}}=1$
$\Rightarrow\left(\frac{1+i}{1-i}\right)^{2 n}=1$
Now, rationalizing by multiply and divide by the conjugate of (1-i)

$$
\begin{aligned}
& \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{2 n}=1 \\
& \Rightarrow\left(\frac{(1+i)^{2}}{(1-i)(1+i)}\right)^{2 n}=1 \\
& \Rightarrow\left[\frac{1+i^{2}+2 i}{(1)^{2}-(i)^{2}}\right]^{2 n}=1
\end{aligned}
$$

$$
\left[(a+b)^{2}=a^{2}+b^{2}+2 a b \&(a-b)(a+b)=\left(a^{2}-b^{2}\right)\right]
$$

$\Rightarrow\left[\frac{1+(-1)+2 i}{1-(-1)}\right]^{2 n}=1{ }^{\left[i^{2}=-1\right]}$
$\Rightarrow\left[\frac{2 i}{2}\right]^{2 n}=1$
$\Rightarrow()^{2 n}=1$
Now, $\mathrm{i}^{2 \mathrm{n}}=1$ is possible if $\mathrm{n}=2$ because $(\mathrm{i})^{2(2)}=\mathrm{i}^{4}=(-1)^{4}=1$
So, the smallest positive integer $\mathrm{n}=2$
Q. 18. Prove that $(x+1+i)(x+1-i)(x-1-i)(x-1-i)=\left(x^{4}+4\right)$.

Answer : To Prove:
$(x+1+i)(x+1-i)(x-1+i)(x-1-i)=\left(x^{4}+4\right)$
Taking LHS

$$
\begin{aligned}
& (x+1+i)(x+1-i)(x-1+i)(x-1-i) \\
& =[(x+1)+i][(x+1)-i][(x-1)+i][(x-1)-i]
\end{aligned}
$$

Using $(a-b)(a+b)=a^{2}-b^{2}$

$$
[(x+1)+i][(x+1)-i][(x-1)+i][(x-1)-i]
$$

$$
a=x+1 \& b=i \quad a=x-1 \& b=i
$$

$$
=\left[(x+1)^{2}-(i)^{2}\right]\left[(x-1)^{2}-(i)^{2}\right]
$$

$$
=\left[x^{2}+1+2 x-i^{2}\right]\left(x^{2}+1-2 x-i^{2}\right]
$$

$$
=\left[x^{2}+1+2 x-(-1)\right]\left(x^{2}+1-2 x-(-1)\right]\left[\because i^{2}=-1\right]
$$

$$
=\left[x^{2}+2+2 x\right]\left[x^{2}+2-2 x\right]
$$

Again, using $(a-b)(a+b)=a^{2}-b^{2}$
Now, $a=x^{2}+2$ and $b=2 x$
$=\left[\left(x^{2}+2\right)^{2}-(2 x)^{2}\right]$
$=\left[x^{4}+4+2\left(x^{2}\right)(2)-4 x^{2}\right]\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=\left[x^{4}+4+4 x^{2}-4 x^{2}\right]$
$=\mathrm{x}^{4}+4$
$=$ RHS
$\therefore \mathrm{LHS}=\mathrm{RHS}$
Hence Proved
Q. 19. If $a=(\cos \theta+i \sin \theta)$, prove that $\frac{1+a}{1-a}=\left(\cot \frac{\theta}{2}\right) \mathrm{i}$.

Answer : Given: $a=\cos \theta+i \sin \theta$
To prove: $\frac{1+a}{1-a}=\left(\cot \frac{\theta}{2}\right) i$
Taking LHS,
$\frac{1+a}{1-a}$
Putting the value of a, we get
$=\frac{1+\cos \theta+i \sin \theta}{1-(\cos \theta+i \sin \theta)}$
$=\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}$
We know that,
$1+\cos 2 \theta=2 \cos ^{2} \theta$
Or ${ }^{1+\cos \theta=2 \cos ^{2} \frac{\theta}{2}}$

And $1-\cos \theta=2 \sin ^{2} \frac{\theta}{2}$
Using the above two formulas

$$
=\frac{2 \cos ^{2} \frac{\theta}{2}+i \sin \theta}{2 \sin ^{2} \frac{\theta}{2}-i \sin \theta}
$$

Using, $\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$

$$
\begin{aligned}
& =\frac{2 \cos ^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}-2 i \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \\
& =\frac{2 \cos \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]}{2 \sin \frac{\theta}{2}\left[\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right]}
\end{aligned}
$$

$$
=\cot \frac{\theta}{2}\left[\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}}\right]\left[\because \frac{\cos \theta}{\sin \theta}=\cot \theta\right]
$$

Rationalizing by multiply and divide by the conjugate of $\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}$

$$
\begin{aligned}
& =\left(\cot \frac{\theta}{2}\right)\left[\frac{\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}}{\left.\sin \frac{\theta}{2}-i \cos \frac{\theta}{2} \times \frac{\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}}{\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}}\right]}\right. \\
& =\left(\cot \frac{\theta}{2}\right) \frac{\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)}{\left(\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right)\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)} \\
& =\left(\cot \frac{\theta}{2}\right) \frac{\left(\cos \frac{\theta}{2}\right)\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)+i \sin \frac{\theta}{2}\left(\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}\right)}{\left(\sin \frac{\theta}{2}\right)^{2}-\left(i \cos \frac{\theta}{2}\right)^{2}}
\end{aligned}
$$

$=\left(\cot \frac{\theta}{2}\right) \frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}+i \cos ^{2} \frac{\theta}{2}+i \sin ^{2} \frac{\theta}{2}+i^{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}-i^{2} \cos ^{2} \frac{\theta}{2}}$
Putting $i^{2}=-1$, we get
$=\left(\cot \frac{\theta}{2}\right) \frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}+i \cos ^{2} \frac{\theta}{2}+i \sin ^{2} \frac{\theta}{2}+(-1) \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}-(-1) \cos ^{2} \frac{\theta}{2}}$
$=\left(\cot \frac{\theta}{2}\right) \frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}+i\left(\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)-\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}$
We know that,
$\cos ^{2} \theta+\sin ^{2} \theta=1$
$=\left(\cot \frac{\theta}{2}\right)\left[\frac{i\left(\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)}{1}\right]$
$=\cot \frac{\theta}{2}(i)$
$=$ RHS
Hence Proved
Q. 20. If $\mathbf{z}_{1}=(\mathbf{2}-\mathbf{i})$ and $z_{2}=(\mathbf{1}+\mathbf{i})$, find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$.

Answer :
Given: $z_{1}=(2-i)$ and $z_{2}=(1+i)$
To find: $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$
Consider,

$$
\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|
$$

Putting the value of z_{1} and z_{2}, we get

$$
\begin{aligned}
& =\left|\frac{2-i+1+i+1}{2-i-(1+i)+i}\right| \\
& =\left|\frac{4}{2-i-1-i+i}\right| \\
& =\left|\frac{4}{1-i}\right|
\end{aligned}
$$

Now, rationalizing by multiply and divide by the conjugate of $1-\mathrm{i}$

$$
\begin{aligned}
& =\left|\frac{4}{1-i} \times \frac{1+i}{1+i}\right| \\
& =\left|\frac{4(1+i)}{(1-i)(1+i)}\right| \\
& =\left|\frac{4(1+i)}{(1)^{2}-(i)^{2}}\right| \\
& =\left|\frac{4(1+i)}{1-i^{2}}\right| \\
& \left.=\left|\frac{4(1+i)}{1-(-1)}\right|[P \mathrm{~b})(\mathrm{a}+\mathrm{b})=\mathrm{a}^{2}-\mathrm{b}^{2}\right] \\
& =\left|\frac{4(1+i n g}{2}\right| \\
& =|2(1+\mathrm{i})| \\
& =|2+2 \mathrm{i}|
\end{aligned}
$$

Now, we have to find the modulus of $(2+2 i)$
So, $|z|=|2+2 i|=\sqrt{(2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$

Hence, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|=2 \sqrt{2}$
Q. 21. A. Find the real values of x and y for which:
$(1-i) x+(1+i) y=1-3 i$
Answer :
$(1-i) x+(1+i) y=1-3 i$
$\Rightarrow \mathrm{x}-\mathrm{ix}+\mathrm{y}+\mathrm{iy}=1-3 \mathrm{i}$
$\Rightarrow(\mathrm{x}+\mathrm{y})-\mathrm{i}(\mathrm{x}-\mathrm{y})=1-3 \mathrm{i}$
Comparing the real parts, we get
$x+y=1 \ldots$ (i)
Comparing the imaginary parts, we get
$x-y=-3$
Solving eq. (i) and (ii) to find the value of x and y
Adding eq. (i) and (ii), we get
$x+y+x-y=1+(-3)$
$\Rightarrow 2 \mathrm{x}=1-3$
$\Rightarrow 2 \mathrm{x}=-2$
$\Rightarrow x=-1$
Putting the value of $x=-1$ in eq. (i), we get
$(-1)+y=1$
$\Rightarrow y=1+1$
$\Rightarrow y=2$

Q. 21. B. Find the real values of x and y for which:

$(x+i y)(3-2 i)=(12+5 i)$
Answer : $\mathrm{x}(3-2 \mathrm{i})+\mathrm{iy}(3-2 \mathrm{i})=12+5 \mathrm{i}$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{ix}+3 \mathrm{iy}-2 \mathrm{i}^{2} \mathrm{y}=12+5 \mathrm{i}$
$\Rightarrow 3 x+i(-2 x+3 y)-2(-1) y=12+5 i\left[\because i^{2}=-1\right]$
$\Rightarrow 3 x+i(-2 x+3 y)+2 y=12+5 i$
$\Rightarrow(3 \mathrm{x}+2 \mathrm{y})+\mathrm{i}(-2 \mathrm{x}+3 \mathrm{y})=12+5 \mathrm{i}$
Comparing the real parts, we get
$3 x+2 y=12$
Comparing the imaginary parts, we get
$-2 x+3 y=5$
Solving eq. (i) and (ii) to find the value of x and y
Multiply eq. (i) by 2 and eq. (ii) by 3, we get
$6 x+4 y=24 \ldots$ (iii)
$-6 x+9 y=15$
Adding eq. (iii) and (iv), we get
$6 x+4 y-6 x+9 y=24+15$
$\Rightarrow 13 y=39$
$\Rightarrow y=3$
Putting the value of $y=3$ in eq. (i), we get
$3 x+2(3)=12$
$\Rightarrow 3 x+6=12$
$\Rightarrow 3 x=12-6$
$\Rightarrow 3 x=6$
$\Rightarrow x=2$
Hence, the value of $x=2$ and $y=3$
Q. 21. A. Find the real values of x and y for which:
$(1-i) x+(1+i) y=1-3 i$
Answer : $(1-i) x+(1+i) y=1-3 i$
$x-i x+y+i y=1-3 i$
$\Rightarrow(\mathrm{x}+\mathrm{y})-\mathrm{i}(\mathrm{x}-\mathrm{y})=1-3 \mathrm{i}$
Comparing the real parts, we get
$x+y=1 \ldots(i)$
Comparing the imaginary parts, we get
$x-y=-3$
Solving eq. (i) and (ii) to find the value of x and y
Adding eq. (i) and (ii), we get
$x+y+x-y=1+(-3)$
$\Rightarrow 2 \mathrm{x}=1-3$
$\Rightarrow 2 x=-2$
$\Rightarrow \mathrm{x}=-1$

Putting the value of $x=-1$ in eq. (i), we get
$(-1)+y=1$
$\Rightarrow y=1+1$
$\Rightarrow y=2$

Q. 21. B. Find the real values of x and y for which:

$(x+i y)(3-2 i)=(12+5 i)$
Answer : $\mathrm{x}(3-2 \mathrm{i})+\mathrm{iy}(3-2 \mathrm{i})=12+5 \mathrm{i}$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{ix}+3 \mathrm{iy}-2 \mathrm{i}^{2} \mathrm{y}=12+5 \mathrm{i}$
$\Rightarrow 3 x+i(-2 x+3 y)-2(-1) y=12+5 i\left[\because i^{2}=-1\right]$
$\Rightarrow 3 x+i(-2 x+3 y)+2 y=12+5 i$
$\Rightarrow(3 \mathrm{x}+2 \mathrm{y})+\mathrm{i}(-2 \mathrm{x}+3 \mathrm{y})=12+5 \mathrm{i}$
Comparing the real parts, we get
$3 x+2 y=12$
Comparing the imaginary parts, we get
$-2 x+3 y=5$
Solving eq. (i) and (ii) to find the value of x and y
Multiply eq. (i) by 2 and eq. (ii) by 3, we get
$6 x+4 y=24 \ldots$ (iii)
$-6 x+9 y=15$
Adding eq. (iii) and (iv), we get
$6 x+4 y-6 x+9 y=24+15$
$\Rightarrow 13 y=39$
$\Rightarrow y=3$
Putting the value of $y=3$ in eq. (i), we get
$3 x+2(3)=12$
$\Rightarrow 3 x+6=12$
$\Rightarrow 3 x=12-6$
$\Rightarrow 3 x=6$
$\Rightarrow x=2$
Hence, the value of $x=2$ and $y=3$
Q. 21. C. Find the real values of x and y for which:
$x+4 y i=i x+y+3$
Answer : Given: $x+4 y i=i x+y+3$
or $x+4 y i=i x+(y+3)$
Comparing the real parts, we get
$x=y+3$
Or $x-y=3$
Comparing the imaginary parts, we get
$4 y=x$
Putting the value of $x=4 y$ in eq. (i), we get
$4 y-y=3$
$\Rightarrow 3 y=3$
$\Rightarrow y=1$
Putting the value of $y=1$ in eq. (ii), we get
$x=4(1)=4$
Hence, the value of $x=4$ and $y=1$
Q. 21. D. Find the real values of x and y for which:
$(1+i) y^{2}+(6+i)=(2+i) x$
Answer : Given: $(1+i) y^{2}+(6+i)=(2+i) x$
Consider, $(1+i) y^{2}+(6+i)=(2+i) x$
$\Rightarrow y^{2}+i y^{2}+6+i=2 x+i x$
$\Rightarrow\left(\mathrm{y}^{2}+6\right)+\mathrm{i}\left(\mathrm{y}^{2}+1\right)=2 \mathrm{x}+\mathrm{ix}$
Comparing the real parts, we get
$y^{2}+6=2 x$
$\Rightarrow 2 x-y^{2}-6=0$
Comparing the imaginary parts, we get
$y^{2}+1=x$
$\Rightarrow \mathrm{x}-\mathrm{y}^{2}-1=0$
Subtracting the eq. (ii) from (i), we get
$2 x-y^{2}-6-\left(x-y^{2}-1\right)=0$
$\Rightarrow 2 x-y^{2}-6-x+y^{2}+1=0$
$\Rightarrow \mathrm{x}-5=0$
$\Rightarrow x=5$
Putting the value of $x=5$ in eq. (i), we get
$2(5)-y^{2}-6=0$
$\Rightarrow 10-y^{2}-6=0$
$\Rightarrow-y^{2}+4=0$
$\Rightarrow-y^{2}=-4$
$\Rightarrow y^{2}=4$
$\Rightarrow y=\sqrt{ } 4$
$\Rightarrow y= \pm 2$
Hence, the value of $x=5$ and $y= \pm 2$

Q. 21. E. Find the real values of x and y for which:

$\frac{(x+3 i)}{(2+i y)}=(1-i)$
Answer: Given:
$\frac{x+3 i}{2+i y}=(1-i)$
$\Rightarrow x+3 i=(1-i)(2+i y)$
$\Rightarrow \mathrm{x}+3 \mathrm{i}=1(2+\mathrm{iy})-\mathrm{i}(2+\mathrm{iy})$
$\Rightarrow x+3 i=2+i y-2 i-i^{2} y$
$\Rightarrow x+3 i=2+i(y-2)-(-1) y\left[i^{2}=-1\right]$
$\Rightarrow x+3 i=2+i(y-2)+y$
$\Rightarrow \mathrm{x}+3 \mathrm{i}=(2+\mathrm{y})+\mathrm{i}(\mathrm{y}-2)$
Comparing the real parts, we get
$x=2+y$
$\Rightarrow x-y=2$
Comparing the imaginary parts, we get
$3=y-2$
$\Rightarrow y=3+2$
$\Rightarrow y=5$
Putting the value of $y=5$ in eq. (i), we get
$x-5=2$
$\Rightarrow x=2+5$
$\Rightarrow x=7$

