Binomial Theorem

Exercise 10A

Q. 1. Using binomial theorem, expand each of the following:
$(1-2 x)^{5}$
Answer : To find: Expansion of $(1-2 x)^{5}$

Formula used: (i)

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $(1-2 x)^{5}$
$\Rightarrow\left[{ }^{5} \mathrm{C}_{0}(1)^{5}\right]+\left[{ }^{5} \mathrm{C}_{1}(1)^{5-1}(-2 \mathrm{x})^{1}\right]+\left[{ }^{5} \mathrm{C}_{2}(1)^{5-2}(-2 \mathrm{x})^{2}\right]+\left[{ }^{5} \mathrm{C}_{3}(1)^{5-3}(-2 \mathrm{x})^{3}\right]+\left[{ }^{5} \mathrm{C}_{4}(1)^{5-4}(-2 \mathrm{x})^{4}\right]+$ $\left[{ }^{5} \mathrm{C}_{5}(-2 \mathrm{x})^{5}\right]$
$\Rightarrow\left[\frac{5!}{0!(5-0)!}(1)^{5}\right]-\left[\frac{5!}{1!(5-1)!}(1)^{4}(2 x)\right]+\left[\frac{5!}{2!(5-2)!}(1)^{3}\left(4 x^{2}\right)\right]$
$-\left[\frac{5!}{3!(5-3)!}(1)^{2}\left(8 x^{3}\right)\right]+\left[\frac{5!}{4!(5-4)!}(1)^{1}\left(16 x^{4}\right)\right]-\left[\frac{5!}{5!(5-5)!}\left(32 x^{5}\right)\right]$
$\Rightarrow 1-5(2 x)+10\left(4 x^{2}\right)-10\left(8 x^{3}\right)+5\left(16 x^{4}\right)-1\left(32 x^{5}\right)$
$\Rightarrow 1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$
On rearranging
Ans) $-32 x^{5}+80 x^{4}-80 x^{3}+40 x^{2}-10 x+1$
Q. 2. Using binomial theorem, expand each of the following:
$(2 x-3)^{6}$
Answer : To find: Expansion of $(2 x-3)^{6}$

Formula used: (i)

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $(2 x-3)^{6}$
$\Rightarrow\left[{ }^{6} \mathrm{C}_{0}(2 \mathrm{x})^{6}\right]+\left[{ }^{[} \mathrm{C}_{1}(2 \mathrm{x})^{6-1}(-3)^{1}\right]+\left[{ }^{6} \mathrm{C}_{2}(2 \mathrm{x})^{6-2}(-3)^{2}\right]+\left[{ }^{6} \mathrm{C}_{3}(2 \mathrm{x})^{6-3}(-3)^{3}\right]+\left[{ }^{6} \mathrm{C}_{4}(2 \mathrm{x})^{6-4}(-3)^{4}\right]+$ $\left[{ }^{6} \mathrm{C} 5(2 \mathrm{x})^{6 \cdot 5}(-3)^{5}\right]+\left[{ }^{6} \mathrm{C} 6(-3)^{6}\right]$

$$
\begin{aligned}
& \Rightarrow\left[\frac{6!}{0!(6-0)!}(2 x)^{6}\right]-\left[\frac{6!}{1!(6-1)!}(2 x)^{5}(3)\right]+\left[\frac{6!}{2!(6-2)!}(2 x)^{4}(9)\right] \\
& -\left[\frac{6!}{3!(6-3)!}(2 x)^{3}(27)\right]+\left[\frac{6!}{4!(6-4)!}(2 x)^{2}(81)\right] \\
& -\left[\frac{6!}{5!(6-5)!}(2 x)^{1}(243)\right]+\left[\frac{6!}{6!(6-6)!}(729)\right] \\
& \Rightarrow\left[(1)\left(64 x^{6}\right)\right]-\left[(6)\left(32 x^{5}\right)(3)\right]+\left[15\left(16 x^{4}\right)(9)\right]-\left[20\left(8 x^{3}\right)(27)\right]+\left[15\left(4 x^{2}\right)(81)\right]- \\
& {[(6)(2 x)(243)]+[(1)(729)]} \\
& \Rightarrow 64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729
\end{aligned}
$$

Ans) $64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729$
Q. 3. Using binomial theorem, expand each of the following:
$(3 x+2 y)^{5}$
Answer : To find: Expansion of $(3 x+2 y)^{5}$
Formula used: (i) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(n-r)!(r)!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $(3 x+2 y)^{5}$
$\Rightarrow\left[{ }^{5} \mathrm{C}_{0}(3 \mathrm{x})^{5-0}\right]+\left[{ }^{5} \mathrm{C}_{1}(3 \mathrm{x})^{5-1}(2 \mathrm{y})^{1}\right]+\left[{ }^{5} \mathrm{C}_{2}(3 \mathrm{x})^{5-2}(2 \mathrm{y})^{2}\right]+\left[{ }^{5} \mathrm{C}_{3}(3 \mathrm{x})^{5-3}(2 \mathrm{y})^{3}\right]+\left[{ }^{5} \mathrm{C}_{4}(3 \mathrm{x})^{5-}\right.$ $\left.{ }^{4}(2 y)^{4}\right]+\left[{ }^{5} \mathrm{C}_{5}(2 \mathrm{y})^{5}\right]$

$$
\begin{aligned}
& \Rightarrow\left[\frac{5!}{0!(5-0)!}\left(243 x^{5}\right)\right]+\left[\frac{5!}{1!(5-1)!}\left(81 x^{4}\right)(2 y)\right]+ \\
& {\left[\frac{5!}{2!(5-2)!}\left(27 x^{3}\right)\left(4 y^{2}\right)\right]+\left[\frac{5!}{3!(5-3)!}\left(9 x^{2}\right)\left(8 y^{3}\right)\right]+} \\
& {\left[\frac{5!}{4!(5-4)!}(3 x)\left(16 y^{4}\right)\right]+\left[\frac{5!}{5!(5-5)!}\left(32 y^{5}\right)\right]} \\
& \Rightarrow\left[1\left(243 x^{5}\right)\right]+\left[5\left(81 x^{4}\right)(2 y)\right]+\left[10\left(27 x^{3}\right)\left(4 y^{2}\right)\right]+\left[10\left(9 x^{2}\right)\left(8 y^{3}\right)\right]+\left[5(3 x)\left(16 y^{4}\right)\right]+ \\
& {\left[1\left(32 y^{5}\right)\right]} \\
& \Rightarrow 243 x^{5}+810 x^{4} y+1080 x^{3} y^{2}+720 x^{2} y^{3}+240 x y^{4}+32 y^{5}
\end{aligned}
$$

Ans) $243 x^{5}+810 x^{4} y+1080 x^{3} y^{2}+720 x^{2} y^{3}+240 x y^{4}+32 y^{5}$
Q.4. Using binomial theorem, expand each of the following:
$(2 x-3 y)^{4}$
Answer : To find: Expansion of $(2 x-3 y)^{4}$

Formula used: (i)

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $(2 x-3 y)^{4}$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(2 \mathrm{x})^{4-0}\right]+\left[{ }^{4} \mathrm{C}_{1}(2 \mathrm{x})^{4-1}(-3 \mathrm{y})^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(2 \mathrm{x})^{4-2}(-3 \mathrm{y})^{2}\right]+\left[{ }^{4} \mathrm{C}_{3}(2 \mathrm{x})^{4-3}(-3 \mathrm{y})^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(-3 \mathrm{y})^{4}\right]$

$$
\begin{aligned}
& {\left[\frac{4!}{0!(4-0)!}(2 x)^{4}\right]-\left[\frac{4!}{1!(4-1)!}(2 x)^{3}(3 y)\right]+\left[\frac{4!}{2!(4-2)!}(2 x)^{2}\left(9 y^{2}\right)\right]-} \\
& {\left[\frac{4!}{3!(4-3)!}(2 x)^{1}\left(27 y^{3}\right)\right]+\left[\frac{4!}{4!(4-4)!}\left(81 y^{4}\right)\right]} \\
& \Rightarrow\left[1\left(16 x^{4}\right)\right]-\left[4\left(8 x^{3}\right)(3 y)\right]+\left[6\left(4 x^{2}\right)\left(9 y^{2}\right)\right]-\left[4(2 x)\left(27 y^{3}\right)\right]+\left[1\left(81 y^{4}\right)\right] \\
& \Rightarrow 16 x^{4}-96 x^{3} y+216 x^{2} y^{2}-216 x y^{3}+81 y^{4}
\end{aligned}
$$

Ans) $16 x^{4}-96 x^{3} y+216 x^{2} y^{2}-216 x y^{3}+81 y^{4}$

Q. 5. Using binomial theorem, expand each of the following:

$\left(\frac{2 \mathrm{x}}{3}-\frac{3}{2 \mathrm{x}}\right)^{6}$
Answer : To find: Expansion of $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$
Formula used: (i) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$

$$
\begin{aligned}
& \Rightarrow\left[{ }^{6} \mathrm{C}_{0}\left(\frac{2 x}{3}\right)^{6-0}\right]+\left[{ }^{6} \mathrm{C}_{1}\left(\frac{2 x}{3}\right)^{6-1}\left(-\frac{3}{2 x}\right)^{1}\right]+\left[{ }^{6} \mathrm{C}_{2}\left(\frac{2 x}{3}\right)^{6-2}\left(-\frac{3}{2 x}\right)^{2}\right]+ \\
& {\left[{ }^{6} \mathrm{C}_{3}\left(\frac{2 x}{3}\right)^{6-3}\left(-\frac{3}{2 x}\right)^{3}\right]+\left[{ }^{6} \mathrm{C}_{4}\left(\frac{2 x}{3}\right)^{6-4}\left(-\frac{3}{2 x}\right)^{4}\right]} \\
& +\left[{ }^{6} \mathrm{C}_{5}\left(\frac{2 x}{3}\right)^{6-5}\left(-\frac{3}{2 x}\right)^{5}\right]+\left[{ }^{6} \mathrm{C}_{6}\left(-\frac{3}{2 x}\right)^{6}\right] \\
& \Rightarrow\left[\frac{6!}{0!(6-0)!}\left(\frac{2 x}{3}\right)^{6}\right]-\left[\frac{6!}{1!(6-1)!}\left(\frac{2 x}{3}\right)^{5}\left(\frac{3}{2 x}\right)\right]+ \\
& {\left[\frac{6!}{2!(6-2)!}\left(\frac{2 x}{3}\right)^{4}\left(\frac{9}{4 x^{2}}\right)\right]-\left[\frac{6!}{3!(6-3)!}\left(\frac{2 x}{3}\right)^{3}\left(\frac{27}{8 x^{3}}\right)\right]+} \\
& {\left[\frac{6!}{4!(6-4)!}\left(\frac{2 x}{3}\right)^{2}\left(\frac{81}{16 x^{4}}\right)\right]-\left[\frac{6!}{5!(6-5)!}\left(\frac{2 x}{3}\right)^{1}\left(\frac{243}{32 x^{5}}\right)\right]} \\
& +\left[\frac{6!}{6!(6-6)!}\left(\frac{729}{64 x^{6}}\right)\right]
\end{aligned}
$$