Hence, the value of $x=7$ and $y=5$
Q. 21. F. Find the real values of x and y for which:

$$
\frac{(1+i) x-2 i}{(3+i)}+\frac{(2-3 i) y+i}{(3-i)}=i
$$

Answer : Consider,
$\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i$
$=\frac{x+x i-2 i}{3+i}+\frac{2 y-3 i y+i}{3-i}=i$
Taking LCM
$\Rightarrow \frac{(x+x i-2 i)(3-i)+(2 y-3 i y+i)(3+i)}{(3+i)(3-i)}=i$
$\Rightarrow \frac{3 x+3 x i-6 i-x i-x i^{2}+2 i^{2}+6 y-9 i y+3 i+2 i y-3 i^{2} y+i^{2}}{(3)^{2}-(i)^{2}}=i$
Putting $i^{2}=-1$
$\Rightarrow \frac{3 x+2 x i-6 i-x(-1)+2(-1)+6 y-7 i y+3 i-3(-1) y+(-1)}{9-(-1)}=i$
$\Rightarrow \frac{3 x+2 x i-6 i+x-2+6 y-7 i y+3 i+3 y-1}{9+1}=i$
$\Rightarrow \frac{4 x+2 x i-3 i-3+9 y-7 i y}{10}=i$
$\Rightarrow 4 x+2 x i-3 i-3+9 y-7 i y=10 i$
$\Rightarrow(4 x-3+9 y)+i(2 x-3-7 y)=10 i$
Comparing the real parts, we get
$4 x-3+9 y=0$
$\Rightarrow 4 x+9 y=3$
Comparing the imaginary parts, we get
$2 x-3-7 y=10$
$\Rightarrow 2 x-7 y=10+3$
$\Rightarrow 2 x-7 y=13 \ldots$ (ii)
Multiply the eq. (ii) by 2, we get
$4 x-14 y=26$
Subtracting eq. (i) from (iii), we get
$4 x-14 y-(4 x+9 y)=26-3$
$\Rightarrow 4 x-14 y-4 x-9 y=23$
$\Rightarrow-23 y=23$
$\Rightarrow y=-1$
Putting the value of $y=-1$ in eq. (i), we get
$4 x+9(-1)=3$
$\Rightarrow 4 \mathrm{x}-9=3$
$\Rightarrow 4 \mathrm{x}=12$
$\Rightarrow x=3$
Hence, the value of $x=3$ and $y=-1$
Q. 22

Find the real values of x and y for which $(x-i y)(3+5 i)$ is the conjugate of $(-6-$ 24i).

Answer : Given: $(x-i y)(3+5 i)$ is the conjugate of $(-6-24 i)$
We know that,
Conjugate of $-6-24 i=-6+24 i$
\therefore According to the given condition,

$$
\begin{aligned}
& (x-i y)(3+5 i)=-6+24 i \\
& \Rightarrow x(3+5 i)-i y(3+5 i)=-6+24 i \\
& \Rightarrow 3 x+5 i x-3 i y-5 i^{2} y=-6+24 i \\
& \Rightarrow 3 x+i(5 x-3 y)-5(-1) y=-6+24 i\left[\because i^{2}=-1\right] \\
& \Rightarrow 3 x+i(5 x-3 y)+5 y=-6+24 i \\
& \Rightarrow(3 x+5 y)+i(5 x-3 y)=-6+24 i
\end{aligned}
$$

Comparing the real parts, we get
$3 x+5 y=-6 \ldots$ (i)
Comparing the imaginary parts, we get
$5 x-3 y=24$
Solving eq. (i) and (ii) to find the value of x and y
Multiply eq. (i) by 5 and eq. (ii) by 3, we get
$15 x+25 y=-30 \ldots$ (iii)
$15 x-9 y=72$
Subtracting eq. (iii) from (iv), we get
$15 x-9 y-15 x-25 y=72-(-30)$
$\Rightarrow-34 y=72+30$
$\Rightarrow-34 y=102$
$\Rightarrow y=-3$
Putting the value of $y=-3$ in eq. (i), we get
$3 x+5(-3)=-6$
$\Rightarrow 3 x-15=-6$
$\Rightarrow 3 x=-6+15$
$\Rightarrow 3 x=9$
$\Rightarrow x=3$

Hence, the value of $x=3$ and $y=-3$
Q. 23. Find the real values of x and y for which the complex number ($-3+i y x^{2}$) and $\left(x^{2}+y+4 i\right)$ are conjugates of each other.

Answer: Let $z_{1}=-3+\mathrm{iyx}{ }^{2}$
So, the conjugate of z_{1} is
$\overline{z_{1}}=-3-i y x^{2}$
And $z_{2}=x^{2}+y+4 i$
So, the conjugate of z_{2} is
$\bar{z}_{2}=x^{2}+y-4 i$
Given that: $\overline{z_{1}}=z_{2} \& z_{1}=\bar{z}_{2}$
Firstly, consider $\overline{z_{1}}=z_{2}$
$-3-i y x^{2}=x^{2}+y+4 i$
$\Rightarrow x^{2}+y+4 i+i y x^{2}=-3$
$\Rightarrow x^{2}+y+i\left(4+y x^{2}\right)=-3+0 i$
Comparing the real parts, we get

$$
x^{2}+y=-3 \ldots \text { (i) }
$$

Comparing the imaginary parts, we get

$$
\begin{align*}
& 4+y x^{2}=0 \\
& \Rightarrow x^{2} y=-4 \tag{ii}
\end{align*}
$$

Now, consider $z_{1}=\bar{z}_{2}$
$-3+i y x^{2}=x^{2}+y-4 i$
$\Rightarrow x^{2}+y-4 i-i y x^{2}=-3$
$\Rightarrow x^{2}+y+i\left(-4 i-y x^{2}\right)=-3+0 i$
Comparing the real parts, we get
$x^{2}+y=-3$
Comparing the imaginary parts, we get
$-4-y x^{2}=0$
$\Rightarrow x^{2} y=-4$
Now, we will solve the equations to find the value of x and y
From eq. (i), we get
$x^{2}=-3-y$
Putting the value of x^{2} in eq. (ii), we get
$(-3-y)(y)=-4$
$\Rightarrow-3 y-y^{2}=-4$
$\Rightarrow y^{2}+3 y=4$
$\Rightarrow y^{2}+3 y-4=0$
$\Rightarrow y^{2}+4 y-y-4=0$
$\Rightarrow y(y+4)-1(y+4)=0$
$\Rightarrow(y-1)(y+4)=0$
$\Rightarrow \mathrm{y}-1=0$ or $\mathrm{y}+4=0$
$\Rightarrow y=1$ or $y=-4$
When $y=1$, then
$x^{2}=-3-1$
$=-4$ [It is not possible]
When $y=-4$, then
$x^{2}=-3-(-4)$
$=-3+4$
$\Rightarrow x^{2}=1$
$\Rightarrow x=\sqrt{ } 1$
$\Rightarrow x= \pm 1$
Hence, the values of $x= \pm 1$ and $y=-4$
Q. 24. If $z=(2-3 i)$, prove that $z^{2}-4 z+13=0$ and hence deduce that $4 z^{3}-3 z^{2}+$ $169=0$.

Answer : Given: $z=2-3 i$
To Prove: $z^{2}-4 z+13=0$
Taking LHS, $z^{2}-4 z+13$
Putting the value of $z=2-3 i$, we get
$(2-3 i)^{2}-4(2-3 i)+13$
$=4+9 i^{2}-12 i-8+12 i+13$
$=9(-1)+9$
$=-9+9$
$=0$
$=$ RHS
Hence, $z^{2}-4 z+13=0 \ldots$ (i)
Now, we have to deduce $4 z^{3}-3 z^{2}+169$

Now, we will expand $4 z^{3}-3 z^{2}+169$ in this way so that we can use the above equation i.e. $z^{2}-4 z+13$
$=4 z^{3}-16 z^{2}+13 z^{2}+52 z-52 z+169$
Re - arrange the terms,
$=4 z^{3}-16 z^{2}+52 z+13 z^{2}-52 z+169$
$=4 z\left(z^{2}-4 z+13\right)+13\left(z^{2}-4 z+13\right)$
$=4 z(0)+13(0)[$ from eq. (i)]
$=0$
$=$ RHS
Hence Proved
Q. 25. If $(1+i) z=(1-i)^{\bar{Z}}$ then prove that $z=-i \bar{Z}$.

Answer : Let $z=x+i y$
Then,
$\bar{z}=x-i y$

Now, Given: $(1+i) z=(1-i)^{\bar{z}}$
Therefore,
$(1+i)(x+i y)=(1-i)(x-i y)$
$x+i y+x i+i^{2} y=x-i y-x i+i^{2} y$
We know that $i^{2}=-1$, therefore,
$x+i y+i x-y=x-i y-i x-y$
$2 x i+2 y i=0$
$x=-y$
Now, as $x=-y$
$z=-\bar{Z}$
Hence, Proved.
Q. 26. If $\left(\frac{z-1}{z+1}\right)$ is purely an imaginary number and $z \neq-1$ then find the value of |z|.

Answer : Given: ${ }^{\frac{z-1}{z+1}}$ is purely imaginary number
Let $z=x+i y$
So, $\frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1}$
$=\frac{(x-1)+i y}{(x+1)+i y}$
Now, rationalizing the above by multiply and divide by the conjugate of $[(x+1)+i y]$

$$
\begin{aligned}
& =\frac{(x-1)+i y}{(x+1)+i y} \times \frac{(x+1)-i y}{(x+1)-i y} \\
& =\frac{[(x-1)+i y][(x+1)-i y]}{[(x+1)+i y][(x+1)-i y]}
\end{aligned}
$$

Using $(a-b)(a+b)=\left(a^{2}-b^{2}\right)$
$=\frac{(x-1)[(x+1)-i y]+i y[(x+1)-i y]}{(x+1)^{2}-(i y)^{2}}$
$=\frac{(x-1)(x+1)+(x-1)(-i y)+i y(x+1)+(i y)(-i y)}{x^{2}+1+2 x-i^{2} y^{2}}$
$=\frac{x^{2}-1-i x y+i y+i x y+i y-i^{2} y^{2}}{x^{2}+1+2 x-i^{2} y^{2}}$
Putting $\mathrm{i}^{2}=-1$

$$
\begin{aligned}
& =\frac{x^{2}-1+2 i y-(-1) y^{2}}{x^{2}+1+2 x-(-1) y^{2}} \\
& =\frac{x^{2}-1+2 i y+y^{2}}{x^{2}+1+2 x+y^{2}} \\
& =\frac{x^{2}-1+y^{2}}{x^{2}+1+2 x+y^{2}}+i \frac{2 y}{x^{2}+1+2 x+y^{2}}
\end{aligned}
$$

Since, the number is purely imaginary it means real part is 0
$\therefore \frac{x^{2}-1+y^{2}}{x^{2}+1+2 x+y^{2}}=0$
$\Rightarrow x^{2}+y^{2}-1=0$
$\Rightarrow x^{2}+y^{2}=1$
$\Rightarrow \sqrt{x^{2}+y^{2}}=\sqrt{1}$
$\Rightarrow \sqrt{x^{2}+y^{2}}=1$
$\therefore|z|=1$
Q. 27. Solve the system of equations, $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$.

Answer : Given: $\operatorname{Re}\left(z^{2}\right)=0$ and $|z|=2$
Let $z=x+i y$
$\therefore|z|=\sqrt{x^{2}+y^{2}}$
$\Rightarrow 2=\sqrt{x^{2}+y^{2}}$ [Given]
Squaring both the sides, we get
$x^{2}+y^{2}=4$
Since, $z=x+i y$
$\Rightarrow z^{2}=(x+i y)^{2}$
$\Rightarrow z^{2}=x^{2}+i^{2} y^{2}+2 i x y$
$\Rightarrow z^{2}=x^{2}+(-1) y^{2}+2 i x y$
$\Rightarrow z^{2}=x^{2}-y^{2}+2 i x y$
It is given that $\operatorname{Re}\left(z^{2}\right)=0$
$\Rightarrow x^{2}-y^{2}=0$
Adding eq. (i) and (ii), we get
$x^{2}+y^{2}+x^{2}-y^{2}=4+0$
$\Rightarrow 2 x^{2}=4$
$\Rightarrow x^{2}=2$
$\Rightarrow x= \pm \sqrt{ } 2$
Putting the value of $x^{2}=2$ in eq. (i), we get
$2+y^{2}=4$
$\Rightarrow y^{2}=2$
$\Rightarrow \mathrm{y}= \pm \sqrt{ } 2$
Hence, $z=\sqrt{ } 2 \pm i \sqrt{ } 2,-\sqrt{ } 2 \pm i \sqrt{ } 2$
Q. 28. Find the complex number z for which $|z|=z+1+2 i$.

Answer: Given: $|z|=z+1+2 i$
Consider,
$|z|=(z+1)+2 i$
Squaring both the sides, we get
$|z|^{2}=[(z+1)+(2 i)]^{2}$
$\Rightarrow|z|^{2}=|z+1|^{2}+4 i^{2}+2(2 i)(z+1)$
$\Rightarrow|z|^{2}=|z|^{2}+1+2 z+4(-1)+4 i(z+1)$
$\Rightarrow 0=1+2 z-4+4 i(z+1)$
$\Rightarrow 2 z-3+4 i(z+1)=0$
Let $z=x+i y$
$\Rightarrow 2(x+i y)-3+4 i(x+i y+1)=0$
$\Rightarrow 2 x+2 i y-3+4 i x+4 i^{2} y+4 i=0$
$\Rightarrow 2 x+2 i y-3+4 i x+4(-1) y+4 i=0$
$\Rightarrow 2 \mathrm{x}-3-4 \mathrm{y}+\mathrm{i}(4 \mathrm{x}+2 \mathrm{y}+4)=0$
Comparing the real part, we get
$2 x-3-4 y=0$
$\Rightarrow 2 \mathrm{x}-4 \mathrm{y}=3$
Comparing the imaginary part, we get

$$
4 x+2 y+4=0
$$

$$
\Rightarrow 2 x+y+2=0
$$

$$
\begin{equation*}
\Rightarrow 2 x+y=-2 \tag{ii}
\end{equation*}
$$

Subtracting eq. (ii) from (i), we get
$2 x-4 y-(2 x+y)=3-(-2)$
$\Rightarrow 2 x-4 y-2 x-y=3+2$
$\Rightarrow-5 y=5$
$\Rightarrow y=-1$
Putting the value of $y=-1$ in eq. (i), we get

$$
\begin{aligned}
& 2 x-4(-1)=3 \\
& \Rightarrow 2 x+4=3 \\
& \Rightarrow 2 x=3-4
\end{aligned}
$$

$\Rightarrow 2 x=-1$
$\Rightarrow x=-\frac{1}{2}$
Hence, the value of $z=x+i y$
$=-\frac{1}{2}+i(-1)$
$z=-\frac{1}{2}-i$

Exercise 5C

Q. 1. Express each of the following in the form $(a+i b)$ and find its conjugate.
(i) $\frac{1}{(4+3 \mathrm{i})}$
(ii) $(2+3 i)^{2}$
(iii) $\frac{(2-i)}{(1-2 i)^{2}}$

$$
\frac{(1+\mathrm{i})(1+2 \mathrm{i})}{(1+3 \mathrm{i})}
$$

(v) $\left(\frac{1+2 i}{2+i}\right)^{2}$
(vi) $\frac{(2+i)}{(3-i)(1+2 i)}$

Answer:
(i) Let $Z=\frac{1}{4+3 i}=\frac{1}{4+3 i} \times \frac{4-3 i}{4-3 i}$

$$
\begin{aligned}
& =\frac{4-3 i}{16+9}=\frac{4}{25}-\frac{3}{25} i \\
& \Rightarrow \bar{z}=\frac{4}{25}+\frac{3}{25} i
\end{aligned}
$$

(ii) Let $z=(2+3 i)^{2}=(2+3 i)(2+3 i)$
$=4+6 i+6 i+9 i^{2}$
$=4+12 i+9 i^{2}$
$=4+12 i-9$
$=-5+12 i$
$\bar{z}=-5-12 i$
(iii) Let $Z=\frac{(2-i)}{(1-2 i)^{2}}=\frac{(2-i)}{1+4 i^{2}-4 i}$

$$
\begin{aligned}
& =\frac{(2-i)}{1-4 i-4}=\frac{2-i}{-3-4 i} \\
& =\frac{2-i}{-3-4 i} \times \frac{-3+4 i}{-3+4 i}=\frac{(2-i)(-3+4 i)}{9+16}
\end{aligned}
$$

$$
=\frac{-6+11 i-4 i^{2}}{25}=\frac{-2+11 i}{25}
$$

$$
=\frac{-2}{25}+\frac{11}{25} i
$$

$$
\bar{z}=\frac{-2}{25}-\frac{11}{25} i
$$

(iv) Let $Z=\frac{(1+i)(1+2 i)}{(1+3 i)}=\frac{1+i+2 i+2 i^{2}}{(1+3 i)}$

$$
\begin{aligned}
& =\frac{1+3 i-2}{1+3 i}=\frac{-1+3 i}{1+3 i} \\
& =\frac{-1+3 i}{1+3 i} \times \frac{1-3 i}{1-3 i}=\frac{-1+3 i+3 i-9 i^{2}}{1-9 i^{2}}=\frac{-1+6 i+9}{1+9}=\frac{8+6 i}{10} \\
& =\frac{8}{10}+\frac{6}{10} i
\end{aligned}
$$

$$
\bar{z}=\frac{8}{10}-\frac{6}{10} i
$$

$$
\text { (v) Let } Z=\left(\frac{1+2 i}{2+i}\right)^{2}=\frac{1+4 i^{2}+2 i}{4+i^{2}+4 i}=\frac{1-4+2 i}{4-1+4 i}=\frac{-3+2 i}{3+4 i}
$$

$$
=\frac{-3+2 i}{3+4 i} \times \frac{3-4 i}{3-4 i}
$$

$$
=\frac{-9+12 i+6 i-8 i^{2}}{9+16}=\frac{-9+18 i+8}{25}=\frac{-1+18 i}{25}
$$

$$
=\frac{-1}{25}+\frac{18}{25} i
$$

$$
\bar{z}=\frac{-1}{25}-\frac{18}{25} i
$$

(vi) Let $Z=\frac{(2+i)}{(3-i)(1+2 i)}=\frac{2+i}{3+6 i-1-2 i^{2}}$

$$
=\frac{2+i}{3+6 i-1+2}=\frac{2+i}{4+6 i}
$$

$$
=\frac{2+i}{4+6 i} \times \frac{4-6 i}{4-6 i}
$$

$$
=\frac{8-12 i+4 i-6 i^{2}}{16+36}
$$

$=\frac{8-8 i+6}{52}$
$=\frac{14-8 i}{52}$
$=\frac{14}{52}-\frac{8}{52} i$
$\bar{z}=\frac{14}{52}+\frac{8}{52} i$
Q. 2. Express each of the following in the form ($\mathbf{a}+\mathrm{ib}$) and find its multiplicative inverse:
(i) $\frac{1+2 \mathrm{i}}{1-3 \mathrm{i}}$
(ii) $\frac{(1+7 \mathrm{i})}{(2-\mathrm{i})^{2}}$
(iii) $\frac{-4}{(1+\mathrm{i} \sqrt{3})}$

Answer :

(i) Let $z=\frac{1+2 i}{1-3 i}$
$=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1-9 i^{2}}$
$=\frac{1+5 i+6 i^{2}}{1+9}=\frac{-5+5 i}{10}$
$z=\frac{-1}{2}+\frac{1}{2} i$
$\Rightarrow \bar{z}=\frac{-1}{2}-\frac{1}{2} i$
$\Rightarrow|z|^{2}=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
\therefore The multiplicative inverse of $\frac{1+2 i}{1-3 i}$
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\frac{-1}{2}-\frac{1}{2} i}{\frac{1}{2}}=-1-i$
(ii) Let $Z=\frac{1+7 i}{(2-i)^{2}}$

$$
\begin{aligned}
& =\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}=\frac{1+7 i}{3-4 i} \\
& =\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}
\end{aligned}
$$

$=\frac{3+4 i+21 i+28 i^{2}}{9+16}=\frac{3+25 i-28}{25}=\frac{-25+25 i}{25}$
$z=-1+i$
$\Rightarrow \bar{z}=-1-i$
$\Rightarrow|z|^{2}=(-1)^{2}+(1)^{2}=1+1=2$
\therefore The multiplicative inverse of $\frac{1+7 i}{(2-i)^{2}}$
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{-1-i}{2}=\frac{-1}{2}-\frac{1}{2} i$
(iii) Let ${ }^{Z}=\frac{-4}{(1+i \sqrt{3})}$

$$
\begin{aligned}
& =\frac{-4}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}} \\
& =\frac{-4+i 4 \sqrt{3}}{1+3}=\frac{-4+i 4 \sqrt{3}}{4} \\
& =-1+i \sqrt{3} \\
& Z=-1+i \sqrt{ } 3 \\
& \Rightarrow \bar{z}=-1-i \sqrt{3} \\
& \Rightarrow|z|^{2}=(-1)^{2}+(\sqrt{3})^{2}=1+3=4
\end{aligned}
$$

\therefore The multiplicative inverse of $\frac{-4}{(1+i \sqrt{3})}$
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{-1+i \sqrt{3}}{4}=\frac{-1}{4}+\frac{i \sqrt{3}}{4}$
Q. 3. If $(x+i y)^{3}=(u+i v)$ then prove that $\left(\frac{u}{x}+\frac{v}{y}\right)=4\left(x^{2}-y^{2}\right)$.

Answer: Given that, $(x+i y)^{3}=(u+i v)$
$\Rightarrow x^{3}+(i y)^{3}+3 x^{2} \mathrm{i} y+3 \mathrm{xi}^{2} \mathrm{y}^{2}=u+\mathrm{iv}$
$\Rightarrow x^{3}-i y^{3}+3 x^{2} y-3 x y^{2}=u+i v$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{xy}^{2}+\mathrm{i}\left(3 \mathrm{x}^{2} \mathrm{y}-\mathrm{y}^{3}\right)=\mathrm{u}+\mathrm{iv}$
On equating real and imaginary parts, we get
$U=x^{3}-3 x y^{2}$ and $v=3 x^{2} y-y^{3}$
Now, $\frac{u}{x}+\frac{v}{y}=\frac{\mathrm{x}^{3}-3 \mathrm{xy}^{2}}{x}+\frac{3 \mathrm{x}^{2} \mathrm{y}-\mathrm{y}^{3}}{y}$
$=\frac{x\left(\mathrm{x}^{2}-3 \mathrm{y}^{2}\right)}{x}+\frac{\mathrm{y}\left(3 \mathrm{x}^{2}-\mathrm{y}^{2}\right)}{y}$
$=x^{2}-3 y^{2}+3 x^{2}-y^{2}$
$=4 \mathrm{x}^{2}-4 \mathrm{y}^{2}$
$=4\left(x^{2}-y^{2}\right)$
Hence, $\frac{u}{x}+\frac{v}{y}=4\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
Q. 4. If $(x+i y)^{1 / 3}=(a+i b)$ then prove that $\left(\frac{x}{a}+\frac{y}{b}\right)=4\left(a^{2}-b^{2}\right)$.

Answer : Given that, $(x+i y)^{1 / 3}=(a+i b)$
$\Rightarrow(x+i y)=(a+i b)^{3}$
$\Rightarrow(\mathrm{a}+\mathrm{ib})^{3}=\mathrm{x}+\mathrm{iy}$
$\Rightarrow a^{3}+(i b)^{3}+3 a^{2} i b+3 a i^{2} b^{2}=x+i y$
$\Rightarrow a^{3}-i b^{3}+3 a^{2} i b-3 a b^{2}=x+i y$
$\Rightarrow a^{3}-3 a b^{2}+i\left(3 a^{2} b-b^{3}\right)=x+i y$
On equating real and imaginary parts, we get
$x=a^{3}-3 a b^{2}$ and $y=3 a^{2} b-b^{3}$
Now, $\frac{x}{a}+\frac{y}{b}=\frac{\mathrm{a}^{3}-3 \mathrm{ab}^{2}}{a}+\frac{3 \mathrm{a}^{2} \mathrm{~b}-\mathrm{b}^{3}}{b}$
$=\frac{a\left(\mathrm{a}^{2}-3 \mathrm{~b}^{2}\right)}{a}+\frac{\mathrm{b}\left(3 \mathrm{a}^{2}-\mathrm{b}^{2}\right)}{b}$
$=a^{2}-3 b^{2}+3 a^{2}-b^{2}$
$=4 \mathrm{a}^{2}-4 \mathrm{~b}^{2}$
$=4\left(a^{2}-b^{2}\right)$
Hence, $\frac{x}{a}+\frac{y}{b}=4\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
Q. 5. Express $(1-2 i)^{-3}$ in the form $(a+i b)$.

Answer: We have, (1-2i) ${ }^{-3}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{(1-2 i)^{3}}=\frac{1}{1-8 i^{3}-6 i+12 i^{2}}=\frac{1}{1+8 i-6 i-12}=\frac{1}{2 i-11} \\
& \Rightarrow \frac{1}{-11+2 i} \\
& =\frac{1}{-11+2 i} \times \frac{-11-2 i}{-11-2 i} \\
& =\frac{-11-2 i}{(-11)^{2}-(2 i)^{2}}=\frac{-11-2 i}{121+4} \\
& =\frac{-11-2 i}{125} \\
& =\frac{-11}{125}-\frac{2 i}{125}
\end{aligned}
$$

Q. 6. Find real values of x and y for which
$\left(x^{4}+2 x i\right)-\left(3 x^{2}+i y\right)=(3-5 i)+(1+2 i y)$.
Answer: We have, $\left(x^{4}+2 x i\right)-\left(3 x^{2}+i y\right)=(3-5 i)+(1+2 i y)$.
$\Rightarrow x^{4}+2 x i-3 x^{2}+i y=3-5 i+1+2 i y$
$\Rightarrow\left(\mathrm{x}^{4}-3 \mathrm{x}^{2}\right)+\mathrm{i}(2 \mathrm{x}-\mathrm{y})=4+\mathrm{i}(2 \mathrm{y}-5)$
On equating real and imaginary parts, we get
$x^{4}-3 x^{2}=4$ and $2 x-y=2 y-5$
$\Rightarrow \mathrm{x}^{4}-3 \mathrm{x}^{2}-4=0$ eq(i) and $2 \mathrm{x}-\mathrm{y}-2 \mathrm{y}+5=0$ eq(ii)
Now from eq (i), $x^{4}-3 x^{2}-4=0$

$$
\begin{aligned}
& \Rightarrow x^{4}-4 x^{2}+x^{2}-4=0 \\
& \Rightarrow x^{2}\left(x^{2}-4\right)+1\left(x^{2}-4\right)=0 \\
& \Rightarrow\left(x^{2}-4\right)\left(x^{2}+1\right)=0
\end{aligned}
$$

$\Rightarrow x^{2}-4=0$ and $x^{2}+1=0$
$\Rightarrow x= \pm 2$ and $x=\sqrt{ }-1$
Real value of $x= \pm 2$
Putting $x=2$ in eq (ii), we get
$2 x-3 y+5=0$
$\Rightarrow 2 \times 2-3 y+5=0$
$\Rightarrow 4-3 y+5=0=9-3 y=0$
$\Rightarrow \mathrm{y}=3$
Putting $x=-2$ in eq (ii), we get
$2 x-3 y+5=0$
$\Rightarrow 2 x-2-3 y+5=0$
$\Rightarrow-4-3 y+5=0=1-3 y=0$
$\Rightarrow y=\frac{1}{3}$
Q. 7. If $z^{2}+|z|^{2}=0$, show that z is purely imaginary.

Answer : Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
$\Rightarrow|z|=\sqrt{ }\left(a^{2}+b^{2}\right)$
Now, $z^{2}+|z|^{2}=0$
$\Rightarrow(\mathrm{a}+\mathrm{ib})^{2}+\mathrm{a}^{2}+\mathrm{b}^{2}=0$
$\Rightarrow a^{2}+2 a b i+i^{2} b^{2}+a^{2}+b^{2}=0$
$\Rightarrow \mathrm{a}^{2}+2 \mathrm{abi}-\mathrm{b}^{2}+\mathrm{a}^{2}+\mathrm{b}^{2}=0$
$\Rightarrow 2 \mathrm{a}^{2}+2 \mathrm{abi}=0$
$\Rightarrow 2 \mathrm{a}(\mathrm{a}+\mathrm{ib})=0$
Either $\mathrm{a}=0$ or $\mathrm{z}=0$

Since $z \neq 0$
$a=0 \Rightarrow z$ is purely imaginary.

$$
\mathrm{z}-1
$$

Q. 8. If $Z+1$ is purely imaginary and $z=-1$, show that $|z|=1$.

Answer : Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
Now, $\frac{z-1}{z+1}=\frac{a+i b-1}{a+i b+1}$
$=\frac{(a-1)+i b}{(a+1)+i b}$
$\Rightarrow \frac{(a-1)+i b}{(a+1)+i b} \times \frac{(a+1)-i b}{(a+1)-i b}$
$=\frac{a^{2}+a-i a b-a-1+i b+i a b+i b-i^{2} b^{2}}{(a+1)^{2}+b^{2}}$
$=\frac{a^{2}+-1+i b+i b+b^{2}}{(a+1)^{2}+b^{2}}=\frac{a^{2}+b^{2}-1+2 i b}{(a+1)^{2}+b^{2}}$

$\Rightarrow \frac{a^{2}+b^{2}-1}{(a+1)^{2}+b^{2}}=0$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}-1=0$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=1$
$\Rightarrow|z|=1$
Hence proved.

$$
\underline{z_{1}-1}
$$

Q. 9. If z_{1} is a complex number other than -1 such that $\left|z_{1}\right|=1$ and $z_{2}=z_{1}+1$ then show that $\mathbf{z 2}$ is purely imaginary.

Answer: Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$ such that $\left|\mathrm{z}_{1}\right|=\sqrt{ }\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=1$
Now, $z_{2}=\frac{z_{1}-1}{z_{1}+1}=\frac{a+i b-1}{a+i b+1}=\frac{(a-1)+i b}{(a+1)+i b}$

$$
\begin{aligned}
& \Rightarrow \frac{(a-1)+i b}{(a+1)+i b} \times \frac{(a+1)-i b}{(a+1)-i b} \\
& =\frac{a^{2}+a-i a b-a-1+i b+i a b+i b-i^{2} b^{2}}{(a+1)^{2}+b^{2}} \\
& =\frac{a^{2}+-1+i b+i b+b^{2}}{(a+1)^{2}+b^{2}}=\frac{a^{2}+b^{2}-1+2 i b}{(a+1)^{2}+b^{2}} \\
& =\frac{\left(a^{2}+b^{2}\right)-1+2 i b}{(a+1)^{2}+b^{2}}=\frac{1-1+2 i b}{(a+1)^{2}+b^{2}}\left[\because a^{2}+b^{2}=1\right]
\end{aligned}
$$

$$
=0+\frac{2 i b}{(a+1)^{2}+b^{2}}
$$

Thus, the real part of z_{2} is 0 and z_{2} is purely imaginary.
Q. 10. For all z C, prove that
(i) $\frac{1}{2}(z+\bar{z})=\operatorname{Re}(z)$
(ii) $\frac{1}{2}(z+\bar{z})=\operatorname{Re}(z)$.
(iii) $Z \bar{Z}=|z|^{2}$
(iv) $(z+\bar{z})$ is real
(v) $(z-\bar{z})$ is 0 or imaginary.