$\Rightarrow\left[1\left(\frac{64 x^{6}}{729}\right)\right]-\left[6\left(\frac{32 x^{5}}{243}\right)\left(\frac{3}{2 x}\right)\right]+\left[15\left(\frac{16 x^{4}}{81}\right)\left(\frac{9}{4 x^{2}}\right)\right]-\left[20\left(\frac{8 x^{3}}{27}\right)\right.$
$\left.\left(\frac{27}{8 x^{3}}\right)\right]+\left[15\left(\frac{4 x^{2}}{9}\right)\left(\frac{81}{16 x^{4}}\right)\right]-\left[6\left(\frac{2 x}{3}\right)\left(\frac{243}{32 x^{5}}\right)\right]+\left[1\left(\frac{729}{64 x^{6}}\right)\right]$
$\Rightarrow \frac{64}{729} x^{6}-\frac{32}{27} x^{4}+\frac{20}{3} x^{2}-20+\frac{135}{4} \frac{1}{x^{2}}-\frac{243}{8} \frac{1}{x^{4}}+\frac{729}{64} \frac{1}{x^{6}}$
Ans) $\frac{64}{729} x^{6}-\frac{32}{27} x^{4}+\frac{20}{3} x^{2}-20+\frac{135}{4} \frac{1}{x^{2}}-\frac{243}{8} \frac{1}{x^{4}}+\frac{729}{64} \frac{1}{x^{6}}$
Q. 6. Using binomial theorem, expand each of the following:
$\left(x^{2}-\frac{3}{x}\right)^{7}$
Answer : To find: Expansion of $\left(x^{2}-\frac{3 x}{7}\right)^{7}$
Formula used: (i) ${ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $\left(x^{2}-\frac{3 x}{7}\right)^{7}$

$$
\begin{aligned}
& \Rightarrow\left[{ }^{7} C_{0}\left(x^{2}\right)^{7-0}\right]+\left[{ }^{7} C_{1}\left(x^{2}\right)^{7-1}\left(-\frac{3 x}{7}\right)^{1}\right]+\left[{ }^{7} C_{2}\left(x^{2}\right)^{7-2}\left(-\frac{3 x}{7}\right)^{2}\right]+ \\
& {\left[{ }^{7} C_{3}\left(x^{2}\right)^{7-3}\left(-\frac{3 x}{7}\right)^{3}\right]+\left[{ }^{7} C_{4}\left(x^{2}\right)^{7-4}\left(-\frac{3 x}{7}\right)^{4}\right]+\left[{ }^{7} C_{5}\left(x^{2}\right)^{7-5}\left(-\frac{3 x}{7}\right)^{5}\right]+} \\
& {\left[{ }^{7} C_{6}\left(x^{2}\right)^{7-6}\left(-\frac{3 x}{7}\right)^{6}\right]+\left[{ }^{7} C_{7}\left(-\frac{3 x}{7}\right)^{7}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left[\frac{7!}{0!(7-0)!}\left(x^{2}\right)^{7}\right]-\left[\frac{7!}{1!(7-1)!}\left(x^{2}\right)^{6}\left(\frac{3 x}{7}\right)\right]+\left[\frac{7!}{2!(7-2)!}\left(x^{2}\right)^{5}\left(\frac{9 x^{2}}{49}\right)\right]- \\
& {\left[\frac{7!}{3!(7-3)!}\left(x^{2}\right)^{4}\left(\frac{27 x^{3}}{343}\right)\right]+\left[\frac{7!}{4!(7-4)!}\left(x^{2}\right)^{3}\left(\frac{81 x^{4}}{2401}\right)\right]-\left[\frac{7!}{5!(7-5)!}\right.} \\
& \left.\left(x^{2}\right)^{2}\left(\frac{243 x^{5}}{16807}\right)\right]+\left[\frac{7!}{6!(7-6)!}\left(x^{2}\right)^{1}\left(\frac{729 x^{6}}{117649}\right)\right]-\left[\frac{7!}{7!(7-7)!}\left(\frac{2187 x^{7}}{823543}\right)\right] \\
& \Rightarrow\left[1\left(x^{14}\right)\right]-\left[7\left(x^{12}\right)\left(\frac{3 x}{7}\right)\right]+\left[21\left(x^{10}\right)\left(\frac{9 x^{2}}{49}\right)\right]-\left[35\left(x^{8}\right)\left(\frac{27 x^{3}}{343}\right)\right]+ \\
& {\left[35\left(x^{6}\right)\left(\frac{81 x^{4}}{2401}\right)\right]-\left[21\left(x^{4}\right)\left(\frac{243 x^{5}}{16807}\right)\right]+\left[7\left(x^{2}\right)\left(\frac{729 x^{6}}{117649}\right)\right]-} \\
& {\left[1\left(\frac{2187 x^{7}}{823543}\right)\right]} \\
& \Rightarrow x^{14}-3 x^{13}+\left(\frac{27}{7}\right) x^{12}-\left(\frac{135}{49}\right) x^{11}+\left(\frac{405}{343}\right) x^{10}- \\
& \left(\frac{729}{2401}\right) x^{9}+\left(\frac{729}{16807}\right) x^{8}-\left(\frac{2187}{823543}\right) x^{7}
\end{aligned}
$$

Ans)
$x^{14}-3 x^{13}+\left(\frac{27}{7}\right) x^{12}-\left(\frac{135}{49}\right) x^{11}+\left(\frac{405}{343}\right) x^{10}-\left(\frac{729}{2401}\right) x^{9}+\left(\frac{729}{16807}\right) x^{8}-$
$\left(\frac{2187}{823543}\right) x^{7}$
Q. 7. Using binomial theorem, expand each of the following:
$\left(x-\frac{1}{y}\right)^{5}$
Answer : To find: Expansion of $\left(x-\frac{1}{y}\right)^{5}$

Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n!}}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $\left(x-\frac{1}{y}\right)^{5}$
$\Rightarrow{ }^{5} \mathrm{C}_{0}(\mathrm{X})^{5-0}+{ }^{5} \mathrm{C}_{1}(\mathrm{x})^{5-1}\left(-\frac{1}{y}\right)^{1}+{ }^{5} \mathrm{C}_{2}(\mathrm{X})^{5-2}\left(-\frac{1}{y}\right)^{2}+{ }^{5} \mathrm{C}_{3}(\mathrm{x})^{5-3}\left(-\frac{1}{y}\right)^{3}+{ }^{5} \mathrm{C}_{4}(\mathrm{x})^{5-4}\left(-\frac{1}{y}\right)^{4}+{ }^{5} \mathrm{C}_{5}$
$\left(-\frac{1}{y}\right)^{5}$
$\Rightarrow\left[\frac{5!}{0!(5-0)!}\left(x^{5}\right)\right]-\left[\frac{5!}{1!(5-1)!}\left(x^{4}\right)\left(\frac{1}{y}\right)^{1}\right]+\left[\frac{5!}{2!(5-2)!}\left(x^{3}\right)\left(\frac{1}{y^{2}}\right)\right]$
$-\left[\frac{5!}{3!(5-3)!}\left(x^{2}\right)\left(\frac{1}{y^{3}}\right)\right]+\left[\frac{5!}{4!(5-4)!}(x)\left(\frac{1}{y^{4}}\right)\right]-\left[\frac{5!}{5!(5-5)!}\left(\frac{1}{y^{5}}\right)\right]$
\Rightarrow
$\left[1\left(x^{5}\right)\right]-\left[5\left(\frac{x^{4}}{y}\right)\right]+\left[10\left(\frac{x^{3}}{y^{2}}\right)\right]-\left[10\left(\frac{x^{2}}{y^{3}}\right)\right]+\left[5\left(\frac{x}{y^{4}}\right)\right]-\left[1\left(y^{5}\right)\right]$
$\Rightarrow x^{5}-5 \frac{x^{4}}{y}+10 \frac{x^{3}}{y^{2}}-10 \frac{x^{2}}{y^{3}}+5 \frac{x}{y^{4}}-y^{5}$
Ans) $x^{5}-5 \frac{x^{4}}{y}+10 \frac{x^{3}}{y^{2}}-10 \frac{x^{2}}{y^{3}}+5 \frac{x}{y^{4}}-y^{5}$
Q. 8. Using binomial theorem, expand each of the following:
$(\sqrt{x}+\sqrt{y})^{8}$
Answer : To find: Expansion of $(\sqrt{x}+\sqrt{y})^{8}$
Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(n-r)!(r)!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $(\sqrt{x}+\sqrt{y})^{8}$
We can write $\sqrt{\mathrm{x}}$ as $\mathrm{x}^{\frac{1}{2}}$ and $\sqrt{\mathrm{y}}$ as $\mathrm{y}^{\frac{1}{2}}$
Now, we have to solve for $\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)^{8}$

$$
\begin{aligned}
& \Rightarrow\left[{ }^{8} C_{0}\left(\frac{1}{x^{2}}\right)^{8-0}\right]+\left[{ }^{8} C_{1}\left(\frac{1}{x^{2}}\right)^{8-1}\left(\frac{1}{y^{2}}\right)^{1}\right]+\left[{ }^{8} C_{2}\left(\frac{1}{x^{2}}\right)^{8-2}\left(\frac{1}{y^{2}}\right)^{2}\right]+ \\
& {\left[{ }^{8} C_{3}\left(\frac{1}{x^{2}}\right)^{8-3}\left(\frac{1}{y^{2}}\right)^{3}\right]+\left[{ }^{8} C_{4}\left(\frac{1}{x^{2}}\right)^{8-4}\left(\frac{1}{y^{2}}\right)^{4}\right]+\left[{ }^{8} C_{5}\left(\frac{1}{x^{2}}\right)^{8-5}\left(\frac{1}{y^{2}}\right)^{5}\right]+} \\
& {\left[{ }^{8} C_{6}\left(\frac{1}{x^{2}}\right)^{8-6}\left(\frac{1}{y^{2}}\right)^{6}\right]+\left[{ }^{8} C_{7}\left(\frac{1}{x^{2}}\right)^{8-7}\left(\frac{1}{y^{\frac{1}{2}}}\right)^{7}\right]+\left[{ }^{8} C_{8}\left(\frac{1}{y^{2}}\right)^{8}\right]}
\end{aligned}
$$