Answer :
Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
$\Rightarrow \bar{z}=a-i b$
Now, $\frac{z+\bar{z}}{2}=\frac{(a+i b)+(a-i b)}{2}=\frac{2 a}{2}=a=\operatorname{Re}(z)$
Hence Proved.
(ii) Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
$\Rightarrow \bar{z}=a-i b$
$w, \frac{z+\bar{z}}{2}$
$=\frac{(a+i b)+(a-i b)}{2}$
$=\frac{2 a}{2}=\frac{a}{1}=\operatorname{Re}(z)$
Hence, Proved.
(iii) Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
$\Rightarrow \bar{z}=a-i b$
Now, $z \bar{z}=(a+i b)(a-i b)=a^{2}-(i b)^{2}=a^{2}+b^{2}=|z|^{2}$
Hence Proved.
(iv) Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
$\Rightarrow \bar{z}=a-i b$

Now, $z+\bar{z}=(a+i b)+(a-i b)=2 a=2 \operatorname{Re}(z)$
Hence, ${ }^{z}+\bar{z}$ is real.
(v) Case 1. Let $\mathrm{z}=\mathrm{a}+0 \mathrm{i}$
$\Rightarrow \bar{z}=a-0 i$
Now, $z-\bar{z}=(a+0 i)-(a-0 i)=0$
Case 2. Let $\mathrm{z}=0+\mathrm{bi}$
$\Rightarrow \bar{z}=0-b i$
Now, $z-\bar{z}=(0+i b)-(0-i b)=2 i b=2 i \operatorname{Im}(z)=$ Imaginary
Case 2. Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
$\Rightarrow \bar{z}=a-i b$
Now, $z-\bar{z}=(a+i b)-(a-i b)=2 i b=2 i \operatorname{Im}(z)=$ Imaginary
Thus, $(z-\bar{z})$ is 0 or imaginary.
Q. 11. If $\mathbf{z}_{1}=(1+i)$ and $\mathbf{z}_{2}=(-2+4 i)$, prove that $\operatorname{lm}\left(\frac{z_{1} z_{2}}{z_{1}}\right)=2$

Answer: We have, $z_{1}=(1+i)$ and $z_{2}=(-2+4 i)$
Now, ${ }^{\frac{z_{1} z_{2}}{\overline{z_{1}}}}=\frac{(1+i)(-2+4 i)}{\overline{(1+1)}}$
$=\frac{-2+4 i-2 i+4 i^{2}}{(1-\mathrm{i})}=\frac{-2+4 i-2 i-4}{(1-\mathrm{i})}=\frac{-6+2 i}{(1-\mathrm{i})}$
$=\frac{-6+2 i}{(1-i)} \times \frac{(1+i)}{(1+i)}$
$=\frac{-6-6 i+2 i+2 i^{2}}{1+1}$
$=\frac{-6-4 i-2}{2}=\frac{-8-4 i}{2}$
$=-4-2 i$
Hence, $\operatorname{Im}\left(\frac{z_{1} z_{2}}{z_{2}}\right)=-2$
Q. 12. If a and b are real numbers such that $a^{2}+b^{2}=1$ then show that a real value of \boldsymbol{x} satisfies the equation, $\frac{1-i x}{1+i x}=(a-i b)$

Answer: We have,

$$
\frac{1-i x}{1+i x}=(a-i b)=\frac{a-i b}{1}
$$

Applying componendo and dividendo, we get

$$
\begin{aligned}
& \frac{(1-i x)+(1+i x)}{(1-i x)-(1+i x)}=\frac{a-i b+1}{a-i b-1} \\
& \Rightarrow \frac{1-i x+1+i x}{1-i x-1+i x}=\frac{a-i b+1}{a-i b-1} \\
& \Rightarrow \frac{2}{-2 i x}=\frac{a-i b+1}{-(-a+i b+1)} \\
& \Rightarrow i x=\frac{1-a+i b}{1+a-i b} \times \frac{1+a+i b}{1+a+i b} \\
& \quad=\frac{1+a+i b-a-a^{2}-a i b+i b+a i b+i^{2} b^{2}}{(1+a)^{2}-i^{2} b^{2}} \\
& \Rightarrow i x=\frac{1-a^{2}-b^{2}+2 i b}{(1+a)^{2}-i^{2} b^{2}}=\frac{1-a^{2}-b^{2}+2 i b}{(1+a)^{2}+b^{2}}=\frac{1-\left(a^{2}+b^{2}\right)+2 i b}{1+a^{2}+2 a+b^{2}}
\end{aligned}
$$

$\Rightarrow i x=\frac{1-\left(a^{2}+b^{2}\right)+2 i b}{1+2 a+\left(a^{2}+b^{2}\right)}$
$\Rightarrow i x=\frac{1-1+2 i b}{1+2 a+1}\left[\because a^{2}+b^{2}=1\right]$
$\Rightarrow i x=\frac{2 i b}{2+2 a}$
$\Rightarrow x=\frac{2 b}{2+2 a}=$ Real value

Exercise 5D

Q. 1. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 4

Answer : Let $Z=4=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$4=r \cos \theta$ \qquad eq. 1
$0=r \sin \theta$. \qquad .eq. 2

Squaring and adding eq. 1 and eq. 2 , we get
$16=r^{2}$
Since r is always a positive no., therefore,
$r=4$,
Hence its modulus is 4 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{0}{4}$
$\operatorname{Tan} \theta=0$
Since $\cos \theta=1, \sin \theta=0$ and $\tan \theta=0$. Therefore the θ lies in first quadrant.
$\operatorname{Tan} \theta=0$, therefore $\theta=0^{\circ}$
Representing the complex no. in its polar form will be
$Z=4\left(\cos 0^{\circ}+i \sin 0^{\circ}\right)$
Q. 2. Find the modulus of each of the following complex numbers and hence express each of them in polar form: -2

Answer : Let $Z=-2=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$-2=r \cos \theta \ldots \ldots \ldots$ eq. 1
$0=r \sin \theta \ldots \ldots \ldots .$. .eq. 2
Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$
Since r is always a positive no, therefore,
$r=2$,
Hence its modulus is 2 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{0}{-2}$
$\operatorname{Tan} \theta=0$
Since $\cos \theta=-1, \sin \theta=0$ and $\tan \theta=0$. Therefore the ${ }^{\theta}$ lies in second quadrant.
$\operatorname{Tan} \theta=0$, therefore $\theta=\pi$
Representing the complex no. in its polar form will be
$Z=2(\cos \pi+i \sin \pi)$
Q. 3. Find the modulus of each of the following complex numbers and hence express each of them in polar form: -i

Answer : Let $Z=-i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$0=r \cos \theta$ \qquad eq. 1
$-1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$1=r^{2}$
Since r is always a positive no., therefore,
$r=1$,
Hence its modulus is 1 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{0}$
$\operatorname{Tan} \theta=-\infty$
Since $\cos \theta=0, \sin \theta=-1$ and $\tan \theta=-\infty$. Therefore the ${ }^{\theta}$ lies in fourth quadrant.
$\operatorname{Tan} \theta=-\infty$, therefore $\theta=-\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=1\left\{\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right\}$
Q. 4. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\mathbf{2 i}$

Answer : Let $Z=2 i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$0=r \cos \theta$ eq. 1
$2=r \sin \theta$ eq. 2

Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$
Since r is always a positive no., therefore,
$r=2$,
Hence its modulus is 2 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{2}{0}$
$\operatorname{Tan} \theta=\infty$
Since $\cos \theta=0, \sin \theta=1$ and $\tan \theta=\infty$. Therefore the θ lies in first quadrant.
$\tan \theta=\infty$, therefore $\theta=\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$Z=2\left\{\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right\}$
Q. 5. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 1 - \mathbf{i}

Answer: Let $Z=1-\mathrm{i}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
Now, separating real and complex part , we get
$1=r \cos \theta$..........eq. 1
$-1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore, $r=\sqrt{ } 2$,

Hence its modulus is $\sqrt{ } 2$.
Now , dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{1}$
$\operatorname{Tan} \theta=-1$
Since $\cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=-1$. Therefore the θ lies in fourth quadrant.
$\operatorname{Tan} \theta=-1$, therefore $\theta=-\frac{\pi}{4}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=\sqrt{2}\left\{\cos \left(-\frac{\pi}{4}\right)+\mathrm{i} \sin \left(-\frac{\pi}{4}\right)\right\}$
Q. 6. Find the modulus of each of the following complex numbers and hence express each of them in polar form: -1+i

Answer : Let $\mathrm{Z}=1-\mathrm{i}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
Now, separating real and complex part, we get
$-1=r \cos \theta$ eq. 1
$1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore,
$\mathrm{r}=\sqrt{2}$,
Hence its modulus is $\sqrt{ } 2$.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-1}$
$\operatorname{Tan} \theta=-1$
Since $\cos \theta=-\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$ and $\tan \theta=-1$. Therefore the θ lies in second quadrant.
$\operatorname{Tan} \theta=-1$, therefore $\theta=\frac{3 \pi}{4}$
Representing the complex no. in its polar form will be
$Z=\sqrt{2}\left\{\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right\}$
Q. 7. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\sqrt{3}+i$

Answer : Let $Z=\sqrt{3}+i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$\sqrt{3}=r \cos \theta$ \qquad .eq. 1
$1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$
Since r is always a positive no., therefore,
$r=2$,
Hence its modulus is 2 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{\sqrt{3}}$
$\operatorname{Tan} \theta=\frac{1}{\sqrt{3}}$

Since $\cos \theta=\frac{\sqrt{3}}{2}, \sin \theta=\frac{1}{2}$ and $\tan \theta=\frac{1}{\sqrt{3}}$. Therefore the θ lies in first quadrant.
$\operatorname{Tan} \theta=\frac{1}{\sqrt{3}}$, therefore $\theta=\frac{\pi}{6}$
Representing the complex no. in its polar form will be
$Z=2\left\{\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)_{\}}\right.$
Q. 8. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-1+\sqrt{3} \mathrm{i}$

Answer : Let $Z=\sqrt{3} i \quad-1=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$-1=r \cos \theta$ eq. 1
$\sqrt{3}=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$
Since r is always a positive no., therefore,
$r=2$,
Hence its modulus is 2.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{\sqrt{3}}{-1}$
$\operatorname{Tan} \theta=-\frac{\sqrt{3}}{1}$

Since $\cos \theta=-\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}$ and $\tan \theta=-\frac{\sqrt{3}}{1}$. therefore the θ lies in second quadrant.
$\operatorname{Tan} \theta=-\sqrt{3}$, therefore $\theta=\frac{2 \pi}{3}$
Representing the complex no. in its polar form will be
$Z=2\left\{\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right\}$
Q. 9. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $1-\sqrt{3} \mathrm{i}$

Answer: Let $Z=-\sqrt{3} i+1=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$1=r \cos \theta$ \qquad eq. 1
$-\sqrt{3}=r \sin \theta$ eq. 2

Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$
Since r is always a positive no., therefore,
$r=2$,
Hence its modulus is 2 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-\sqrt{3}}{1}$
$\operatorname{Tan} \theta=-\frac{\sqrt{3}}{1}$

Since $\cos \theta=\frac{1}{2}, \sin \theta=-\frac{\sqrt{3}}{2}$ and $\tan \theta=-\frac{\sqrt{3}}{1}$. Therefore the θ lies in the fourth quadrant.
$\operatorname{Tan} \theta=-\sqrt{3}$, therefore $\theta=-\frac{\pi}{3}$
Representing the complex no. in its polar form will be
$Z=2\left\{\cos ^{\left(-\frac{\pi}{3}\right)}+i \sin ^{\left(-\frac{\pi}{3}\right)}\right\}$
Q. 10. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 2-2i

Answer : Let $Z=2-2 i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$2=r \cos \theta$ \qquad eq. 1
$-2=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$8=r^{2}$
Since r is always a positive no. therefore,
$r=2^{\sqrt{2}}$,
Hence its modulus is $2 \sqrt{ } 2$.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-2}{2}$
$\operatorname{Tan} \theta=-1$
Since $\cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=-1$. Therefore the θ lies in the fourth quadrant.
$\operatorname{Tan} \theta=-1$, therefore $\theta=-\frac{\pi}{4}$
Representing the complex no. in its polar form will be
$Z=2 \sqrt{2}\left\{\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right\}$
Q. 11. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-4+4 \sqrt{3} \mathrm{i}$

Answer : Let $Z=4 \sqrt{ } 2 i-4=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$-4=r \cos \theta$ \qquad eq. 1
$4 \sqrt{ } 3=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$64=r^{2}$
Since r is always a positive no., therefore,
$r=8$
Hence its modulus is 8 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{4 \sqrt{3}}{-4}$
$\operatorname{Tan} \theta=-\frac{\sqrt{3}}{1}$
Since $\cos \theta=-\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}$ and $\tan \theta=-\frac{\sqrt{3}}{1}$. Therefore the θ lies in second the quadrant.
$\operatorname{Tan} \theta=-\sqrt{ } 3$, therefore $\theta=\frac{2 \pi}{3}$.

Representing the complex no. in its polar form will be
$\mathrm{Z}=8\left\{\cos \left(\frac{2 \pi}{3}\right)+\operatorname{isin}\left(\frac{2 \pi}{3}\right)\right\}$
Q. 12. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-3 \sqrt{2}+3 \sqrt{2} \mathrm{i}$

Answer : Let $Z=3 \sqrt{ } 2 i-3 \sqrt{ } 2=r\left(\cos ^{\theta}+i \sin \theta\right)$
Now, separating real and complex part, we get
$-3 \sqrt{ } 2=r \cos \theta$ eq. 1
$3 \sqrt{ } 2=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$36=r^{2}$
Since r is always a positive no., therefore,
$r=6$
Hence its modulus is 6 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{3 \sqrt{2}}{-3 \sqrt{2}}$
$\operatorname{Tan} \theta=-\frac{1}{1}$
Since $\cos \theta=-\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$ and $\tan \theta=-1$. therefore the θ lies in secothe nd quadrant.
$\operatorname{Tan} \theta=-1$, therefore $\theta=\frac{\frac{3 \pi}{4}}{4}$.
Representing the complex no. in its polar form will be
$\mathrm{Z}=6\left\{\cos \left(\frac{3 \pi}{4}\right)+\operatorname{isin}\left(\frac{3 \pi}{4}\right)\right\}$
Q. 13. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{1+i}{1-i}$

Answer : $=\frac{1+i}{1-i} \times \frac{1+i}{1+i}$
$=\frac{1+i^{2}+2 i}{1-i^{2}}$
$=\frac{2 i}{2}$
$=\mathrm{i}$
Let $\mathrm{Z}=\mathrm{i}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
Now, separating real and complex part , we get
$0=r \cos \theta$ eq. 1
$1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$1=r^{2}$
Since r is always a positive no., therefore, $r=1$,

Hence its modulus is 1 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{0}$
$\tan \theta=\infty$

Since $\cos \theta=0, \sin \theta=1$ and $\tan \theta=\infty$. Therefore the θ lies in first quadrant.
$\tan \theta=\infty$, therefore $\theta=\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$Z=1\left\{\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right\}$
Q. 14. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{1-i}{1+i}$

Answer : $=\frac{1-i}{1+i} \times \frac{1-i}{1-i}$
$=\frac{1+i^{2}-2 i}{1-i^{2}}$
$=-\frac{2 i}{2}$
$=-i$
Let $Z=-i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$0=r \cos \theta$ \qquad eq. 1
$-1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$1=r^{2}$
Since r is always a positive no., therefore,
$r=1$,
Hence its modulus is 1 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{0}$
$\operatorname{Tan} \theta=-\infty$
Since $\cos \theta=0, \sin \theta=-1$ and $\tan \theta=-\infty$, therefore the θ lies in fourth quadrant.
$\operatorname{Tan} \theta=-\infty$, therefore $\theta=-\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=1\left\{\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right\}$
Q. 15. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{1+3 \mathrm{i}}{1-2 \mathrm{i}}$

Answer :
$=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}$
$=\frac{1+6 i^{2}+5 i}{1-4 i^{2}}$
$=\frac{5 i-5}{5}$
$=\mathrm{i}-1$
Let $Z=1-i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part , we get
$-1=r \cos \theta$ \qquad eq. 1
$1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$2=r^{2}$