$$
\Rightarrow\left[\frac{8!}{0!(8-0)!}\left(\frac{5}{x^{2}}\right)\right]+\left[\frac{8!}{1!(8-1)!}\left(\frac{7}{x^{2}}\right)\left(\frac{1}{y^{2}}\right)\right]+\left[\frac{8!}{2!(8-2)!}\left(\frac{6}{x^{2}}\right)\left(\frac{2}{y^{2}}\right)\right]+
$$

$$
\left[\frac{8!}{3!(8-3)!}\left(\frac{5}{x^{2}}\right)\left(\frac{3}{y^{2}}\right)\right]+\left[\frac{8!}{4!(8-4)!}\left(x^{\frac{4}{2}}\right)\left(\frac{4}{y^{2}}\right)\right]+\left[\frac{8!}{5!(8-5)!}\left(x^{\frac{3}{2}}\right)\left(\frac{5}{y^{2}}\right)\right]+
$$

$$
\left[\frac{8!}{6!(8-6)!}\left(x^{\frac{2}{2}}\right)\left(\frac{6}{y^{2}}\right)\right]+\left[\frac{8!}{7!(8-7)!}\left(\frac{1}{x^{2}}\right)\left(\frac{7}{y^{2}}\right)\right]+\left[\frac{8!}{8!(8-8)!}\left(\frac{5}{y^{2}}\right)\right]
$$

$$
\Rightarrow\left[1\left(x^{4}\right)\right]+\left[8\left(\frac{7}{x^{2}}\right)\left(\frac{1}{y^{2}}\right)\right]+\left[28\left(x^{3}\right)(y)\right]+\left[56\left(\frac{5}{x^{2}}\right)\left(\frac{3}{y^{2}}\right)\right]
$$

$$
+\left[70\left(x^{2}\right)\left(y^{2}\right)\right]+\left[56\left(x^{\frac{3}{2}}\right)\left(\frac{5}{y^{2}}\right)\right]+\left[28\left(x^{1}\right)\left(y^{3}\right)\right]+\left[8\left(x^{\frac{1}{2}}\right)\left(\frac{7}{y^{2}}\right)\right]+\left[1\left(y^{4}\right)\right]
$$

Ans) ${ }^{\left(\mathrm{x}^{4}\right)}+8^{\left(\mathrm{x}^{7 / 2}\right)\left(\mathrm{y}^{1 / 2}\right)}+28^{\left(\mathrm{x}^{3}\right)(\mathrm{y})}+56^{\left(\mathrm{x}^{5 / 2}\right)\left(\mathrm{y}^{3 / 2}\right)}+70^{\left(\mathrm{x}^{2}\right)\left(\mathrm{y}^{2}\right)}+56^{\left(\mathrm{x}^{3 / 2}\right)\left(\mathrm{y}^{5 / 2}\right)}+$ $28(x)^{1}(y)^{3}+8^{\left(x^{1 / 2}\right)\left(y^{7 / 2}\right)}+(y)^{4}$
Q. 9. Using binomial theorem, expand each of the following:
$(\sqrt[3]{x}-\sqrt[3]{y})^{6}$

Answer : To find: Expansion of $(\sqrt[3]{x}-\sqrt[3]{y})^{6}$
Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $(\sqrt[3]{x}-\sqrt[3]{y})^{6}$
We can write $\sqrt[3]{x}$ as $x^{x^{\frac{1}{3}}}$ and $\sqrt[3]{y}$ as $y^{y^{\frac{1}{3}}}$
Now, we have to solve for $\left(x^{\frac{1}{3}}-y^{\frac{1}{3}}\right)^{6}$

$$
\begin{aligned}
& \Rightarrow\left[{ }^{6} C_{0}\left(\frac{1}{x^{3}}\right)^{6-0}\right]+\left[{ }^{6} C_{1}\left(x^{\frac{1}{3}}\right)^{6-1}\left(-y^{\frac{1}{3}}\right)^{1}\right]+\left[{ }^{6} C_{2}\left(x^{\frac{1}{3}}\right)^{6-2}\left(-y^{\frac{1}{3}}\right)^{2}\right]+ \\
& {\left[{ }^{6} C_{3}\left(x^{\frac{1}{3}}\right)^{6-3}\left(-y^{\frac{1}{3}}\right)^{3}\right]+\left[{ }^{6} C_{4}\left(\frac{1}{x^{\frac{1}{3}}}\right)^{6-4}\left(-y^{\frac{1}{3}}\right)^{4}\right]+\left[{ }^{6} C_{5}\left(x^{\frac{1}{3}}\right)^{6-5}\left(-y^{\frac{1}{3}}\right)^{5}\right]+} \\
& {\left[{ }^{6} C_{6}\left(-y^{\frac{1}{3}}\right)^{6}\right]} \\
& \Rightarrow\left[{ }^{6} C_{0}\left(x^{\frac{6}{3}}\right)\right]-\left[{ }^{6} C_{1}\left(x^{\frac{5}{3}}\right)\left(\frac{1}{y^{3}}\right)\right]+\left[{ }^{6} C_{2}\left(x^{\frac{4}{3}}\right)\left(y^{\frac{2}{3}}\right)\right]-\left[{ }^{6} C_{3}\left(x^{\frac{3}{3}}\right)\left(y^{\frac{3}{3}}\right)\right]+ \\
& {\left[{ }^{6} C_{4}\left(x^{\frac{2}{3}}\right)\left({ }_{y^{3}}^{\frac{4}{3}}\right)\right]-\left[{ }^{6} C_{5}\left(x^{\frac{1}{3}}\right)\left(y^{\frac{5}{3}}\right)\right]+\left[{ }^{6} C_{6}\left(y^{\frac{6}{3}}\right)\right]}
\end{aligned}
$$

$$
\Rightarrow\left[\frac{6!}{0!(6-0)!}\left(x^{2}\right)\right]-\left[\frac{6!}{1!(6-1)!}\left(x^{\frac{5}{3}}\right)\left(\frac{1}{y^{3}}\right)\right]+\left[\frac{6!}{2!(6-2)!}\left(x^{\frac{4}{3}}\right)\left(\frac{2}{y^{3}}\right)\right]
$$

$$
-\left[\frac{6!}{3!(6-3)!}(x)(y)\right]+\left[\frac{6!}{4!(6-4)!}\left(x^{\frac{2}{3}}\right)\left(\frac{4}{y^{3}}\right)\right]-\left[\frac{6!}{5!(6-5)!}\left(x^{\frac{1}{3}}\right)\left(\frac{5}{y^{3}}\right)\right]
$$

$$
+\left[\frac{6!}{6!(6-6)!}\left(y^{2}\right)\right]
$$

$\Rightarrow\left[1\left(x^{2}\right)\right]-\left[6\left(x^{\frac{5}{3}}\right)\left(y^{\frac{1}{3}}\right)\right]+\left[15\left(x^{\frac{4}{3}}\right)\left(y^{\frac{2}{3}}\right)\right]-[20(x)(y)]+\left[15\left(x^{\frac{2}{3}}\right)\left(y^{\frac{4}{3}}\right)\right]-$
$\left[6\left(x^{\frac{1}{3}}\right)\left(y^{\frac{5}{3}}\right)\right]+\left[1\left(y^{2}\right)\right]$
$\Rightarrow x^{2}-6 x^{\frac{5}{3} y^{3}}+15 x^{\frac{1}{3}} y^{\frac{2}{3}}-20 x y+15^{\frac{2}{3}} y^{\frac{4}{3}}-6_{x} x^{\frac{1}{3}} y^{\frac{5}{3}}+y^{2}$
Ans) $x^{2}-6 x^{5 / 3} y^{1 / 3}+15 x^{4 / 3} y^{2 / 3}-20 x y+15 x^{2 / 3} y^{4 / 3}-6 x^{1 / 3} y^{5 / 3}+y^{2}$
Q. 10. Using binomial theorem, expand each of the following:
$\left(1+2 x-3 x^{2}\right)^{4}$
Answer : To find: Expansion of $\left(1+2 x-3 x^{2}\right)^{4}$
Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $\left(1+2 x-3 x^{2}\right)^{4}$
Let $(1+2 x)=$ a and $\left(-3 x^{2}\right)=b \ldots$ (i)
Now the equation becomes $(a+b)^{4}$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(\mathrm{a})^{4-0}\right]+\left[{ }^{4} \mathrm{C}_{1}(\mathrm{a})^{4-1}(\mathrm{~b})^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(\mathrm{a})^{4-2}(\mathrm{~b})^{2}\right]+\left[{ }^{4} \mathrm{C}_{3}(\mathrm{a})^{4-3}(\mathrm{~b})^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(\mathrm{~b})^{4}\right]$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(\mathrm{a})^{4}\right]+\left[{ }^{4} \mathrm{C}_{1}(\mathrm{a})^{3}(\mathrm{~b})^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(\mathrm{a})^{2}(\mathrm{~b})^{2}\right]+\left[{ }^{4} \mathrm{C}_{3}(\mathrm{a})(\mathrm{b})^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(\mathrm{~b})^{4}\right]$
(Substituting value of b from eqn. i)

$$
\begin{aligned}
& \Rightarrow\left[\frac{4!}{0!(4-0)!}(a)^{4}\right]+\left[\frac{4!}{1!(4-1)!}(a)^{3}\left(-3 x^{2}\right)^{1}\right]+\left[\frac{4!}{2!(4-2)!}(a)^{2}\left(-3 x^{2}\right)^{2}\right] \\
& +\left[\frac{4!}{3!(4-3)!}(a)\left(-3 x^{2}\right)^{3}\right]+\left[\frac{4!}{4!(4-4)!}\left(-3 x^{2}\right)^{4}\right]
\end{aligned}
$$