Since r is always a positive no., therefore,
$r=\sqrt{ } 2$,
Hence its modulus is $\sqrt{ } 2$.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-1}$
$\operatorname{Tan} \theta=-1$
 quadrant.
$\operatorname{Tan} \theta=-1$, therefore $\theta=\frac{3 \pi}{4}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=\sqrt{2}\left\{\cos \left(\frac{3 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{3 \pi}{4}\right)\right\}$
Q. 16. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{1-3 \mathrm{i}}{1+2 \mathrm{i}}$

Answer :
$\frac{1-3 i}{1+2 i} \times \frac{1-2 i}{1-2 i}$
$=\frac{1+6 i^{2}-5 i}{1-4 i^{2}}$
$=\frac{-5 i-5}{5}$
$=-i-1$
Let $Z=-1-i=r(\cos \theta+i \sin \theta)$

Now, separating real and complex part, we get
$-1=r \cos \theta$ \qquad eq. 1
$-1=r \sin \theta$ \qquad .eq. 2

Squaring and adding eq. 1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore,
$r=\sqrt{ } 2$,
Hence its modulus is $\sqrt{ } 2$.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{-1}$
$\tan \theta=1$
Since $\cos \theta=-\frac{1}{\sqrt{2}}, \sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$. Therefore the θ lies in third quadrant.
$\operatorname{Tan} \theta=1$, therefore $\theta=-\frac{3 \pi}{4}$
Representing the complex no. in its polar form will be
$Z=\sqrt{2}\left\{\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right\}$
Q. 17. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{5-i}{2-3 i}$

Answer :
$=\frac{5-i}{2-3 i} \times \frac{2+3 i}{2+3 i}$
$=\frac{10-3 i^{2}+13 i}{4-9 i^{2}}$
$=\frac{+13 i+13}{13}$
$=\mathrm{i}+1$
Let $Z=1+i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part , we get
$1=r \cos \theta$ \qquad .eq. 1
$1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore,
$r=\sqrt{ } 2$,
Hence its modulus is $\sqrt{ } 2$.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{1}{1}$
$\operatorname{Tan} \theta=1$
Since $\cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$ and $\tan \theta=1$. Therefore the θ lies in first quadrant.
$\operatorname{Tan} \theta=1$, therefore $\theta=\frac{\pi}{4}$
Representing the complex no. in its polar form will be
$Z=\sqrt{2}\left\{\cos \left(\frac{\pi}{4}\right)+\operatorname{isin}\left(\frac{\pi}{4}\right)\right\}$

Q. 18. Find the modulus of each of the following complex numbers and hence

 express each of them in polar form: $\frac{-16}{1+\sqrt{3} \mathrm{i}}$Answer:
$=\frac{-16}{1+\sqrt{3} i} \times \frac{1-\sqrt{3} i}{1-\sqrt{3} i}$
$=\frac{-16+16 \sqrt{3} i}{1-3 i^{2}}$
$=\frac{16 \sqrt{3} i-16}{4}$
$=4^{\sqrt{3}} \mathrm{i}-4$

Let $Z=4^{\sqrt{3}} \mathrm{i}-4=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$-4=r \cos \theta$ \qquad eq. 1
$4 \sqrt{3}=r \sin \theta$ eq. 2

Squaring and adding eq. 1 and eq.2, we get
$64=r^{2}$
Since r is always a positive no., therefore,
$r=8$,
Hence its modulus is 8 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{4 \sqrt{3}}{-4}$
$\tan \theta=-\sqrt{ } 3$
Since $\cos \theta=-\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}$ and $\tan \theta=-\sqrt{ } 3$. Therefore the θ lies in second quadrant.
$\operatorname{Tan} \theta=-\sqrt{ } 3$, therefore $\theta=\frac{2 \pi}{3}$
Representing the complex no. in its polar form will be
$Z=8\left\{\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right\}$
Q. 19. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{2+6 \sqrt{3} \mathrm{i}}{5+\sqrt{3} \mathrm{i}}$

Answer:
$=\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i} \times \frac{5-\sqrt{3} i}{5-\sqrt{3} i}$
$=\frac{10+28 \sqrt{3} i-18 i^{2}}{25-3 i^{2}}$
$=\frac{28 \sqrt{3} i+28}{28}$
$=\sqrt{ } 3 i+1$

Let $Z=\sqrt{ } 3 i+1=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$1=r \cos \theta$ \qquad eq. 1
$\sqrt{ } 3=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$

Since r is always a positive no., therefore,
$r=2$,
Hence its modulus is 2.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{\sqrt{3}}{1}$
$\tan \theta=\sqrt{ } 3$
Since $\cos \theta=\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}$ and $\tan \theta=\sqrt{3}$. therefore the θ lies in first quadrant.
$\operatorname{Tan} \theta=\sqrt{ } 3$, therefore $\theta=\frac{\pi}{3}$
Representing the complex no. in its polar form will be

$$
Z=2\left\{\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right\}
$$

Q. 20

Find the modulus of each of the following complex numbers and hence express each of

them in polar form: $\sqrt{\frac{1+\mathrm{i}}{1-\mathrm{i}}}$

Answer :
$=\sqrt{\frac{1+i}{1-i}} \times \sqrt{\frac{1+i}{1+i}}$

$$
\begin{aligned}
& =\sqrt{\frac{(1+i)^{2}}{1-i^{2}}} \\
& =\frac{1+i}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \\
& \text { Let } \mathrm{Z}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\mathrm{r}(\cos \theta+i \sin \theta)
\end{aligned}
$$

Now, separating real and complex part, we get

$$
\frac{1}{\sqrt{2}}=\operatorname{rcos} \theta
$$

$$
\frac{1}{\sqrt{2}}=r \sin \theta
$$

$$
\text {eq. } 2
$$

Squaring and adding eq. 1 and eq. 2 , we get

$$
1=\mathrm{r}^{2}
$$

Since r is always a positive no., therefore,
$\mathrm{r}=1$,
hence its modulus is 1 .
now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{\frac{i}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}$
$\tan \theta=1$

Since $\cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$ and $\tan \theta=1$. therefore the θ lies in first quadrant.
$\operatorname{Tan} \theta=1$, therefore $\theta=\frac{\pi}{4}$

Representing the complex no. in its polar form will be
$\mathrm{Z}=1\left\{\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right\}$
Q. 20. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\sqrt{\frac{1+\mathrm{i}}{1-\mathrm{i}}}$

Answer:
$=\sqrt{\frac{1+i}{1-i}} \times \sqrt{\frac{1+i}{1+i}}$
$=\sqrt{\frac{(1+i)^{2}}{1-i^{2}}}$
$=\frac{1+i}{\sqrt{2}}$
$=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$
Let $\mathrm{Z}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
Now, separating real and complex part, we get

$$
\frac{1}{\sqrt{2}}=\mathrm{r} \cos \theta
$$

$\frac{1}{\sqrt{2}}=r \sin \theta$
Squaring and adding eq. 1 and eq. 2 , we get
$1=r^{2}$
Since r is always a positive no., therefore,
$r=1$,
Hence its modulus is 1 .
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{\frac{i}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}$
$\tan \theta=1$
Since $\cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$ and $\tan \theta=1$. Therefore the θ lies in first quadrant.
$\operatorname{Tan} \theta=1$, therefore $\theta=\frac{\pi}{4}$
Representing the complex no. in its polar form will be
$Z=1\left\{\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right\}$
Q. 21. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-\sqrt{3}-\mathrm{i}$

Answer : Let $Z={ }_{-}^{i}-\sqrt{ } 3=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$-\sqrt{ } 3=r \cos \theta$ \qquad eq. 1
$-1=r \sin \theta$ \qquad eq. 2

Squaring and adding eq. 1 and eq.2, we get
$4=r^{2}$

Since r is always a positive no., therefore,
$r=2$
Hence its modulus is 2 .

Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{-\sqrt{3}}$
$\tan \theta=\frac{1}{\sqrt{3}}$

Since $\cos \theta=-\frac{\sqrt{3}}{2}, \sin \theta=-\frac{1}{2}$ and $\tan \theta=\frac{1}{\sqrt{3}}$. Therefore the θ lies in third quadrant.
$\tan \theta=\frac{1}{\sqrt{3}}$, therefore $\theta=-\frac{5 \pi}{6}$.
Representing the complex no. in its polar form will be
$Z=2\left\{\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right\}$
Q. 22. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\left(\mathbf{i}^{25}\right)^{3}$

Answer: = i^{75}
$=i^{4 n+3}$ where $n=18$
Since $i^{4 n+3}=-i$
$i^{75}=-i$
Let $Z=-i=r(\cos \theta+i \sin \theta)$
Now, separating real and complex part, we get
$0=r \cos \theta$ eq. 1
$-1=r \sin \theta$ \qquad .eq. 2

Squaring and adding eq. 1 and eq.2, we get
$1=r^{2}$
Since r is always a positive no., therefore,
$r=1$,
Hence its modulus is 1.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{0}$
$\tan \theta=-\infty$
Since $\cos \theta=0, \sin \theta=-1$ and $\tan \theta=-\infty$. therefore the θ lies in fourth quadrant.
$\operatorname{Tan} \theta=-\infty$, therefore $\theta=-\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=1\left\{\cos \left(-\frac{\pi}{2}\right)+\mathrm{i} \sin \left(-\frac{\pi}{2}\right)_{\}}\right.$
Q. 23. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{(1-i)}{\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)}$

Answer:

$$
\begin{aligned}
& =\frac{1-i}{\frac{1}{2}+i \frac{\sqrt{3}}{2}} \\
& =\frac{2-2 i}{1+i \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2-2 i}{1+\sqrt{3} i} \times \frac{1-\sqrt{3} i}{1-\sqrt{3} i} \\
& =\frac{2-2 \sqrt{3} i-2 i+2 \sqrt{3} i^{2}}{1-3 i^{2}} \\
& =\frac{(2-2 \sqrt{3})+i(2 \sqrt{3}+2)}{4} \\
& =\frac{(1-\sqrt{3})+i(\sqrt{3}+1)}{2}
\end{aligned}
$$

$$
\text { Let } \mathrm{Z}=\frac{(1-\sqrt{3})+i(\sqrt{3}+1)}{2}=r(\cos \theta+i \sin \theta)
$$

Now, separating real and complex part, we get
$\frac{1-\sqrt{3}}{2}=r \cos \theta$
$\frac{1+\sqrt{3}}{2}=r \sin \theta$

$$
\text {eq. } 2
$$

Squaring and adding eq. 1 and eq.2, we get
$2=r^{2}$
Since r is always a positive no., therefore,
$r=\sqrt{ } 2$,
Hence its modulus is $\sqrt{ } 2$.
Now, dividing eq. 2 by eq. 1 , we get,
$\frac{r \sin \theta}{r \cos \theta}=\frac{\frac{1+\sqrt{3}}{2}}{\frac{1-\sqrt{3}}{2}}$
$\tan \theta=\frac{1+\sqrt{3}}{1-\sqrt{3}}$
Since $\cos \theta=\frac{1-\sqrt{3}}{2 \sqrt{2}}, \sin \theta=\frac{1+\sqrt{3}}{2 \sqrt{2}}$ and $\tan \theta=\frac{1+\sqrt{3}}{1-\sqrt{3}}$. Therefore the θ lies in second quadrant. As
$\operatorname{Tan} \theta=\frac{1+\sqrt{3}}{1-\sqrt{3}}$, therefore $\theta=\frac{7 \pi}{12}$
Representing the complex no. in its polar form will be

$$
\mathrm{Z}=\sqrt{2}\left\{\cos \left(\frac{7 \pi}{12}\right)+i \sin \left(\frac{7 \pi}{12}\right)\right\}
$$

Q. 24. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\left(\sin 120^{\circ}-\mathrm{i} \cos 120^{\circ}\right)$

Answer : $=\sin \left(90^{\circ}+30^{\circ}\right)-\operatorname{icos}\left(90^{\circ}+30^{\circ}\right)$
$=\cos 30^{\circ}+\operatorname{isin} 30^{\circ}$
Since, $\sin \left(90^{\circ}+\alpha\right)=\cos \alpha$
And $\cos \left(90^{\circ}+\alpha\right)=-\sin \alpha$
$=\frac{\sqrt{3}}{2}+i \frac{1}{2}$
Hence it is of the form
$\mathrm{Z}=\frac{\sqrt{3}}{2}+i \frac{1}{2}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
Therefore $r=1$
Hence its modulus is 1 and argument is $\frac{\pi}{6}$.

Exercise 5E

Q. 1. $x^{2}+2=0$

Answer : This equation is a quadratic equation.
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
Given:
$\Rightarrow x^{2}+2=0$
$\Rightarrow x^{2}=-2$
$\Rightarrow x= \pm \sqrt{ }(-2)$
But we know that $\sqrt{ }(-1)=\mathrm{i}$
$\Rightarrow x= \pm \sqrt{ } 2 i$
Ans: $x= \pm \sqrt{2} i$
Q. 2. $x^{2}+5=0$

Answer : Given:

$$
\begin{aligned}
& x^{2}+5=0 \\
& \Rightarrow x^{2}=-5 \\
& \Rightarrow x= \pm \sqrt{ }(-5) \\
& \Rightarrow x= \pm \sqrt{5} i
\end{aligned}
$$

Ans: $x= \pm \sqrt{5} i$
Q. $3.2 x^{2}+1=0$

Answer: $2 x^{2}+1=0$
$\Rightarrow 2 x^{2}=-1$
$\Rightarrow x^{x^{2}}=-\frac{1}{2}$
$\Rightarrow x= \pm \sqrt{-\frac{1}{2}}$
$\Rightarrow \quad x= \pm \sqrt{\frac{1}{2}} i$
$\Rightarrow x= \pm \frac{i}{\sqrt{2}}$
Ans: $x= \pm \frac{i}{\sqrt{2}}$
Q. 4. $x^{2}+x+1=0$

Answer : Given:
$x^{2}+x+1=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{1^{2}-(4 \times 1 \times 1)}}{2 \times 1} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{1-4}}{2} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{-3}}{2} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{3} i}{2} \\
& \Rightarrow x=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i \\
& \Rightarrow x=-\frac{1}{2}+\frac{\sqrt{3}}{2} i \text { and } x=-\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{aligned}
$$

Q. 5. $x^{2}-x+2=0$

Answer: Given:
$x^{2}-x+2=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given $b y$:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-1) \pm \sqrt{(-1)^{2}-(4 \times 1 \times 2)}}{2 \times 1} \\
& \Rightarrow x=\frac{1 \pm \sqrt{1-9}}{2} \\
& \Rightarrow x=\frac{1 \pm \sqrt{-7}}{2} \\
& \Rightarrow x=\frac{1 \pm \sqrt{7} i}{2} \\
& \Rightarrow x=\frac{1}{2} \pm \frac{\sqrt{7}}{2} i \\
& \Rightarrow x=\frac{1}{2}+\frac{\sqrt{7}}{2} i \text { and } x=\frac{1}{2}-\frac{\sqrt{7}}{2} i \\
& \text { Ans: } x= \\
& \text { Q. } 6 . x^{2}+2 x+2=0
\end{aligned}
$$

Answer : Given:

$$
x^{2}+2 x+2=0
$$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-2 \pm \sqrt{(2)^{2}-(4 \times 1 \times 2)}}{2 \times 1} \\
& \Rightarrow x=\frac{-2 \pm \sqrt{4-8}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x=\frac{-2 \pm \sqrt{-4}}{2} \\
& \Rightarrow x=\frac{-2 \pm 2 i}{2} \\
& \Rightarrow x=-\frac{2}{2} \pm \frac{2}{2} i \\
& \Rightarrow x=-1 \pm i
\end{aligned}
$$

Ans: $x=-1+i$ and $x=-1-i$
Q. 7. $2 x^{2}-4 x+3=0$

Answer : Given:

$$
2 x^{2}-4 x+3=0
$$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-4) \pm \sqrt{(-4)^{2}-(4 \times 2 \times 3)}}{2 \times 2} \\
& \Rightarrow x=\frac{4 \pm \sqrt{16-24}}{4} \\
& \Rightarrow x=\frac{4 \pm \sqrt{-9}}{4} \\
& \Rightarrow x=\frac{4 \pm 2 \sqrt{2} i}{4} \\
& \Rightarrow x=\frac{4}{4} \pm \frac{2 \sqrt{2}}{4} i \\
& \Rightarrow x=1 \pm \frac{i}{\sqrt{2}} \\
& \Rightarrow x
\end{aligned}
$$

Ans: $x=1+\frac{i}{\sqrt{2}}$ and $x=1-\frac{i}{\sqrt{2}}$
Q. 8. $x^{2}+3 x+5=0$

Answer : Given:
$x^{2}+3 x+5=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-3 \pm \sqrt{(3)^{2}-(4 \times 1 \times 5)}}{2 \times 1} \\
& \Rightarrow x=\frac{-3 \pm \sqrt{9-20}}{2} \\
& \Rightarrow x=\frac{-3 \pm \sqrt{-11}}{2} \\
& \Rightarrow x=\frac{-3 \pm \sqrt{11 i}}{2} \\
& \Rightarrow x=-\frac{3}{2} \pm \frac{\sqrt{11}}{2} i \\
& \Rightarrow x=-\frac{3}{2}+\frac{\sqrt{11}}{2} i \text { and } x=-\frac{3}{2}-\frac{\sqrt{11}}{2} i \\
& \text { Ans: } x=
\end{aligned}
$$

Q. 9. $\sqrt{5} x^{2}+x+\sqrt{5}=0$

Answer : Given:
$\sqrt{5} x^{2}+x+\sqrt{5}=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

$$
\begin{aligned}
& x=\frac{-1 \pm \sqrt{(1)^{2}-(4 \times \sqrt{5} \times \sqrt{5})}}{2 \times \sqrt{5}} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{1-20}}{2 \sqrt{5}} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{-19}}{2 \sqrt{5}} \\
& \Rightarrow x=\frac{-1 \pm \sqrt{19} i}{2 \sqrt{5}} \\
& \Rightarrow x=-\frac{1}{2 \sqrt{5}} \pm \frac{\sqrt{19}}{2 \sqrt{5}} i
\end{aligned}
$$

Ans: $x=-\frac{\sqrt{5}}{10}+\frac{\sqrt{\frac{19}{5}}}{2} i$ and $x=-\frac{\sqrt{5}}{10}-\frac{\sqrt{\frac{19}{5}}}{2} i$
Q. $10.25 x^{2}-30 x+11=0$

Answer : Given:

$$
25 x^{2}-30 x+11=0
$$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given $b y$:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-30) \pm \sqrt{(-30)^{2}-(4 \times 25 \times 11)}}{2 \times 25} \\
& \Rightarrow x=\frac{30 \pm \sqrt{900-1100}}{50} \\
& \Rightarrow x=\frac{30 \pm \sqrt{-200}}{50} \\
& \Rightarrow x=\frac{30 \pm 10 \sqrt{2 i}}{50}
\end{aligned}
$$

$\Rightarrow x=-\frac{30}{50} \pm \frac{10 \sqrt{2}}{50} i$
Ans: $x=-\frac{3}{5}+\frac{\sqrt{2}}{5} i$ and $x=-\frac{3}{5}-\frac{\sqrt{2}}{5} i$
Q. 11. $8 x^{2}+2 x+1=0$

Answer : Given:
$8 x^{2}+2 x+1=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-2 \pm \sqrt{(2)^{2}-(4 \times 8 \times 1)}}{2 \times 8} \\
& \Rightarrow x=\frac{-2 \pm \sqrt{4-32}}{16} \\
& \Rightarrow x=\frac{-2 \pm \sqrt{-28}}{16} \\
& \Rightarrow x=\frac{-2 \pm 2 \sqrt{7 i}}{16} \\
& \Rightarrow x=-\frac{2}{16} \pm \frac{2 \sqrt{7}}{16} i
\end{aligned}
$$

$$
\text { Ans: } x=-\frac{1}{8}+\frac{\sqrt{7}}{8} i \text { and } x=-\frac{1}{8}-\frac{\sqrt{7}}{8} i
$$

$$
\text { Q. 12. } 27 x^{2}+10 x+1=0
$$

Answer:

Given:
$27 x^{2}+10 x+1=0$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-10 \pm \sqrt{(10)^{2}-(4 \times 27 \times 1)}}{2 \times 27} \\
& x=\frac{-10 \pm \sqrt{100-109}}{54} \\
& \Rightarrow x=\frac{-10 \pm \sqrt{-8}}{54} \\
& \Rightarrow x=\frac{-10 \pm 2 \sqrt{2} i}{54} \\
& \Rightarrow x=-\frac{10}{54} \pm \frac{2 \sqrt{2}}{54} i
\end{aligned}
$$

Ans: $x=-\frac{5}{27}+\frac{\sqrt{2}}{27} i$ and $x=-\frac{5}{27}-\frac{\sqrt{2}}{27} i$
Q. 13. $2 x^{2}-\sqrt{3} x+1=0$

Answer : Given:
$2 x^{2}-\sqrt{3} x+1=0$

Solution of a general quadratic equation $a^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& x=\frac{-(-\sqrt{3}) \pm \sqrt{(-\sqrt{3})^{2}-(4 \times 2 \times 1)}}{2 \times 2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{\sqrt{3} \pm \sqrt{3-8}}{4} \\
& \Rightarrow x=\frac{\sqrt{3} \pm \sqrt{-5}}{4} \\
& \Rightarrow x=\frac{\sqrt{3} \pm \sqrt{5} i}{4} \\
& \Rightarrow \\
& \Rightarrow x=\frac{\sqrt{3}}{4} \pm \frac{\sqrt{5}}{4} i \\
& \text { Ans: } x=\frac{\sqrt{3}}{4}+\frac{\sqrt{5}}{4} i \text { and } x=\frac{\sqrt{3}}{4}-\frac{\sqrt{5}}{4} i
\end{aligned}
$$

Q. 14. $17 x^{2}-8 x+1=0$

Answer : Given:

$$
17 x^{2}-8 x+1=0
$$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-8) \pm \sqrt{(-8)^{2}-(4 \times 17 \times 1)}}{2 \times 17} \\
& \Rightarrow x=\frac{8 \pm \sqrt{64-69}}{34} \\
& \Rightarrow x=\frac{8 \pm \sqrt{-4}}{34} \\
& \Rightarrow x=\frac{8 \pm 2 i}{34} \\
& \Rightarrow x=\frac{8}{34} \pm \frac{2}{34} i \\
& \Rightarrow x=\frac{4}{17}+\frac{1}{17} i \text { and } x=\frac{4}{17}-\frac{1}{17} i \\
& \text { Ans: } x
\end{aligned}
$$

Q. 15. $3 x^{2}+5=7 x$

Answer : Given:
$3 x^{2}+5=7 x$
$\Rightarrow 3 x^{2}-7 x+5=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-7) \pm \sqrt{(-7)^{2}-(4 \times 3 \times 5)}}{2 \times 3} \\
& \Rightarrow x=\frac{7 \pm \sqrt{49-60}}{6} \\
& \Rightarrow x=\frac{7 \pm \sqrt{-11}}{6} \\
& \Rightarrow x=\frac{7 \pm \sqrt{11 i}}{6} \\
& \Rightarrow x=\frac{7}{6} \pm \frac{\sqrt{11}}{6} i
\end{aligned}
$$

$$
\text { Ans: } x=\frac{7}{6}+\frac{\sqrt{11}}{6} i \text { and } x=\frac{7}{6}-\frac{\sqrt{11}}{6} i
$$

Q. 16 .

$$
3 x^{2}-4 x+\frac{20}{3}=0
$$

Answer: Given:
$3 x^{2}-4 x+\frac{20}{3}=0$
Multiplying both the sides by 3 we get,
$9 x^{2}-12 x+20=0$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-12) \pm \sqrt{(-12)^{2}-(4 \times 9 \times 20)}}{2 \times 9} \\
& \Rightarrow x=\frac{12 \pm \sqrt{144-720}}{18} \\
& \Rightarrow x=\frac{12 \pm \sqrt{-576}}{18} \\
& \Rightarrow x=\frac{12 \pm 24 i}{18}
\end{aligned}
$$

$$
\Rightarrow x=\frac{12}{18} \pm \frac{24}{18} i
$$

$$
\Rightarrow x=\frac{2}{3} \pm \frac{4}{3} i
$$

Ans: $x=\frac{2}{3}+\frac{4}{3} i$ and $x=\frac{2}{3}-\frac{4}{3} i$
Q. 17. $3 x^{2}+7 i x+6=0$

Answer : Given:

$$
\begin{aligned}
& 3 x^{2}+7 \mathrm{ix}+6=0 \\
& \Rightarrow 3 \mathrm{x}^{2}+9 \mathrm{ix}-2 \mathrm{ix}+6=0 \\
& \Rightarrow 3 x(x+3 i)-2 i\left(x-\frac{6}{2 i}\right)=0 \\
& \Rightarrow 3 x(x+3 i)-2 i\left(x-\frac{3 \times i}{i \times i}\right)=0 \quad \ldots\left(\mathrm{i}^{2}=-1\right) \\
& \Rightarrow 3 x(x+3 i)-2 i\left(x-\frac{3 \times i}{-1}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 3 x(x+3 i)-2 i(x+3 i)=0 \\
& \Rightarrow(x+3 i)(3 x-2 i)=0 \\
& \Rightarrow x+3 i=0 \& 3 x-2 i=0 \\
& \Rightarrow x=3 i \& x=\frac{2}{3} i
\end{aligned}
$$

Ans: $x=3 i$ and $x=\frac{2}{3} i$
Q. $18.21 x^{2}-28 x+10=0$

Answer : Given:

$$
21 x^{2}-28 x+10=0
$$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-28) \pm \sqrt{(-28)^{2}-(4 \times 21 \times 10)}}{2 \times 21} \\
& \Rightarrow x=\frac{28 \pm \sqrt{784-840}}{42} \\
& \Rightarrow x=\frac{28 \pm \sqrt{-56}}{42} \\
& \Rightarrow x=\frac{28 \pm 2 \sqrt{14} i}{42} \\
& \Rightarrow x=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i
\end{aligned}
$$

$$
\text { Ans: } x=\frac{2}{3}+\frac{\sqrt{14}}{21} i \text { and } x=\frac{2}{3}-\frac{\sqrt{14}}{21} i
$$

Q. 19. $x^{2}+13=4 x$

Answer: Given:

$$
\begin{aligned}
& x^{2}+13=4 x \\
& \Rightarrow x^{2}-4 x+13=0
\end{aligned}
$$

Solution of a general quadratic equation $a^{2}+b x+c=0$ is given by:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a} \\
& \Rightarrow x=\frac{-(-4) \pm \sqrt{(-4)^{2}-(4 \times 1 \times 13)}}{2 \times 1} \\
& x=\frac{4 \pm \sqrt{16-52}}{2} \\
& \Rightarrow x=\frac{4 \pm \sqrt{-36}}{2} \\
& \Rightarrow x=\frac{4 \pm 6 i}{2} \\
& \Rightarrow x=\frac{4}{2} \pm \frac{6}{2} i \\
& \Rightarrow x=2 \pm 3 i
\end{aligned}
$$

Ans: $x=2+3 i \& x=2-3 i$
Q. 20. $x^{2}+3 i x+10=0$

Answer : Given:

$$
\begin{aligned}
& \mathrm{x}^{2}+3 \mathrm{ix}+10=0 \\
& \Rightarrow \mathrm{x}^{2}+5 \mathrm{ix}-2 \mathrm{ix}+10=0 \\
& \Rightarrow x(x+5 i)-2 i\left(x-\frac{10}{2 i}\right)=0 \\
& \Rightarrow x(x+5 i)-2 i\left(x-\frac{5 \times i}{i \times i}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x(x+5 i)-2 i\left(x-\frac{5 x i}{-1}\right)=0 \\
& \Rightarrow x(x+5 i)-2 i(x+5 i)=0 \\
& \Rightarrow(x+5 i)(x-2 i)=0 \\
& \Rightarrow x+5 i=0 \& x-2 i=0 \\
& \Rightarrow x=-5 i \& x=2 i
\end{aligned}
$$

Ans: $x=-5 i \& x=2 i$
Q. 21. $2 x^{2}+3 i x+2=0$

Answer : Given:

$$
\begin{aligned}
& 2 \mathrm{x}^{2}+3 \mathrm{ix}+2=0 \\
& \Rightarrow 2 \mathrm{x}^{2}+4 \mathrm{ix-ix}+2=0 \\
& \Rightarrow 2 x(x+2 i)-i\left(x-\frac{2}{i}\right)=0 \\
& \Rightarrow 2 x(x+2 i)-i\left(x-\frac{2 x i}{i x i}\right)=0 \\
& \Rightarrow 2 x(x+2 i)-i\left(x-\frac{2 x i}{-1}\right)=0 \\
& \Rightarrow 2 x(x+2 i)-i(x+2 i)=0 \\
& \Rightarrow(x+2 i)(2 x-i)=0 \\
& \Rightarrow x+2 \mathrm{i}=0 \& 2 x-\mathrm{i}=0 \\
& \Rightarrow \mathrm{x}=-2 \mathrm{i} \& x=\frac{i}{2} \\
& \text { Ans: x = -2i and } x=\frac{i}{2}
\end{aligned}
$$

Exercise 5F

Q. 1. $\sqrt{5+12 i}$

Answer : Let, $(a+i b)^{2}=5+12 i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=5+12 i$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=5+12 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=5$. \qquad .eq. 1
$\Rightarrow 2 \mathrm{ab}=12 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=\frac{6}{b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(\frac{6}{b}\right)^{2}-\mathrm{b}^{2}=5$
$\Rightarrow 36-b^{4}=5 b^{2}$
$\Rightarrow b^{4}+5 b^{2}-36=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-9$ or $b^{2}=4$
As b is real no. so, $b^{2}=4$ $b=2$ or $b=-2$

Therefore, $a=3$ or $a=-3$
Hence the square root of the complex no. is $3+2 i$ and $-3-2 i$.
Q. 2. $\sqrt{-7+24 i}$

Answer : Let, $(\mathrm{a}+\mathrm{ib})^{2}=-7+24 \mathrm{i}$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=-7+24 i$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=-7+24 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=-7$. eq. 1
$\Rightarrow 2 a b=24 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=\frac{12}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(\frac{12}{b}\right)^{2}-b^{2}=-7$
$\Rightarrow 144-b^{4}=-7 b^{2}$
$\Rightarrow b_{4}-7 \mathrm{~b}^{2}-144=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-9$ or $b^{2}=16$
As b is real no. so, $b^{2}=16$
$b=4$ or $b=-4$

Therefore, $\mathrm{a}=3$ or $\mathrm{a}=-3$
Hence the square root of the complex no. is $3+4 i$ and $-3-4 i$.
Q. 3. $\sqrt{-2+2 \sqrt{3}}$

Answer: Let, $(a+i b)^{2}=-2+2^{\sqrt{3}} ;$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=-2+2^{\sqrt{3}} \mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow \mathrm{a}^{2}-\mathrm{b}^{2}+2 \mathrm{abi}=-2+2^{\sqrt{3}} \mathrm{i}$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=-2$. eq. 1
$\Rightarrow 2 \mathrm{ab}=2^{\sqrt{3}}$. \qquad
$\Rightarrow \mathrm{a}=\frac{\sqrt{3}}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(\frac{\sqrt{3}}{b}\right)^{2}-b^{2}=-2$
$\Rightarrow 3-b^{4}=-2 b^{2}$
$\Rightarrow b_{4}-2 \mathrm{~b}^{2}-3=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-1$ or $b^{2}=3$
As b is real no. so, $b^{2}=3$
$b=\sqrt{3}$ or $b=-\sqrt{3}$
Therefore, $a=1$ or $a=-1$
Hence the square root of the complex no. is $1+\sqrt{3} \mathrm{i}$ and $-1-\sqrt{3} \mathrm{i}$.
Q. 4. $\sqrt{1+4 \sqrt{-3}}$

Answer: Let, $(a+i b)^{2}=1+4^{\sqrt{3}}$ i
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=1+4^{\sqrt{3}} \mathrm{i}$

Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=1+4^{\sqrt{3}}{ }_{i}$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=1$ \qquad eq. 1
$\Rightarrow 2 \mathrm{ab}=4^{\sqrt{3}}$. .eq. 2
$\Rightarrow \mathrm{a}=\frac{2 \sqrt{3}}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(\frac{2 \sqrt{3}}{b}\right)^{2}-b^{2}=1$
$\Rightarrow 12-b^{4}=b^{2}$
$\Rightarrow b^{4}+b^{2}-12=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-4$ or $b^{2}=3$
As b is real no. so, $b^{2}=3$
$b=\sqrt{3}$ or $b=-\sqrt{3}$
Therefore, $\mathrm{a}=2$ or $\mathrm{a}=-2$
Hence the square root of the complex no. is $2+\sqrt{3}_{\mathrm{i}}$ and $-2-\sqrt{3} \mathrm{i}$.
Q. 5. $\sqrt{1}$

Answer : Let, $(a+i b)^{2}=0+i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=0+\mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=0+i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=0$ eq. 1
$\Rightarrow 2 a b=1$ \qquad eq. 2
$\Rightarrow \mathrm{a}=\frac{1}{2 b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(\frac{1}{2 b}\right)^{2}-\mathrm{b}^{2}=0$
$\Rightarrow 1-4 b^{4}=0$
$\Rightarrow 4 b^{2}=1$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=\frac{1}{-2}$ or $b^{2}=\frac{1}{2}$
As b is real no. so, $b^{2}=3$
$b=\frac{1}{\sqrt{2}}$ or $b=-\frac{1}{\sqrt{2}}$
Therefore, $\mathrm{a}=\frac{1}{\sqrt{2}}$ or $\mathrm{a}=-\frac{1}{\sqrt{2}}$
Hence the square root of the complex no. is $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathrm{i}$ and $-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \mathrm{i}$.
Q. 6. $\sqrt{4 i}$

Answer : Let, $(\mathrm{a}+\mathrm{ib})^{2}=0+4 \mathrm{i}$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=0+4 i$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=0+4 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=0$ \qquad eq. 1
$\Rightarrow 2 \mathrm{ab}=4 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=\frac{2}{b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(\frac{2}{b}\right)^{2}-\mathrm{b}^{2}=0$
$\Rightarrow 4-b^{4}=0$
$\Rightarrow b^{4}=4$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-2$ or $b^{2}=2$
As b is real no. so, $b^{2}=2$
$b=\sqrt{2}$ or $b=-\sqrt{2}$

Therefore , $\mathrm{a}=\sqrt{2}$ or $\mathrm{a}=-\sqrt{2}$

Hence the square root of the complex no. is $\sqrt{2}+\sqrt{2}$ i and $-\sqrt{2}-\sqrt{2}$.
Q. 7. $\sqrt{3+4 \sqrt{-7}}$

Answer : Let, $(a+i b)^{2}=3+4^{\sqrt{7}} \mathrm{i}$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=3+4^{\sqrt{7}} \mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=3+4^{\sqrt{7}} i$
now, separating real and complex parts, we get
$\Rightarrow \mathrm{a}^{2}-\mathrm{b}^{2}=3$ eq. 1
$\Rightarrow 2 \mathrm{ab}=4^{\sqrt{7}}$. eq. 2
$\Rightarrow \mathrm{a}=\frac{2 \sqrt{7}}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(\frac{2 \sqrt{7}}{b}\right)^{2}-\mathrm{b}^{2}=3$
$\Rightarrow 12-b^{4}=3 b^{2}$
$\Rightarrow b^{4}+3 b^{2}-28=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-7$ or $b^{2}=4$
as b is real no. so, $b^{2}=4$
$b=2$ or $b=-2$
Therefore , $\mathrm{a}=\sqrt{7}$ or $\mathrm{a}=-\sqrt{7}$
Hence the square root of the complex no. is $\sqrt{7}+2 i^{\text {and }}{ }^{\sqrt{7}}-2 \mathrm{i}$.
Q. 8. $\sqrt{16-30 \mathrm{i}}$

Answer: Let, $(a+i b)^{2}=16-30 i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=16-30 i$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=16-30 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=16$ \qquad .eq. 1
$\Rightarrow 2 \mathrm{ab}=-30$. \qquad eq. 2
$\Rightarrow \mathrm{a}=-\frac{15}{b}$

Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(-\frac{15}{b}\right)^{2}-\mathrm{b}^{2}=16$
$\Rightarrow 225-b^{4}=16 b^{2}$
$\Rightarrow b^{4}+16 b^{2}-225=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-25$ or $b^{2}=9$
As b is real no. so, $b^{2}=9$
$b=3$ or $b=-3$
Therefore, $a=-5$ or $a=5$
Hence the square root of the complex no. is $-5+3 i$ and $5-3 i$.
Q. 9. $\sqrt{-4-3 i}$

Answer: Let, $(\mathrm{a}+\mathrm{ib})^{2}=-4-3 \mathrm{i}$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=-4-3 \mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=-4-3 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=-4$ eq. 1
$\Rightarrow 2 a b=-3 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=-\frac{3}{2 b}$

Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(-\frac{3}{2 b}\right)^{2}-\mathrm{b}^{2}=-4$
$\Rightarrow 9-4 b^{4}=-16 b^{2}$
$\Rightarrow 4 b^{4}-16 b^{2}-9=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=\frac{9}{2}$ or $b^{2}=-2$
As b is real no. so, $\mathrm{b}^{2}=\frac{9}{2}$
$b=\frac{3}{\sqrt{2}}$ or $b=-\frac{3}{\sqrt{2}}$
Therefore, $\mathrm{a}=-\frac{1}{-\sqrt{2}}$ or $\mathrm{a}=\frac{1}{\sqrt{2}}$
Hence the square root of the complex no. is $-\frac{1}{\sqrt{2}}+\frac{3}{\sqrt{2}} \mathrm{i}$ and $\frac{1}{\sqrt{2}}-\frac{3}{\sqrt{2}} \mathrm{i}$.
Q. 10. $\sqrt{-15-8 i}$

Answer: Let, $(a+i b)^{2}=-15-8 i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=-15-8 \mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=-15-8 i$
Now, separating real and complex parts, we get
$\Rightarrow \mathrm{a}^{2}-\mathrm{b}^{2}=-15$. eq. 1
$\Rightarrow 2 \mathrm{ab}=-8 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=-\frac{4}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(-\frac{4}{b}\right)^{2}-b^{2}=-15$
$\Rightarrow 16-b^{4}=-15 b^{2}$
$\Rightarrow b^{4}-15 b^{2}-16=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=16$ or $b^{2}=-1$
As b is real no. $s o, b^{2}=16$
$b=4$ or $b=-4$
Therefore, $\mathrm{a}=-1$ or $\mathrm{a}=1$
Hence the square root of the complex no. is $-1+4 i$ and $1-4 i$.
Q. 11. $\sqrt{-11-60 \mathrm{i}}$

Answer : Let, $(\mathrm{a}+\mathrm{ib})^{2}=-11-60 \mathrm{i}$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=-11-60 i$
Since $i^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=-11-60 i$
Now, separating real and complex parts, we get

$$
\Rightarrow a^{2}-b^{2}=-11 \ldots \ldots \ldots \ldots . . \text { eq. } 1
$$

$\Rightarrow 2 \mathrm{ab}=-60 \ldots \ldots .$. eq. 2
$\Rightarrow \mathrm{a}=-\frac{30}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(-\frac{30}{b}\right)^{2}-b^{2}=-11$
$\Rightarrow 900-b^{4}=-11 b^{2}$
$\Rightarrow b^{4}-11 b^{2}-900=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=36$ or $b^{2}=-25$
as b is real no. so, $b^{2}=36$
$b=6$ or $b=-6$
Therefore , $\mathrm{a}=-5$ or $\mathrm{a}=5$
Hence the square root of the complex no. is $-5+6 \mathrm{i}$ and $5-6 \mathrm{i}$.
Q. 12. $\sqrt{7-30 \sqrt{-2}}$

Answer: Let, $(\mathrm{a}+\mathrm{ib})^{2}=7-30^{\sqrt{2}}$ i
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=7-30^{\sqrt{2}} \mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow \mathrm{a}^{2}-\mathrm{b}^{2}+2 \mathrm{abi}=7-30^{\sqrt{2}} \mathrm{i}$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=7$
$\Rightarrow 2 \mathrm{ab}=30^{\sqrt{2}} \ldots \ldots .$. eq. 2
$\Rightarrow \mathrm{a}=\frac{15 \sqrt{2}}{b}$
Now, using the value of a in eq. 1 , we get
$\Rightarrow\left(\frac{15 \sqrt{2}}{b}\right)^{2}-\mathrm{b}^{2}=7$
$\Rightarrow 450-b^{4}=7 b^{2}$
$\Rightarrow b^{4}+7 b^{2}-450=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-25$ or $b^{2}=18$
As b is real no. so, $b^{2}=18$
$\mathrm{b}=3 \sqrt{2}$ or $\mathrm{b}=-3 \sqrt{2}$
Therefore, $a=5$ or $a=-5$
Hence the square root of the complex no. is $5+3 \sqrt{2}$ i and -5 - $3 \sqrt{2}$ i.
Q. 13. $\sqrt{-8}$

Answer : Let, $(\mathrm{a}+\mathrm{ib})^{2}=0-8 \mathrm{i}$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=0-8 \mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=0-8 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=0$ \qquad eq. 1
$\Rightarrow 2 a b=-8 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=-\frac{4}{b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(-\frac{4}{b}\right)^{2}-\mathrm{b}^{2}=0$
$\Rightarrow 16-b^{4}=0$
$\Rightarrow b^{4}=16$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=-4$ or $b^{2}=4$
As b is real no. so, $b^{2}=4$
$b=2$ or $b=-2$
Therefore, $\mathrm{a}=-2$ or $\mathrm{a}=2$
Hence the square root of the complex no. is $-2+2 \mathrm{i}$ and $2-2 \mathrm{i}$.
Q. 14. $\sqrt{1-\mathrm{i}}$

Answer : Let, $(a+i b)^{2}=1-i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow \mathrm{a}^{2}+(\mathrm{bi})^{2}+2 \mathrm{abi}=1-\mathrm{i}$
Since $\mathrm{i}^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=1-i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=1$ \qquad
$\Rightarrow 2 \mathrm{ab}=-1 \ldots \ldots$. eq. 2
$\Rightarrow \mathrm{a}=-\frac{1}{2 b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(-\frac{1}{2 b}\right)^{2}-\mathrm{b}^{2}=1$
$\Rightarrow 1-4 b^{4}=4 b^{2}$
$\Rightarrow 4 b^{4}+4 b^{2}-1=0$
Simplify and get the value of b^{2}, we get,
$\Rightarrow b^{2}=\frac{-4 \pm \sqrt{32}}{8}$
As b is real no. so, $\mathrm{b}^{2}=\frac{\frac{-4+4 \sqrt{2}}{8}}{8}$
$b^{2}=\frac{-1+\sqrt{2}}{2}$
$b=\sqrt{\frac{-1+\sqrt{2}}{2}}$ or $b=-\sqrt{\frac{-1+\sqrt{2}}{2}}$
Therefore , $\mathrm{a}=-\sqrt{\frac{1+\sqrt{2}}{2}}$ or $\mathrm{a}=\sqrt{\frac{1+\sqrt{2}}{2}}$
Hence the square root of the complex no. is $-\sqrt{\frac{1+\sqrt{2}}{2}}+\sqrt{\frac{-1+\sqrt{2}}{2}}$ i
and $\sqrt{\frac{1+\sqrt{2}}{2}}-\sqrt{\frac{-1+\sqrt{2}}{2}}$ i.

Exercise 5G

Q. 1. Evaluate $\mathrm{i}^{\frac{1}{\mathrm{i}^{78}}}$.

Answer : we have, $\frac{1}{\mathrm{i}^{7 \mathrm{~s}}}$
$=\frac{1}{\left(\mathrm{i}^{4}\right)^{19} \cdot \mathrm{i}^{2}}$
We know that, $\mathrm{i}^{4}=1$
$\Rightarrow \frac{1}{1^{19} \cdot \mathrm{i}^{2}}$
$\Rightarrow \frac{1}{\mathrm{i}^{2}}=\frac{1}{-1}$
$\Rightarrow \frac{1}{\mathrm{i}^{7 \mathrm{~g}}}=-1$
Q. 2. Evaluate ($\left.\mathbf{i}^{57}+\mathbf{i}^{70}+\mathbf{i}^{91}+\mathbf{i}^{101}+\mathbf{i}^{104}\right)$.

Answer: We have, $\mathrm{i}^{57}+\mathrm{i}^{70}+\mathrm{i}^{91}+\mathrm{i}^{101}+\mathrm{i}^{104}$
$=\left(i^{4}\right)^{14} \cdot i+\left(i^{4}\right)^{17} \cdot i^{2}+\left(i^{4}\right)^{22} \cdot i^{3}+\left(i^{4}\right)^{25} \cdot i+\left(i^{4}\right)^{26}$
We know that, $\mathrm{i}^{4}=1$
$\Rightarrow(1)^{14} \cdot \mathrm{i}+(1)^{17} \cdot \mathrm{i}^{2}+(1)^{22} \cdot \mathrm{i}^{3}+(1)^{25} \cdot \mathrm{i}+(1)^{26}$
$=\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}+\mathrm{i}$
$=i-1-i+i+1$
$=\mathrm{i}$
Q. 3. Evaluate
$\left(\frac{\mathrm{i}^{180}+\mathrm{i}^{178}+\mathrm{i}^{176}+\mathrm{i}^{174}+\mathrm{i}^{172}}{\mathrm{i}^{170}+\mathrm{i}^{168}+\mathrm{i}^{166}+\mathrm{i}^{164}+\mathrm{i}^{162}}\right)$

Answer:

We have, $\left(\frac{i^{180}+\mathrm{i}^{178}+\mathrm{i}^{176}+\mathrm{i}^{174}+\mathrm{i}^{172}}{\mathrm{i}^{170}+\mathrm{i}^{168}+\mathrm{i}^{166}+\mathrm{i}^{164}+\mathrm{i}^{162}}\right)$
$=\left(\frac{\mathrm{i}^{180}+\mathrm{i}^{178}+\mathrm{i}^{176}+\mathrm{i}^{174}+\mathrm{i}^{172}}{\mathrm{i}^{170}+\mathrm{i}^{168}+\mathrm{i}^{166}+\mathrm{i}^{164}+\mathrm{i}^{162}}\right)$

$$
\begin{aligned}
& =\left(\frac{\left(i^{4}\right)^{45}+\left(i^{4}\right)^{44} \cdot i^{2}+\left(i^{4}\right)^{44}+\left(i^{4}\right)^{43} \cdot i^{2}+\left(i^{4}\right)^{43}}{\left(i^{4}\right)^{42} \cdot i^{2}+\left(i^{4}\right)^{42}+\left(i^{4}\right)^{41} \cdot i^{2}+\left(i^{4}\right)^{41}+\left(i^{4}\right)^{40} \cdot i^{2}}\right) \\
& =\left(\frac{(1)^{45}+(1)^{44} \cdot i^{2}+(1)^{44}+(1)^{43} \cdot i^{2}+(1)^{43}}{(1)^{42} \cdot i^{2}+(1)^{42}+(1)^{41} \cdot i^{2}+(1)^{41}+(1)^{40} \cdot i^{2}}\right) \\
& =\left(\frac{1+i^{2}+1+\cdot i^{2}+1}{i^{2}+1+i^{2}+1+i^{2}}\right) \\
& =\left(\frac{1-1+1-1+1}{-1+1-1+1-1}\right) \\
& =\left(\frac{1}{-1}\right) \\
& =-1
\end{aligned}
$$

Q. 4. Evaluate ($\mathrm{i}^{4 \mathrm{n}+1}-\mathrm{i}^{4 \mathrm{n}-1}$)

Answer: We have, $i^{4 n+1}-i^{4 n-1}$

$$
\begin{aligned}
& =i^{4 n} \cdot i-i^{4 n} \cdot i^{-1} \\
& =\left(i^{4}\right)^{n} \cdot i-\left(i^{4}\right)^{n} \cdot i^{-1} \\
& =(1)^{n} \cdot i-(1)^{n} \cdot i^{-1} \\
& =i-i^{-1} \\
& =i-\frac{1}{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathrm{i}^{2}-1}{\mathrm{i}} \\
& =\frac{-1-1}{\mathrm{i}} \\
& =\frac{-2}{\mathrm{i}} \times \frac{\mathrm{i}}{\mathrm{i}} \\
& =\frac{-2 \mathrm{i}}{\mathrm{i}^{2}}=\frac{-2 \mathrm{i}}{-1} \\
& =2 \mathrm{i}
\end{aligned}
$$

Q. 5. Evaluate ${ }^{(\sqrt{36} \times \sqrt{-25})}$.

Answer: We have, $(\sqrt{36} \times \sqrt{-25})$
$=6 \times \sqrt{-1 \times 25}$
$=6 \times(\sqrt{-1} \times \sqrt{25})$
$=6 \times(\sqrt{-1} \times 5)$
$=6 \times 5 i=30 i$
Q. 6. Find the sum $\left(i^{n}+i^{n+1}+i^{n+2}+i^{n+3}\right)$, where $n \mathbf{N}$.