(Substituting value of b from eqn. i)
$\Rightarrow\left[1(1+2 x)^{4}\right]-\left[4(1+2 x)^{3}\left(3 x^{2}\right)\right]+\left[6(1+2 x)^{2}\left(9 x^{4}\right)\right]-$ $\left[4(1+2 x)\left(27 x^{6}\right)^{3}\right]+\left[1\left(81 x^{8}\right)^{4}\right]$
We need the value of a^{4}, a^{3} and a^{2}, where $a=(1+2 x)$
For $(1+2 x)^{4}$, Applying Binomial theorem
$(1+2 x)^{4} \Rightarrow$

$$
{ }^{4} C_{0}(1)^{4-0}+{ }^{4} C_{1}(1)^{4-1}(2 x)^{1}+{ }^{4} C_{2}(1)^{4-2}(2 x)^{2}+{ }^{4} C_{3}(1)^{4-3}(2 x)^{3}+{ }^{4} C_{4}(2 x)^{4}
$$

$$
\Rightarrow \frac{4!}{0!(4-0)!}(1)^{4}+\frac{4!}{1!(4-1)!}(1)^{3}(2 x)^{1}+\frac{4!}{2!(4-2)!}(1)^{2}(2 x)^{2}
$$

$$
+\frac{4!}{3!(4-3)!}(1)(2 x)^{3}+\frac{4!}{4!(4-4)!}(2 x)^{4}
$$

$$
\Rightarrow[1]+[4(1)(2 x)]+\left[6(1)\left(4 x^{2}\right)\right]+\left[4(1)\left(8 x^{3}\right)\right]+\left[1\left(16 x^{4}\right)\right]
$$

$$
\Rightarrow 1+8 x+24 x^{2}+32 x^{3}+16 x^{4}
$$

$$
\begin{equation*}
\text { We have }(1+2 x)^{4}=1+8 x+24 x^{2}+32 x^{3}+16 x^{4} \ldots \tag{iii}
\end{equation*}
$$

For $(a+b)^{3}$, we have formula $a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$
For, $(1+2 x)^{3}$, substituting $\mathrm{a}=1$ and $\mathrm{b}=2 \mathrm{x}$ in the above formula
$\Rightarrow 1^{3}+(2 x)^{3}+3(1)^{2}(2 x)+3(1)(2 x)^{2}$
$\Rightarrow 1+8 x^{3}+6 x+12 x^{2}$
$\Rightarrow 8 x^{3}+12 x^{2}+6 x+1 \ldots$ (iv)
For $(a+b)^{2}$, we have formula $a^{2}+2 a b+b^{2}$
For, $(1+2 x)^{2}$, substituting $\mathrm{a}=1$ and $\mathrm{b}=2 \mathrm{x}$ in the above formula
$\Rightarrow(1)^{2}+2(1)(2 x)+(2 x)^{2}$
$\Rightarrow 1+4 x+4 x^{2}$
$\Rightarrow 4 x^{2}+4 x+1 \ldots(v)$
Putting the value obtained from eqn. (iii),(iv) and (v) in eqn. (ii)
$\Rightarrow 1\left(1+8 x+24 x^{2}+32 x^{3}+16 x^{4}\right)-4\left(8 x^{3}+12 x^{2}+6 x+1\right)\left(3 x^{2}\right)$
$+6\left(4 x^{2}+4 x+1\right)\left(9 x^{4}\right)-4(1+2 x)\left(27 x^{6}\right)^{3}+1\left(81 x^{8}\right)$
$\Rightarrow 1\left(1+8 x+24 x^{2}+32 x^{3}+16 x^{4}\right)-4\left(24 x^{5}+36 x^{4}+18 x^{3}+3 x^{2}\right)$
$+6\left(36 x^{6}+36 x^{5}+9 x^{4}\right)-4\left(27 x^{6}+54 x^{7}\right)+1\left(81 x^{8}\right)$
$\Rightarrow 1+8 x+24 x^{2}+32 x^{3}+16 x^{4}-96 x^{5}-144 x^{4}-72 x^{3}-12 x^{2}+216 x^{6}+216 x^{5}+54 x^{4}-$ $108 x^{6}-216 x^{7}+81 x^{8}$

On rearranging
Ans) $81 x^{8}-216 x^{7}+108 x^{6}+120 x^{5}-74 x^{4}-40 x^{3}+12 x^{2}+8 x+1$

Q.11. Using binomial theorem, expand each of the following:

$\left(1+\frac{\mathrm{x}}{2}-\frac{2}{\mathrm{x}}\right)^{4}, \mathrm{x} \neq 0$
Answer : To find: Expansion of $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$
Formula used: (i) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$
Let $\left(1+\frac{x}{2}\right)=a$ and $\left(-\frac{2}{x}\right)=b \ldots$ (i)
Now the equation becomes $(a+b)^{4}$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(a)^{4-0}\right]+\left[{ }^{4} \mathrm{C}_{1}(a)^{4-1}(b)^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(a)^{4-2}(b)^{2}\right]+\left[{ }^{4} \mathrm{C}_{3}(a)^{4-3}(b)^{3}\right]+$
$\left[{ }^{4} \mathrm{C}_{4}(\mathrm{~b})^{4}\right]$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(a)^{4}\right]+\left[{ }^{4} \mathrm{C}_{1}(\mathrm{a})^{3}(b)^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(\mathrm{a})^{2}(\mathrm{~b})^{2}\right]+\left[{ }^{4} \mathrm{C}_{3}(\mathrm{a})(\mathrm{b})^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(\mathrm{~b})^{4}\right]$
(Substituting value of b from eqn. i)

$$
\begin{aligned}
& \Rightarrow\left[\frac{4!}{0!(4-0)!}(a)^{4}\right]+\left[\frac{4!}{1!(4-1)!}(a)^{3}\left(-\frac{2}{x}\right)^{1}\right]+\left[\frac{4!}{2!(4-2)!}(a)^{2}\left(-\frac{2}{x}\right)^{2}\right]+ \\
& {\left[\frac{4!}{3!(4-3)!}(a)^{1}\left(-\frac{2}{x}\right)^{3}\right]+\left[\frac{4!}{4!(4-4)!}\left(-\frac{2}{x}\right)^{4}\right]}
\end{aligned}
$$

(Substituting value of a from eqn. i)

$$
\begin{align*}
& \Rightarrow\left[1\left(1+\frac{x}{2}\right)^{4}\right]-\left[4\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)\right]+\left[6\left(1+\frac{x}{2}\right)^{2}\left(\frac{4}{x^{2}}\right)\right] \\
& -\left[4\left(1+\frac{x}{2}\right)^{1}\left(\frac{8}{x^{3}}\right)\right]+\left[1\left(\frac{16}{x^{4}}\right)\right]_{\ldots \text { (ii) }} \tag{ii}
\end{align*}
$$

We need the value of a^{4}, a^{3} and a^{2}, where $a=\left(1+\frac{x}{2}\right)$
For $\left(1+\frac{x}{2}\right)^{4}$, Applying Binomial theorem

$$
\begin{aligned}
& \left(1+\frac{x}{2}\right)^{4}= \\
& {\left[{ }^{4} C_{0}(1)^{4-0}\right]+\left[{ }^{4} C_{1}(1)^{4}-1\left(\frac{x}{2}\right)^{1}\right]+\left[{ }^{4} C_{2}(1)^{4}-2\left(\frac{x}{2}\right)^{2}\right]+\left[{ }^{4} C_{3}(1)^{4}-\right.} \\
& \left.3\left(\frac{x}{2}\right)^{3}\right]+\left[{ }^{4} C_{4}\left(\frac{x}{2}\right)^{4}\right] \\
& \Rightarrow\left[\frac{4!}{0!(4-0)!}(1)^{4}\right]+\left[\frac{4!}{1!(4-1)!}(1)^{3}\left(\frac{x}{2}\right)^{1}\right]+\left[\frac{4!}{2!(4-2)!}(1)^{2}\left(\frac{x}{2}\right)^{2}\right] \\
& +\left[\frac{4!}{3!(4-3)!}(1)\left(\frac{x}{2}\right)^{3}\right]+\left[\frac{4!}{4!(4-4)!}\left(\frac{x}{2}\right)^{4}\right] \\
& \Rightarrow[1]+\left[4(1)\left(\frac{x}{2}\right)\right]+\left[6(1)\left(\frac{x^{2}}{4}\right)\right]+\left[4(1)\left(\frac{x^{3}}{8}\right)\right]+\left[1\left(\frac{x^{4}}{16}\right)\right]
\end{aligned}
$$

$\Rightarrow 1+2 x+\frac{3}{2} x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}$
On rearranging the above eqn.
$\Rightarrow \frac{1}{16} x^{4}+\frac{1}{2} x^{3}+\frac{3}{2} x^{2}+2 x+1 \ldots$
We have, $\left(1+\frac{x}{2}\right)^{4}=\frac{1}{16} x^{4}+{ }^{\frac{1}{2}} x^{3}+{ }^{\frac{3}{2}} x^{2}+2 x+1$
For, $(a+b)^{3}$, we have formula $a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$
For, $\left(1+\frac{x}{2}\right)^{3}$, substituting $\mathrm{a}=1$ and $\mathrm{b}=\frac{\mathrm{x}}{\frac{\mathrm{x}}{2}}$ in the above formula
$\Rightarrow 1^{3}+\left(\frac{x}{2}\right)^{3}+3(1)^{2}\left(\frac{x}{2}\right)+3(1)\left(\frac{x}{2}\right)^{2}$
$\Rightarrow 1+\left(\frac{x^{3}}{8}\right)+\left(\frac{3 x}{2}\right)+\left(\frac{3 x^{2}}{4}\right)$
$\Rightarrow\left(\frac{x^{3}}{8}\right)+\left(\frac{3 x^{2}}{4}\right)+\left(\frac{3 x}{2}\right)+1 \ldots$ (iv)
For, $(a+b)^{2}$, we have formula $a^{2}+2 a b+b^{2}$
For, $\left(1+\frac{\mathrm{x}}{2}\right)^{2}$, substituting $\mathrm{a}=1$ and $\mathrm{b}==^{\frac{\mathrm{x}}{2}}$ in the above formula
$\Rightarrow(1)^{2}+2(1)\left(\frac{x}{2}\right)+\left(\frac{x}{2}\right)^{2}$
$\Rightarrow 1+x+\left(\frac{x^{2}}{4}\right)$
$\Rightarrow \frac{x^{2}}{4}+x+1$.
Putting the value obtained from eqn. (iii),(iv) and (v) in eqn. (ii)

$$
\begin{aligned}
& \Rightarrow\left[1\left(\frac{1}{16} x^{4}+\frac{1}{2} x^{3}+\frac{3}{2} x^{2}+2 x+1\right)\right]-\left[4\left(\frac{x^{3}}{8}+\frac{3 x^{2}}{4}+\frac{3 x}{2}+1\right)\left(\frac{2}{x}\right)\right] \\
& {\left[6\left(\frac{x^{2}}{4}+x+1\right)\left(\frac{4}{x^{2}}\right)\right]-\left[4\left(1+\frac{x}{2}\right)\left(\frac{8}{x^{3}}\right)\right]+\left[1\left(\frac{16}{x^{4}}\right)\right]} \\
& \Rightarrow \frac{1}{16} x^{4}+\frac{1}{2} x^{3}+\frac{3}{2} x^{2}+2 x+1-x^{2}-6 x-12-\frac{8}{x}+6+\frac{24}{x}+\frac{24}{x^{2}}
\end{aligned}
$$

$$
-\frac{32}{x^{3}}-\frac{16}{x^{2}}+\frac{16}{x^{4}}
$$

On rearranging
Ans) $\frac{1}{16} x^{4}+\frac{1}{2} x^{3}+\frac{1}{2} x^{2}-4 x-5+\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
Q. 12. Using binomial theorem, expand each of the following:
$\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+3 \mathrm{a}^{2}\right)^{3}$
Answer : To find: Expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
Formula used: (i) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(n-r)!(r)!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots . .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

We have, $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
Let, $\left(3 x^{2}-2 a x\right)=p \ldots$ (i)
The equation becomes $\left(p+3 a^{2}\right)^{3}$

$$
\begin{aligned}
& \Rightarrow\left[{ }^{3} \mathrm{C}_{0}(p)^{3-0}\right]+\left[{ }^{3} \mathrm{C}_{1}(\mathrm{p})^{3-1}\left(3 a^{2}\right)^{1}\right]+\left[{ }^{3} \mathrm{C}_{2}(\mathrm{p})^{3-2}\left(3 a^{2}\right)^{2}\right]+\left[{ }^{3} \mathrm{C}_{3}\left(3 a^{2}\right)^{3}\right] \\
& \Rightarrow\left[{ }^{3} \mathrm{C}_{0}(\mathrm{p})^{3}\right]+\left[{ }^{3} \mathrm{C}_{1}(\mathrm{p})^{2}\left(3 \mathrm{a}^{2}\right)\right]+\left[{ }^{3} \mathrm{C}_{2}(\mathrm{p})\left(9 a^{4}\right)\right]+\left[{ }^{3} \mathrm{C}_{3}\left(27 a^{6}\right)\right]
\end{aligned}
$$

Substituting the value of p from eqn. (i)

$$
\Rightarrow\left[\frac{3!}{0!(3-0)!}\left(3 x^{2}-2 a x\right)^{3}\right]+\left[\frac{3!}{1!(3-1)!}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)\right]
$$

$$
\begin{aligned}
& +\left[\frac{3!}{2!(3-2)!}\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)\right]+\left[\frac{3!}{3!(3-3)!}\left(27 a^{6}\right)\right] \\
& \Rightarrow\left[1\left(3 x^{2}-2 a x\right)^{3}\right]+\left[3\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)\right]+\left[3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)\right]+ \\
& {\left[1\left(27 a^{6}\right)^{3}\right]}
\end{aligned}
$$

(ii)

We need the value of p^{3} and p^{2}, where $p=3 x^{2}-2 a x$
For, $(a+b)^{3}$, we have formula $a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$
For, $\left(3 x^{2}-2 a x\right)^{3}$, substituting $a=3 x^{2}$ and $b=-2 a x$ in the above formula
$\Rightarrow\left[\left(3 x^{2}\right)^{3}\right]+\left[(-2 a x)^{3}\right]+\left[3\left(3 x^{2}\right)^{2}(-2 a x)\right]+\left[3\left(3 x^{2}\right)(-2 a x)^{2}\right]$
$\Rightarrow 27 x^{6}-8 a^{3} x^{3}-54 a x^{5}+36 a^{2} x^{4} \ldots$ (iii)
For, $(a+b)^{2}$, we have formula $a^{2}+2 a b+b^{2}$
For, $\left(3 x^{2}-2 a x\right)^{3}$, substituting $a=3 x^{2}$ and $b=-2 a x$ in the above formula
$\Rightarrow\left[\left(3 x^{2}\right)^{2}\right]+\left[2\left(3 x^{2}\right)(-2 a x)\right]+\left[(-2 a x)^{2}\right]$
$\Rightarrow 9 x^{4}-12 x^{3} a+4 a^{2} x^{2} \ldots$ (iv)
Putting the value obtained from eqn. (iii) and (iv) in eqn. (ii)
$\Rightarrow\left[1\left(27 x^{6}-8 a^{3} x^{3}-54 a x^{5}+36 a^{2} x^{4}\right)\right]+$
$\left[3\left(9 x^{4}-12 x^{3} a+4 a^{2} x^{2}\right)\left(3 a^{2}\right)\right]+\left[3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)\right]+\left[1\left(27 a^{6}\right)\right]$
$\Rightarrow 27 x^{6}-8 a^{3} x^{3}-54 a x^{5}+36 a^{2} x^{4}+81 a^{2} x^{4}-108 x^{3} a^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
On rearranging
Ans) $27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 x^{3} a^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
Q. 13. Evaluate :

$$
(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}
$$

Answer : To find: Value of $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$
Formula used: (i) ${ }^{{ }^{n}} C_{r}=\frac{n!}{(n-r)!(r)!}$
(ii) $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}+\ldots \ldots+{ }^{\mathrm{n}} \mathrm{C}_{n-1} \mathrm{ab}^{\mathrm{n}-1}+{ }^{\mathrm{n}} \mathrm{C}_{n} b^{n}$
$(a+1)^{6}=$
$\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}\right]+\left[{ }^{6} \mathrm{C}_{1} \mathrm{a}^{6-1} 1\right]+\left[{ }^{6} \mathrm{C}_{2} \mathrm{a}^{6-2} 1^{2}\right]+\left[{ }^{6} \mathrm{C}_{3} \mathrm{a}^{6-3} 1^{3}\right]+\left[{ }^{6} \mathrm{C}_{4} \mathrm{a}^{6-4} 1^{4}\right]+$ $\left[{ }^{6} \mathrm{C}_{5} \mathrm{a}^{6-5} 1^{5}\right]+\left[{ }^{6} \mathrm{C}_{6} 1^{6}\right]$
$\Rightarrow{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{a}+{ }^{6} \mathrm{C}_{6} \ldots$ (i)
$(a-1)^{6}=$
$\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}\right]+\left[{ }^{6} \mathrm{C}_{1} a^{6-1}(-1)^{1}\right]+\left[{ }^{6} \mathrm{C}_{2} \mathrm{a}^{6-2}(-1)^{2}\right]+\left[{ }^{6} \mathrm{C}_{3} \mathrm{a}^{6-3}(-1)^{3}\right]+$ $\left[{ }^{6} \mathrm{C}_{4} \mathrm{a}^{6-4}(-1)^{4}\right]+\left[{ }^{6} \mathrm{C}_{5} \mathrm{a}^{6-5}(-1)^{5}\right]+\left[{ }^{6} \mathrm{C}_{6}(-1)^{6}\right]$
$\Rightarrow{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{a}+{ }^{6} \mathrm{C}_{6} \ldots$ (ii)
Adding eqn. (i) and (ii)
$(\mathrm{a}+1)^{6}+(\mathrm{a}-1)^{6}=\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{a}+{ }^{6} \mathrm{C}_{6}\right]+$
${ }^{6} \mathrm{C}^{6} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2}-{ }^{6} \mathrm{C} 5 \mathrm{a}+{ }^{6} \mathrm{C}$ 詸 $\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{a}+{ }^{6} \mathrm{C}_{6}\right]$
$\Rightarrow 2\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2}+{ }^{6} \mathrm{C}_{6}\right]$
$\Rightarrow 2^{\left[\left(\frac{6!}{0!(6-0)!} a^{6}\right)+\left(\frac{6!}{2!(6-2)!} a^{4}\right)+\left(\frac{6!}{4!(6-4)!} a^{2}\right)+\left(\frac{6!}{6!(6-6)!}\right)\right]}$
$\Rightarrow 2\left[(1) a^{6}+(15) a^{4}+(15) a^{2}+(1)\right]$
$\Rightarrow 2\left[a^{6}+15 a^{4}+15 a^{2}+1\right]=(a+1)^{6}+(a-1)^{6}$
Putting the value of $\mathrm{a}=\sqrt{2}$ in the above equation
$(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}=2\left[^{(\sqrt{2})_{6}+15}(\sqrt{2})_{4}+15(\sqrt{2})_{2}+1\right]$
$\Rightarrow 2[8+15(4)+15(2)+1]$
$\Rightarrow 2[8+60+30+1]$
$\Rightarrow 2[99]$
$\Rightarrow 198$
Ans) 198
Q. 14. Evaluate :
$(\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}$
Answer : To find: Value of $(\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}$

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

$$
\begin{align*}
& (\mathrm{a}+1)^{5}={ }^{5} \mathrm{C}_{0} \mathrm{a}^{5}+{ }^{5} \mathrm{C}_{1} \mathrm{a}^{5-1} 1+{ }^{5} \mathrm{C}_{2} \mathrm{a}^{5-2} 1^{2}+{ }^{5} \mathrm{C}_{3} \mathrm{a}^{5-3} 1^{3}+{ }^{5} \mathrm{C}_{4} \mathrm{a}^{5-4} 1^{4}+{ }^{5} \mathrm{C}_{5} 1^{5} \\
& \Rightarrow{ }^{5} \mathrm{C}_{0} \mathrm{a}^{5}+{ }^{5} \mathrm{C}_{1} \mathrm{a}^{4}+{ }^{5} \mathrm{C}_{2} \mathrm{a}^{3}+{ }^{5} \mathrm{C}_{3} \mathrm{a}^{2}+{ }^{5} \mathrm{C}_{4} \mathrm{a}+{ }^{5} \mathrm{C}_{5} \ldots \text { (i) } \tag{i}\\
& (\mathrm{a}-1)^{5} \\
& =\left[{ }^{5} \mathrm{C}_{0} \mathrm{a}^{5}\right]+\left[{ }^{5} \mathrm{C}_{1} \mathrm{a}^{5-1}(-1)^{1}\right]+\left[{ }^{5} \mathrm{C}_{2} \mathrm{a}^{5-2}(-1)^{2}\right]+\left[{ }^{5} \mathrm{C}_{3} \mathrm{a}^{5-3}(-1)^{3}\right]+ \\
& {\left[{ }^{5} \mathrm{C}_{4} \mathrm{a}^{5-4}(-1)^{4}\right]+\left[{ }^{5} \mathrm{C}_{5}(-1)^{5}\right]} \\
& \Rightarrow{ }^{5} \mathrm{Coa}^{5}-{ }^{5} \mathrm{C}_{1} \mathrm{a}^{4}+{ }^{5} \mathrm{C}_{2} \mathrm{a}^{3}-{ }^{5} \mathrm{C}_{3} \mathrm{a}^{2}+{ }^{5} \mathrm{C}_{4} \mathrm{a}-{ }^{5} \mathrm{C}_{5} \ldots \text { (ii) }
\end{align*}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
& (\mathrm{a}+1)^{5}-(\mathrm{a}-1)^{5}=\left[{ }^{5} \mathrm{C}_{0} \mathrm{a}^{5}+{ }^{5} \mathrm{C}_{1} \mathrm{a}^{4}+{ }^{5} \mathrm{C}_{2} \mathrm{a}^{3}+{ }^{5} \mathrm{C}_{3} \mathrm{a}^{2}+{ }^{5} \mathrm{C}_{4} \mathrm{a}+{ }^{5} \mathrm{C}_{5}\right]- \\
& \Rightarrow 2\left[{ }^{5}-{ }^{5} \mathrm{C}_{1} \mathrm{a}^{4}+{ }^{5} \mathrm{C}_{2} \mathrm{a}^{3}-{ }^{5} \mathrm{C}_{3} \mathrm{a}^{2}+{ }^{5} \mathrm{C}_{4} \mathrm{a}-{ }^{5} \mathrm{a}^{4}+{ }^{5} \mathrm{C}_{3} \mathrm{a}^{2}+{ }^{5}{ }^{5} \mathrm{C}_{5}\right] \\
& \Rightarrow 2\left[\left(\frac{5!}{1!(5-1)!} a^{4}\right)+\left(\frac{5!}{3!(5-3)!} \mathrm{a}^{2}\right)+\left(\frac{5!}{5!(5-5)!}\right)\right] \\
& \Rightarrow 2\left[(5) \mathrm{a}^{4}+(10) \mathrm{a}^{2}+(1)\right] \\
& \Rightarrow 2\left[5 \mathrm{a}^{4}+10 \mathrm{a}^{2}+1\right]=(\mathrm{a}+1)^{5}-(\mathrm{a}-1)^{5}
\end{aligned}
$$