Answer: We have $\mathrm{i}^{\mathrm{n}}+\mathrm{i}^{\mathrm{n}+1}+\mathrm{i}^{\mathrm{n}+2}+\mathrm{i}^{\mathrm{n}+3}$

$$
\begin{aligned}
& =i^{n}+i^{n} \cdot i+i^{n} \cdot i^{2}+i^{n} \cdot i^{3} \\
& =i^{n}\left(1+i+i^{2}+i^{3}\right) \\
& =i^{n}(1+i-1-i) \\
& =i^{n}(0)=0
\end{aligned}
$$

Q. 7. Find the sum $\left(i+i^{2}+i^{3}+i^{4}+\ldots\right.$ up to 400 terms $)$., where $n N$.

Answer: We have, $i+i^{2}+i^{3}+i^{4}+\ldots$ up to 400 terms
We know that given series is GP where $a=i, r=i$ and $n=400$
Thus, $S=\frac{a\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
& =\frac{i\left(1-(i)^{400}\right)}{1-i} \\
& =\frac{i\left(1-\left(i^{4}\right)^{100}\right)}{1-i} \\
& =\frac{i\left(1-1^{100}\right)}{1-i}\left[\because i^{4}=1\right] \\
& =\frac{i(1-1)}{1-i}=0
\end{aligned}
$$

Q. 8. Evaluate $\left(1+\mathbf{i}^{10}+\mathbf{i}^{20}+\mathbf{i}^{30}\right)$.

Answer: We have, $1+\mathrm{i}^{10}+\mathrm{i}^{20}+\mathrm{i}^{30}$
$=1+\left(i^{4}\right)^{2} \cdot i^{2}+\left(i^{4}\right)^{5}+\left(i^{4}\right)^{7} \cdot i^{2}$
We know that, $\mathrm{i}^{4}=1$
$\Rightarrow 1+(1)^{2} \cdot i^{2}+(1)^{5}+(1)^{7} \cdot i^{2}$
$=1+\mathrm{i}^{2}+1+\mathrm{i}^{2}$
$=1-1+1-1$
$=0$
Q. 9. Evaluate: $\left(i^{41}+\frac{1}{i^{71}}\right)$.

Answer: We have, $\left(i^{41}+\frac{1}{i^{71}}\right)$
$\mathrm{i}^{41}=\mathrm{i}^{40} . \mathrm{i}=\mathrm{i}$
$i^{71}=i^{68} \cdot i^{3}=-i$

Therefore,
$\left(i^{41}+\frac{1}{i^{71}}\right)=i-\frac{1}{i}=\frac{i^{2}-1}{i}$
$\left(i^{41}+\frac{1}{i^{71}}\right)=-\frac{2}{i} \times \frac{i}{i}$
$\left(i^{41}+\frac{1}{i^{71}}\right)=-\frac{2 i}{i^{2}}=2 i$
Hence, $\left(i^{41}+\frac{1}{i^{71}}\right)=2 i$
Q. 10. Find the least positive integer n for which $\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{\mathrm{n}}=1$.

Answer: We have, $\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{\mathrm{n}}=1$
Now, $\frac{1+\mathrm{i}}{1-\mathrm{i}}=\frac{1+\mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}}$
$=\frac{(1+\mathrm{i})^{2}}{1^{2}-\mathrm{i}^{2}}$
$=\frac{1^{2}+2 i+\mathrm{i}^{2}}{1-(-1)}$
$=\frac{1+2 \mathrm{i}-1}{2}$
$=\mathrm{i}$
$\therefore\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{\mathrm{n}}=(\mathrm{i})^{\mathrm{n}}=1 \Rightarrow \mathrm{n}$ is multiple of 4
\therefore The least positive integer n is 4
Q. 11. Express $(2-3 i)^{3}$ in the form $(a+i b)$.

Answer: We have, $(2-3 i)^{3}$

$$
\begin{aligned}
& =2^{3}-3 \times 2^{2} \times 3 i-3 \times 2 \times(3 i)^{2}-(3 i)^{3} \\
& =8-36 i+54+27 i \\
& =46-9 i .
\end{aligned}
$$

Q. 12. Express $\frac{(3+\mathrm{i} \sqrt{5})(3-\sqrt{5})}{(\sqrt{3}+\sqrt{2} \mathrm{i})-(\sqrt{3}-\sqrt{2} \mathrm{i})}$ in the form (a+ib).

Answer : We have, $\frac{(3+i \sqrt{5})(3-\mathrm{i} \sqrt{5})}{(\sqrt{3}+\sqrt{2 i})-(\sqrt{3}-\sqrt{2 i})}$
$=\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2 \mathrm{i}}-\sqrt{3}+\sqrt{2 \mathrm{i}}}\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\frac{9+5}{2 \sqrt{2 \mathrm{i}}} \times \frac{\sqrt{2 \mathrm{i}}}{\sqrt{2 \mathrm{i}}}$
$=\frac{14 \sqrt{2 \mathrm{i}}}{2(\sqrt{2 \mathrm{i}})^{2}}$
$=\frac{7 \sqrt{2 \mathrm{i}}}{-2}$
$=\frac{-7 \sqrt{2 \mathrm{i}}}{2}$
Q. 13. Express ${ }^{\frac{3-\sqrt{-16}}{1-\sqrt{-9}}}$ in the form ($a+i b$).

Answer: We have, ${ }^{\frac{3-\sqrt{-16}}{1-\sqrt{-9}}}$
We know that $\sqrt{ }-1=i$
Therefore,

$$
\begin{aligned}
& \frac{3-\sqrt{-16}}{1-\sqrt{-9}}=\frac{3-4 i}{1-3 i} \\
& \frac{3-\sqrt{-16}}{1-\sqrt{-9}}=\frac{3-4 i}{1-3 i} \times \frac{1+3 i}{1+3 i} \\
& \frac{3-\sqrt{-16}}{1-\sqrt{-9}}=\frac{3+9 i-4 i-12 i^{2}}{(1)^{2}-(3 i)^{2}} \\
& \frac{3-\sqrt{-16}}{1-\sqrt{-9}}=\frac{15+5 i}{1+9}=\frac{15}{10}+\frac{5 i}{10}=\frac{3}{2}+\frac{1}{2} i
\end{aligned}
$$

Hence,
$\frac{3-\sqrt{-16}}{1-\sqrt{-9}}=\frac{3}{2}+\frac{i}{2}$
Q. 14. Solve for $\mathrm{x}:(1-\mathrm{i}) \mathrm{x}+(1+\mathrm{i}) \mathrm{y}=1-3 \mathrm{i}$.

Answer: We have, $(1-i) x+(1+i) y=1-3 i$
$\Rightarrow x-i x+y+i y=1-3 i$
$\Rightarrow(x+y)+i(-x+y)=1-3 i$
On equating the real and imaginary coefficients we get,
$\Rightarrow \mathrm{x}+\mathrm{y}=1$ (i) and $-\mathrm{x}+\mathrm{y}=-3$ (ii)
From (i) we get
$x=1-y$
Substituting the value of x in (ii), we get
$-(1-y)+y=-3$
$\Rightarrow-1+y+y=-3$
$\Rightarrow 2 y=-3+1$
$\Rightarrow y=-1$
$\Rightarrow x=1-y=1-(-1)=2$
Hence, $x=2$ and $y=-1$
Q. 15. Solve for $x: x^{2}-5 i x-6=0$.

Answer: We have, $x^{2}-5 i x-6=0$
Here, $b^{2}-4 a c=(-5 i)^{2}-4 \times 1 \times-6$
$=25 i^{2}+24=-25+24=-1$
Therefore, the solutions are given by $x=\frac{-(-5 i) \pm \sqrt{-1}}{2 \times 1}$
$x=\frac{5 i \pm i}{2 \times 1}$
$x=\frac{5 i \pm i}{2}$
Hence, $x=3 i$ and $x=2 i$
Q. 16. Find the conjugate of $\frac{1}{(3+4 i)}$.

Answer : Let $\mathrm{Z}=\frac{1}{3+4 \mathrm{i}}$
$=\frac{1}{3+4 i} \times \frac{3-4 i}{3-4 i}=\frac{3-4 i}{9+16}$
$=\frac{3}{25}-\frac{4}{25} i$
$\Rightarrow \bar{z}=\frac{3}{25}+\frac{4}{25} \mathrm{i}$
Q. 17. If $z=(1-i)$, find z^{-1}.

Answer: We have, $z=(1-i)$
$\Rightarrow \overline{\mathrm{z}}=1+\mathrm{i}$
$\Rightarrow|z|^{2}=(1)^{2}+(-1)^{2}=2$
\therefore The multiplicative inverse of $(1-\mathrm{i})$,
$z^{-1}=\frac{\overline{\mathrm{z}}}{|\mathrm{z}|^{2}}=\frac{1+\mathrm{i}}{2}$
$z^{-1}=\frac{1}{2}+\frac{1}{2} \mathrm{i}$
Q. 18. If $z=(\sqrt{5}+3 i)$, find z^{-1}.

Answer: We have, $\mathrm{z}=(\sqrt{5}+3 \mathrm{i})$
$\Rightarrow \overline{\mathrm{z}}=(\sqrt{5}-3 \mathrm{i})$
$\Rightarrow|z|^{2}=(\sqrt{5})^{2}+(3)^{2}$
$=5+9=14$
\therefore The multiplicative inverse of $(\sqrt{5}+3 \mathrm{i})$,

$$
\begin{aligned}
& z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14} \\
& z^{-1}=\frac{\sqrt{5}}{14}+\frac{3}{14} \mathrm{i}
\end{aligned}
$$

Answer : Let $z=r(\cos \theta+i \sin \theta)$
$\Rightarrow \arg (z)=\theta$

Now, $\overline{\mathrm{z}}=\mathrm{r}(\cos \theta-\mathrm{i} \sin \theta)=\mathrm{r}(\cos (-\theta)+\mathrm{i} \sin (-\theta))$
$\Rightarrow \arg (\overline{\mathrm{z}})=-\theta$
Thus, $\arg (\mathrm{z})+{ }^{\arg (\bar{z})}=\theta-\theta=0$
Hence proved.
Q. 20. If $|z|=6$ and $\arg (z)=\frac{3 \pi}{4}$, find z.

$$
3 \pi
$$

Answer: We have, $|z|=6$ and $\arg (z)=4$
Let $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
We know that, $|z|=r=6$
And $\arg (z)=\theta=\frac{3 \pi}{4}$
Thus, $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)=6\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right)$
Q. 21. Find the principal argument of (-2i).

Answer : Let, $\mathrm{z}=-2 \mathrm{i}$
Let $0=r \cos \theta$ and $-2=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(-2)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+4=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 4=r^{2}$
$\Rightarrow \mathrm{r}=2$
$\therefore \cos \theta=0$ and $\sin \theta=-1$

Since, θ lies in fourth quadrant, we have
$\theta=-\frac{\pi}{2}$
Since, $\theta \in(-\pi, \pi]$ it is principal argument.
Q. 22. Write the principal argument of $(1+\mathbf{i} \sqrt{3})^{2}$.

Answer : Let, $\mathrm{z}=(1+\mathrm{i} \sqrt{3})^{2}$
$=(1)^{2}+(\mathrm{i} \sqrt{3})^{2}+2 \sqrt{3} \mathrm{i}$
$=1-1+2 \sqrt{3} \mathrm{i}$
$z=0+2 \sqrt{3} i$
Let $0=r \cos \theta$ and $2 \sqrt{ } 3=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(2 \sqrt{ } 3)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+(2 \sqrt{ } 3)^{2}=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow(2 \sqrt{ } 3)^{2}=r^{2}$
$\Rightarrow r=2 \sqrt{ } 3$
$\therefore \cos \theta=0$ and $\sin \theta=1$
Since, θ lies in first quadrant, we have
$\theta=\frac{\pi}{2}$
Since, $\theta \in(-\pi, \pi]$ it is principal argument.
Q. 23. Write -9 in polar form.

Answer: We have, $z=-9$

Let $-9=r \cos \theta$ and $0=r \sin \theta$
By squaring and adding, we get
$(-9)^{2}+(0)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 81=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 81=r^{2}$
$\Rightarrow r=9$
$\therefore \cos \theta=-1$ and $\sin \theta=0$
$\Rightarrow \theta=\pi$

Thus, the required polar form is $9(\cos \pi+i \sin \pi)$

Q. 24. Write $\mathbf{2 i}$ in polar form.

Answer : Let, $\mathrm{z}=2 \mathrm{i}$
Let $0=r \cos \theta$ and $2=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(2)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+4=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 4=r^{2}$
$\Rightarrow r=2$
$\therefore \cos \theta=0$ and $\sin \theta=1$
Since, θ lies in first quadrant, we have
$\theta=\frac{\pi}{2}$

Thus, the required polar form is

$$
2\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)
$$

Q. 25. Write -3 i in polar form.

Answer : Let, $\mathrm{z}=-3 \mathrm{i}$
Let $0=r \cos \theta$ and $-3=r \sin \theta$
By squaring and adding, we get
$(0)^{2}+(-3)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 0+9=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 9=r^{2}$
$\Rightarrow r=3$
$\therefore \cos \theta=0$ and $\sin \theta=-1$
Since, θ lies in fourth quadrant, we have
$\theta=\frac{3 \pi}{2}$

Thus, the required polar form is

$$
3\left(\cos \left(\frac{3 \pi}{2}\right)+\mathrm{i} \sin \left(\frac{3 \pi}{2}\right)\right)
$$

Q. 26. Write $z=(1-i)$ in polar form.

Answer: We have, $\mathrm{z}=(1-\mathrm{i})$
Let $1=r \cos \theta$ and $-1=r \sin \theta$
By squaring and adding, we get
$(1)^{2}+(-1)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 1+1=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 2=r^{2}$
$\Rightarrow r=\sqrt{ } 2$
$\therefore \cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{-1}{\sqrt{2}}$
Since, θ lies in fourth quadrant, we have
$\theta=-\frac{\pi}{4}$

Thus, the required polar form is

$$
\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)
$$

Q. 27. Write $z=(-1+i \sqrt{3})$ in polar form.

Answer: We have, $z=(-1+i \sqrt{3})$
Let $-1=r \cos \theta$ and $\sqrt{ } 3=r \sin \theta$
By squaring and adding, we get
$(-1)^{2}+(\sqrt{ } 3)^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}$
$\Rightarrow 1+3=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\Rightarrow 4=r^{2}$
$\Rightarrow r=2$
$\therefore \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{\sqrt{3}}{2}$
Since, θ lies in second quadrant, we have
$\theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
Thus, the required polar form is $2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
Q. 28. If $|z|=2$ and $\arg (z)=\frac{\pi}{4}$, find z.

Answer: We have, $|z|=2$ and $\arg (z)=\frac{\pi}{4}$,
Let $z=r(\cos \theta+i \sin \theta)$

We know that, $|z|=r=2$
And $\arg (z)=\theta=\frac{\pi}{4}$
Thus, $z=r(\cos \theta+i \sin \theta)=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$