Putting the value of $a=\sqrt{3}$ in the above equation

$$
\begin{aligned}
& (\sqrt{3}+1)^{5}-(\sqrt{3}-1)^{5}=2\left[5^{\left.\left.(\sqrt{3})_{4}+10^{(\sqrt{3}}\right)_{2}+1\right]}\right. \\
& \Rightarrow 2[(5)(9)+(10)(3)+1] \\
& \Rightarrow 2[45+30+1] \\
& \Rightarrow 152
\end{aligned}
$$

Ans) 152

Q. 15. Evaluate :

$$
(2+\sqrt{3})^{7}+(2-\sqrt{3})^{7}
$$

Answer: To find: Value of $(2+\sqrt{3})^{7}+(2-\sqrt{3})^{7}$
Formula used: (i) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$

$$
\begin{aligned}
& \quad\left[{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}\right]+\left[{ }^{7} \mathrm{C}_{1} \mathrm{a}^{7-1} \mathrm{~b}\right]+\left[{ }^{7} \mathrm{C}_{2} \mathrm{a}^{7-2} \mathrm{~b}^{2}\right]+\left[{ }^{7} \mathrm{C}_{3} \mathrm{a}^{7-3} \mathrm{~b}^{3}\right]+\left[{ }^{7} \mathrm{C}_{4} \mathrm{a}^{7-4} \mathrm{~b}^{4}\right]+ \\
& (\mathrm{a}+\mathrm{b})^{7}=\left[{ }^{7} \mathrm{C}_{5} \mathrm{a}^{\left.\mathrm{a}^{-5} \mathrm{~b}^{5}\right]+\left[{ }^{7} \mathrm{C}_{6} \mathrm{a}^{7-6} \mathrm{~b}^{6}\right]+\left[{ }^{7} \mathrm{C}_{7} \mathrm{~b}^{7}\right]}\right. \\
& \Rightarrow{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}+{ }^{7}{ }^{7} \mathrm{C}_{1} \mathrm{a}^{6} \mathrm{~b}+{ }^{7} \mathrm{C}_{2} \mathrm{a}^{5} \mathrm{~b}^{2}+{ }^{7} \mathrm{C}_{3} \mathrm{a}^{4} \mathrm{~b}^{3}+{ }^{7} \mathrm{C}_{4} \mathrm{a}^{3} \mathrm{~b}^{4}+{ }^{7} \mathrm{C}_{5} \mathrm{a}^{2} \mathrm{~b}^{5}+{ }^{7} \mathrm{C}_{6} \mathrm{a}^{1} \mathrm{~b}^{6}+{ }^{7} \mathrm{C}_{7} \mathrm{~b}^{7} \ldots \text { (i) }
\end{aligned}
$$

(a-
$\left[{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}\right]+\left[{ }^{7} \mathrm{C}_{1} \mathrm{a}^{7-1}(-\mathrm{b})\right]+\left[{ }^{7} \mathrm{C}_{2} \mathrm{a}^{7-2}(-\mathrm{b})^{2}\right]+\left[{ }^{7} \mathrm{C}_{3} \mathrm{a}^{7-3}(-\mathrm{b})^{3}\right]+$
$\mathrm{b})^{7}={ }^{\left[{ }^{7} \mathrm{C}_{4} \mathrm{a}^{7-4}(-\mathrm{b})^{4}\right]+\left[{ }^{7} \mathrm{C}_{5} \mathrm{a}^{7-5}(-\mathrm{b})^{5}\right]+\left[{ }^{7} \mathrm{C}_{6} \mathrm{a}^{7-6}(-\mathrm{b})^{6}\right]+\left[{ }^{7} \mathrm{C}_{7}(-\mathrm{b})^{7}\right]}$
$\Rightarrow{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}-{ }^{7} \mathrm{C}_{1} \mathrm{a}^{6} \mathrm{~b}+{ }^{7} \mathrm{C}_{2} \mathrm{a}^{5} \mathrm{~b}^{2}-{ }^{7} \mathrm{C}_{3} \mathrm{a}^{4} \mathrm{~b}^{3}+{ }^{7} \mathrm{C}_{4} \mathrm{a}^{3} \mathrm{~b}^{4}-{ }^{7} \mathrm{C}_{5} \mathrm{a}^{2} \mathrm{~b}^{5}+{ }^{7} \mathrm{C}_{6} \mathrm{a}^{1} \mathrm{~b}^{6}-{ }^{7} \mathrm{C}_{7} \mathrm{~b}^{7}$.
Adding eqn. (i) and (ii)

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b})^{7}+(\mathrm{a}-\mathrm{b})^{7}=\left[{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}+{ }^{7} \mathrm{C}_{1} \mathrm{a}^{6} \mathrm{~b}\right. \\
& \left.+{ }^{7} \mathrm{C}_{2} \mathrm{a}^{5}{ }^{2}+{ }^{7} \mathrm{C}_{3} \mathrm{a}^{3}{ }^{3}+{ }^{7} \mathrm{C}_{4}{ }^{3} b^{4}+{ }^{7} \mathrm{C}_{5}{ }^{2} \mathrm{~b}^{5}+{ }^{7} \mathrm{C}_{6}{ }^{1}{ }^{6} b^{6}+{ }^{7} \mathrm{C}_{7} \mathrm{~b}^{7}\right]+\left[{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}-{ }^{7} \mathrm{C}_{1} \mathrm{a}^{6} \mathrm{~b}\right. \\
& \left.+{ }^{7} \mathrm{C}_{2} \mathrm{a}^{5} \mathrm{~b}^{2}-{ }^{7} \mathrm{C}_{3} \mathrm{a}^{4} \mathrm{~b}^{3}+{ }^{7} \mathrm{C}_{4} \mathrm{a}^{3} \mathrm{~b}^{4}-{ }^{7} \mathrm{C}_{5} a^{2} b^{5}+{ }^{7} \mathrm{C}_{6} \mathrm{a}^{1} \mathrm{~b}^{6}-{ }^{7} \mathrm{C}_{7} \mathrm{~b}^{7}\right]
\end{aligned}
$$

$\Rightarrow 2\left[{ }^{7} \mathrm{C}_{0} \mathrm{a}^{7}+{ }^{7} \mathrm{C}_{2} \mathrm{a}^{5} \mathrm{~b}^{2}+{ }^{7} \mathrm{C}_{4} \mathrm{a}^{3} \mathrm{~b}^{4}+{ }^{7} \mathrm{C}_{6} \mathrm{a}^{1} \mathrm{~b}^{6}\right]$
$\Rightarrow 2^{\left[\left[\frac{7!}{o!(7-0)!} a^{7}\right]+\left[\frac{7!}{2!(7-2)!} a^{5 b^{2}}\right]+\left[\frac{7!}{4!(7-4)!} a^{3} b^{4}\right]+\left[\frac{7!}{6!(7-6)!} a^{1} b^{6}\right]\right]}$
$\Rightarrow 2\left[(1) a^{7}+(21) a^{5} b^{2}+(35) a^{3} b^{4}+(7) a b^{6}\right]$
$\Rightarrow 2\left[a^{7}+21 a^{5} b^{2}+35 a^{3} b^{4}+7 a b^{6}\right]=(a+b)^{7}+(a-b)^{7}$
Putting the value of $\mathrm{a}=2$ and $\mathrm{b}=\sqrt{3}$ in the above equation

$$
\begin{aligned}
& (2+\sqrt{3})^{7}+(2-\sqrt{3})^{7} \\
& =2^{\left[\left\{2^{7}\right\}+\left\{21(2)^{5}(\sqrt{3})^{2}\right\}+\left\{35(2)^{3}(\sqrt{3})^{4}\right\}+\left\{7(2)(\sqrt{3})^{6}\right\}\right]} \\
& =2[128+21(32)(3)+35(8)(9)+7(2)(27)] \\
& =2[128+2016+2520+378] \\
& =10084
\end{aligned}
$$

Ans) 10084
Q. 16. Evaluate :
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
Answer : To find: Value of $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(n-r)!(r)!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$
$(\mathrm{a}+\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{6-1} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{6-2} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{6-3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{6-4} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{a}^{6-5} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6}$
$\Rightarrow{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{ab}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6} \ldots$ (i)
$(a-b)^{6}=$

$$
\begin{align*}
& =\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}\right]+\left[{ }^{6} \mathrm{C}_{1} \mathrm{a}^{6-1}(-b)\right]+\left[{ }^{6} \mathrm{C}_{2} \mathrm{a}^{6-2}(-b)^{2}\right]+\left[{ }^{6} \mathrm{C}_{3} \mathrm{a}^{6-3}(-b)^{3}\right]+ \\
& {\left[{ }^{6} \mathrm{C}_{4} \mathrm{a}^{6-4}(-\mathrm{b})^{4}\right]+\left[{ }^{6} \mathrm{C}_{5} \mathrm{a}^{6-5}(-\mathrm{b})^{5}\right]+\left[{ }^{6} \mathrm{C}_{6}(-\mathrm{b})^{6}\right]} \\
& \Rightarrow{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} b+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} b^{4}-{ }^{6} \mathrm{C}_{5} \mathrm{ab}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6} \ldots \tag{ii}
\end{align*}
$$

Substracting (ii) from (i)

$$
\begin{aligned}
& \left.(\mathrm{a}+\mathrm{b})^{6}-(\mathrm{a}-\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{ab}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6}\right]- \\
& {\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}-{ }^{6} \mathrm{C}_{5} \mathrm{ab}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6}\right]} \\
& =2\left[{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{5} \mathrm{ab}^{5}\right] \\
& =2^{\left[\left\{\frac{6!}{1!(6-1)!} a^{5} a\right\}+\left\{\frac{6!}{3!(6-3)!} a^{3} b^{3}\right\}+\left\{\frac{6!}{5!(6-5)!} a b^{5}\right\}\right]} \\
& =2\left[(6) a^{5} b+(20) a^{3} b^{3}+(6) a b^{5}\right] \\
& \Rightarrow(a+b)^{6}-(a-b)^{6}=2\left[(6) a^{5} b+(20) a^{3} b^{3}+(6) a b^{5}\right]
\end{aligned}
$$

Putting the value of $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$ in the above equation

$$
\begin{aligned}
& (\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6} \\
& \Rightarrow 2^{\left[(6)(\sqrt{3})^{5}(\sqrt{2})+(20)(\sqrt{3})^{3}(\sqrt{2})^{3}+(6)(\sqrt{3})(\sqrt{2})^{5}\right]} \\
& \Rightarrow 2^{[54(\sqrt{6})+120(\sqrt{6})+24(\sqrt{6})]} \\
& \Rightarrow 396 \sqrt{6}
\end{aligned}
$$

Ans) $396 \sqrt{6}$
Q. 17. Prove that
$\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \cdot 3^{\mathrm{r}}=4^{\mathrm{n}}$

Answer:

To prove: $\sum_{r=0}^{n}{ }^{n} C_{r} \cdot 3^{r}=4^{n}$
Formula used: $\sum_{r=0}^{n}{ }^{n} C_{r} \cdot a^{n-r} b^{r}=(a+b)^{n}$
Proof: In the above formula if we put $a=1$ and $b=3$, then we will ge
$\sum_{r=0}^{n}{ }^{n} C_{r} \cdot 1^{n-r} 3^{r}=(1+3)^{n}$
Therefore,
$\sum_{r=0}^{n}{ }^{n} C_{r} \cdot 3^{r}=(4)^{n}$
Hence Proved.
Q. 18. Using binominal theorem, evaluate each of the following :
(i) $(101)^{4}$ (ii) $(98)^{4}$
(iii)(1.2) ${ }^{4}$

Answer : (i) (101) ${ }^{4}$
To find: Value of $(101)^{4}$
Formula used: (i) ${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$
$101=(100+1)$
Now $(101)^{4}=(100+1)^{4}$
$(100+1)^{4}=$
$\left[{ }^{4} \mathrm{C}_{0}(100)^{4-0}\right]+\left[{ }^{4} \mathrm{C}_{1}(100)^{4-1}(1)^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(100)^{4-2}(1)^{2}\right]+$ $\left[{ }^{4} C_{3}(100)^{4-3}(1)^{3}\right]+\left[{ }^{4} C_{4}(1)^{4}\right]$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(100)^{4}\right]+\left[{ }^{4} \mathrm{C}_{1}(100)^{3}(1)^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(100)^{2}(1)^{2}\right]+$ $\left[{ }^{4} \mathrm{C}_{3}(100)^{1}(1)^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(1)^{4}\right]$

$$
\begin{aligned}
& \Rightarrow\left[\frac{4!}{0!(4-0)!}(100000000)\right]+\left[\frac{4!}{1!(4-1)!}(1000000)\right]+ \\
& {\left[\frac{4!}{2!(4-2)!}(10000)\right]+\left[\frac{4!}{3!(4-3)!}(100)\right]+\left[\frac{4!}{4!(4-4)!}(1)\right]} \\
& \Rightarrow[(1)(100000000)]+[(4)(1000000)]+[(6)(10000)]+ \\
& {[(4)(100)]+[(1)(1)]}
\end{aligned}
$$

$=104060401$
Ans) 104060401
(ii) $(98)^{4}$

To find: Value of (98) ${ }^{4}$
Formula used: (I) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{22} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b b^{n-1}+{ }^{n} C_{n b} b^{n}$
$98=(100-2)$
Now (98) ${ }^{4}=(100-2)^{4}$
$(100-2)^{4}$
$=\left[{ }^{4} \mathrm{C}_{0}(100)^{4-0}\right]+\left[{ }^{4} \mathrm{C}_{1}(100)^{4-1}(-2)^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(100)^{4-2}(-2)^{2}\right]+$ $\left[{ }^{4} \mathrm{C}_{3}(100)^{4-3}(-2)^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(-2)^{4}\right]$
$\Rightarrow\left[{ }^{4} \mathrm{C}_{0}(100)^{4}\right]-\left[{ }^{4} \mathrm{C}_{1}(100)^{3}(2)\right]+\left[{ }^{4} \mathrm{C}_{2}(100)^{2}(4)\right]-\left[{ }^{4} \mathrm{C}_{3}(100)^{1}(8)\right]+$ [$\left.{ }^{4} \mathrm{C}_{4}(16)\right]$

$$
\begin{aligned}
& \Rightarrow\left[\frac{4!}{0!(4-0)!}(100000000)\right]-\left[\frac{4!}{1!(4-1)!}(1000000)(2)\right]+ \\
& {\left[\frac{4!}{2!(4-2)!}(10000)(4)\right]-\left[\frac{4!}{3!(4-3)!}(100)(8)\right]+\left[\frac{4!}{4!(4-4)!}(16)\right]}
\end{aligned}
$$

$\Rightarrow[(1)(100000000)]-[(4)(1000000)(2)]+[(6)(10000)(4)]-$ $[(4)(100)(8)]+[(1)(16)]$
$=92236816$
Ans) 92236816
(iii) $(1.2)^{4}$

To find: Value of (1.2) ${ }^{4}$

Formula used: (i)

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots .+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$
$1.2=(1+0.2)$
Now $(1.2)^{4}=(1+0.2)^{4}$
$(1+0.2)^{4}$
$=\left[{ }^{4} \mathrm{C}_{0}(1)^{4-0}\right]+\left[{ }^{4} \mathrm{C}_{1}(1)^{4-1}(0.2)^{1}\right]+\left[{ }^{4} \mathrm{C}_{2}(1)^{4-2}(0.2)^{2}\right]+$ $\left[{ }^{4} \mathrm{C}_{3}(1)^{4-3}(0.2)^{3}\right]+\left[{ }^{4} \mathrm{C}_{4}(0.2)^{4}\right]$
$\Rightarrow\left[{ }^{4} C_{0}(1)^{4}\right]+\left[{ }^{4} C_{1}(1)^{3}(0.2)^{1}\right]+\left[{ }^{4} C_{2}(1)^{2}(0.2)^{2}\right]+\left[{ }^{4} C_{3}(1)^{1}(0.2)^{3}\right]+$ $\left[{ }^{4} \mathrm{C}_{4}(0.2)^{4}\right]$
$\Rightarrow\left[\frac{4!}{0!(4-0)!}(1)\right]+\left[\frac{4!}{1!(4-1)!}(1)(0.2)\right]+\left[\frac{4!}{2!(4-2)!}(1)(0.04)\right]+$
$\left[\frac{4!}{3!(4-3)!}(1)(0.008)\right]+\left[\frac{4!}{4!(4-4)!}(0.0016)\right]$
$\Rightarrow[(1)(1)]+[(4)(1)(0.2)]+[(6)(1)(0.04)]+[(4)(1)(0.008)]+$ [(1)(0.0016)]
$=2.0736$
Ans) 2.0736
Q. 19. Using binomial theorem, prove that ($2^{3 n}-7 n-1$) is divisible by 49, where n N.

Answer: To prove: $\left(2^{3 n}-7 n-1\right)$ is divisible by 49 , where $n \mathrm{~N}$
Formula used: $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a^{n-1}+{ }^{n} C_{n} b^{n}$

$$
\begin{aligned}
& \left(2^{3 n}-7 n-1\right)=\left(2^{3}\right)^{n}-7 n-1 \\
& \Rightarrow 8^{n}-7 n-1 \\
& \Rightarrow(1+7)^{n}-7 n-1 \\
& \Rightarrow{ }^{n} C_{0} 1{ }^{n}+{ }^{n} C_{1} 11^{n-1} 7+{ }^{n} C_{2} 1{ }^{n-2} 7^{2}+\ldots \ldots+{ }^{n} C_{n-1} 7^{n-1}+{ }^{n} C_{n} 7^{n}-7 n-1 \\
& \Rightarrow{ }^{n} C_{0}+{ }^{n} C_{1} 7+{ }^{n} C_{2} 7^{2}+\ldots \ldots+{ }^{n} C_{n-1} 7^{n-1}+{ }^{n} C_{n} 7^{n}-7 n-1 \\
& \Rightarrow 1+7 n+7^{2}\left[{ }^{n} C_{2}+{ }^{n} C_{3} 7+\ldots+{ }^{n} C_{n-1} 7^{n-3}+{ }^{n} C_{n} 7^{n-2}\right]-7 n-1 \\
& \Rightarrow 7^{2}\left[{ }^{n} C_{2}+{ }^{n} C_{3} 7+\ldots+{ }^{n} C_{n-1} 7^{n-3}+{ }^{n} C_{n} 7^{n-2}\right] \\
& \Rightarrow 49\left[{ }^{n} C_{2}+{ }^{n} C_{3} 7+\ldots+{ }^{n} C_{n-1} 7^{n-3}+{ }^{n} C_{n} 7^{n-2}\right] \\
& \Rightarrow 49 K, \text { where } K=\left({ }^{n} C_{2}+{ }^{n} C_{3} 7+\ldots+{ }^{n} C_{n-1} 7^{n-3}+{ }^{n} C_{n} 7^{n-2}\right)
\end{aligned}
$$

Now, $\left(2^{3 n}-7 n-1\right)=49 K$
Therefore $\left(2^{3 n}-7 n-1\right)$ is divisible by 49
Q. 20. Prove that $(2+\sqrt{x})^{4}+(2-\sqrt{x})^{4}=2\left(16+24 x+x^{2}\right)$

Answer : To prove: $(2+\sqrt{x})^{4}+(2-\sqrt{x})^{4}=2\left(16+24 x+x^{2}\right)$
Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(n-r)!(r)!}$
(ii) $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$
$(\mathrm{a}+\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{4-1} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{4-2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{a}^{4-3} \mathrm{~b}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}$
$\Rightarrow{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{a}^{1} \mathrm{~b}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \ldots$ (i)
$(a-b)^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{4-1}(-\mathrm{b})+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{4-2}(-\mathrm{b})^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{a}^{4-3}(-\mathrm{b})^{3}+{ }^{4} \mathrm{C}_{4}(-\mathrm{b})^{4}$
$\Rightarrow{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \ldots$ (ii)

Adding (i) and (ii)
$(\mathrm{a}+\mathrm{b})^{4}+(\mathrm{a}-\mathrm{b})^{7}=\left[{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{a}^{1} \mathrm{~b}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right]+\left[{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}\right.$ $\left.+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right]$
$\Rightarrow 2\left[{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right]$
$\Rightarrow 2^{\left[\left(\frac{4!}{0!(4-0)!} a^{4}\right)+\left(\frac{4!}{2!(4-2)!} a^{2} b^{2}\right)+\left(\frac{4!}{4!(4-4)!} b^{4}\right)\right]}$
$\Rightarrow 2\left[(1) a^{4}+(6) a^{2} b^{2}+(1) b^{4}\right]$
$\Rightarrow 2\left[a^{4}+6 a^{2} b^{2}+b^{4}\right]$
Therefore, $(a+b)^{4}+(a-b)^{7}=2\left[a^{4}+6 a^{2} b^{2}+b^{4}\right]$
Now, putting $\mathrm{a}=2$ and $\mathrm{b}=(\sqrt{\mathrm{x}})$ in the above equation.

$$
\begin{aligned}
& (2+\sqrt{x})^{4}+(2-\sqrt{x})^{4}=2\left[(2)^{4}+6(2)^{2}\left(\sqrt{x}^{2}\right)^{2}+(\sqrt{x})^{4}\right] \\
& =2\left(16+24 x+x^{2}\right)
\end{aligned}
$$

Hence proved.
Q. 21. Find the $7^{\text {th }}$ term in the expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x}\right)^{8}$.

Answer : To find: $7^{\text {th }}$ term in the expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x}\right)^{8}$

Formula used: (i)

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

For $7^{\text {th }}$ term, $r+1=7$
$\Rightarrow r=6$
$\ln ,\left(\frac{4 x}{5}+\frac{5}{2 x}\right)^{8}$

$$
\begin{aligned}
& 7^{\text {th }} \text { term }=T_{6+1} \\
& \Rightarrow{ }^{8} C_{6}\left(\frac{4 x}{5}\right)^{8-6}\left(\frac{5}{2 x}\right)^{6} \\
& \Rightarrow \frac{8!}{6!(8-6)!}\left(\frac{4 x}{5}\right)^{2}\left(\frac{5}{2 x}\right)^{6} \\
& \Rightarrow(28)\left(\frac{16 x^{2}}{25}\right)\left(\frac{15625}{64 x^{6}}\right) \\
& \Rightarrow \frac{4375}{x^{4}} \\
& \text { Ans) } \frac{4375}{x^{4}}
\end{aligned}
$$

Q. 22. Find the $9^{\text {th }}$ term in the expansion of $\left(\frac{a}{b}-\frac{b}{2 a^{2}}\right)^{12}$. Answer : To find: $9^{\text {th }}$ term in the expansion of $\left(\frac{a}{b}-\frac{b}{2 a^{2}}\right)^{12}$

Formula used: (i) ${ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}$
(ii) $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

For $9^{\text {th }}$ term, $r+1=9$
$\Rightarrow r=8$
$\ln ,\left(\frac{a}{b}-\frac{b}{2 a^{2}}\right)^{12}$
$9^{\text {th }}$ term $=\mathrm{T}_{8+1}$
$\Rightarrow{ }^{12} \mathrm{C}_{8}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{12-\mathrm{s}}\left(\frac{-\mathrm{b}}{2 \mathrm{z}^{2}}\right)^{5}$
$\Rightarrow \frac{12!}{8!(12-8)!}\left(\frac{a}{2}\right)^{4}\left(\frac{-b}{2 a^{2}}\right)^{5}$
$\Rightarrow 495^{\left(\frac{a^{4}}{b^{4}}\right)\left(\frac{b^{8}}{256 a^{16}}\right)}$
$\Rightarrow\left(\frac{495 b^{4}}{256 a^{12}}\right)$
Ans) $\left(\frac{495 b^{4}}{256 a^{12}}\right)$
Q. 23. Find the $16^{\text {th }}$ term in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$.

Answer : To find: $16^{\text {th }}$ term in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$
Formula used: (i) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!(\mathrm{r})!}$
(ii) $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{r} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{r}$

For $16^{\text {th }}$ term, $r+1=16$
$\Rightarrow r=15$
$\ln ,(\sqrt{x}-\sqrt{y})^{17}$
$16^{\text {th }}$ term $=T_{15+1}$
$\Rightarrow{ }^{17} C_{15}(\sqrt{x})^{17-15}(-\sqrt{y})^{15}$
$\Rightarrow \frac{17!}{15!(17-15)!}(\sqrt{x})^{2}(-\sqrt{y})^{15}$
$\Rightarrow 136(x)(-y)^{\frac{15}{2}}$
$\Rightarrow-136 x y \frac{15}{2}$
Ans) - 136 y $\frac{15}{2}$
Q. 24. Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$.

Answer : To find: $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$

Formula used: (i)

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!(r)!}
$$

(ii) $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{r} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{r}$

For $13^{\text {th }}$ term, $r+1=13$
$\Rightarrow r=12$
$\ln ,\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$
$13^{\text {th }}$ term $=\mathrm{T}_{12+1}$
$\Rightarrow{ }^{18} \mathrm{C}_{12}(9 x)^{18-12}\left(-\frac{1}{3 \sqrt{x}}\right)^{12}$
$\Rightarrow \frac{18!}{12!(18-12)!}(9 x)^{6}\left(-\frac{1}{3 \sqrt{x}}\right)^{12}$
$\Rightarrow 18564\left(531441 x^{6}\right)\left(\frac{1}{531441 x^{6}}\right)$
$\Rightarrow 18564$
Q. 25. Find the coefficients of x^{7} and x^{8} in the expansion of $\left(2+\frac{x}{3}\right)^{n}$.

Answer: To find : coefficients of x^{7} and x^{8}
Formula: $_{t_{r+1}}=\binom{n}{r} a^{n-r} b^{r}$
Here, $a=2, b=\frac{x}{3}$

We have, $\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} b^{r}$
$\therefore t_{r+1}=\binom{n}{r}(2)^{n-r}\left(\frac{x}{3}\right)^{r}$
$=\binom{n}{r} \frac{2^{n-r}}{3^{r}} x^{r}$
To get a coefficient of x^{7}, we must have,
$x^{7}=x^{r}$

- $r=7$

Therefore, the coefficient of $x^{7}=\binom{n}{7} \frac{2^{n-7}}{3^{7}}$
And to get the coefficient of x^{8} we must have,
$x^{8}=x^{r}$

- $r=8$

Therefore, the coefficient of $x^{8}=\binom{n}{8} \frac{2^{n-s}}{3^{s}}$
Conclusion :

- Coefficient of $x^{7}=\binom{n}{7} \frac{2^{n-7}}{3^{7}}$
- Coefficient of $x^{8}=\binom{n}{8} \frac{2^{n-s}}{3^{s}}$
Q. 26. Find the ratio of the coefficient of x^{15} to the term independent of x in the expansion of $\left(x^{2}+\frac{2}{x}\right)^{15}$.

Answer: To Find: the ratio of the coefficient of x^{15} to the term independent of x
$\underline{\text { Formula: }}{ }^{t_{r+1}}=\binom{n}{r} a^{n-r} b^{r}$

Here, $a=x^{2}, b=\frac{2}{x}$ and $n=15$
We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{15}{r}\left(x^{2}\right)^{15-r}\left(\frac{2}{x}\right)^{r} \\
& =\binom{15}{r}(x)^{30-2 r}(2)^{r}(x)^{-r} \\
& =\binom{15}{r}(x)^{30-2 r-r}(2)^{r} \\
& =\binom{15}{r}(2)^{r}(x)^{30-3 r}
\end{aligned}
$$

To get coefficient of x^{15} we must have,
$(x)^{30-3 r}=x^{15}$

- $30-3 r=15$
- $3 \mathrm{r}=15$
- $r=5$

Therefore, coefficient of $x^{15}=\binom{15}{5}(2)^{5}$
Now, to get coefficient of term independent of x that is coefficient of x^{0} we must have,
$(x)^{30-3 r}=x^{0}$

- $30-3 r=0$
- $3 \mathrm{r}=30$
- $r=10$

Therefore, coefficient of $x^{0}=\binom{15}{10}(2)^{10}$
But $\binom{15}{10}=\binom{15}{5}_{\ldots \ldots \ldots .}\left[\because\binom{n}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}\right]$
Therefore, the coefficient of $x^{0}=\binom{15}{5}(2)^{10}$
Therefore,
$\frac{\text { coefficient of } x^{15}}{\text { coefficient of } x^{0}}=\frac{\binom{15}{5}(2)^{5}}{\binom{15}{5}(2)^{10}}$
$=\frac{1}{(2)^{5}}$
$=\frac{1}{32}$
Hence, coefficient of x^{15} : coefficient of $x^{0}=1: 32$
Conclusion : The ratio of coefficient of x^{15} to coefficient of $x^{0}=1: 32$
Q. 27. Show that the ratio of the coefficient of x^{10} in the expansion of $(1-x 2)^{10}$ and the term independent of x in the expansion of $\left(x-\frac{2}{x}\right)^{10}$ is $1: 32$.

Answer : To Prove : coefficient of x^{10} in $\left(1-x^{2}\right)^{10}:$ coefficient of x^{0} in $\left(x-\frac{2}{x}\right)^{10}=1: 32$
For $\left(1-x^{2}\right)^{10}$,
Here, $a=1, b=-x^{2}$ and $n=15$
We have formula,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
$=\binom{10}{r}(1)^{10-r}\left(-x^{2}\right)^{r}$
$=-\binom{10}{r}(1)(x)^{2 r}$
To get coefficient of x^{10} we must have,
$(x)^{2 r}=x^{10}$

- $2 r=10$
- $r=5$

Therefore, coefficient of $\mathrm{x}^{10}=-\binom{10}{5}$
For $\left(\mathrm{x}-\frac{2}{\mathrm{x}}\right)^{10}$,
Here, $a=x, \quad b=\frac{-2}{x}$ and $n=10$
We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{10}{r}(x)^{10-r}\left(\frac{-2}{x}\right)^{r} \\
& =\binom{10}{r}(x)^{10-r}(-2)^{r}(x)^{-r} \\
& =\binom{10}{r}(x)^{10-r-r}(-2)^{r} \\
& =\binom{10}{r}(-2)^{r}(x)^{10-2 r}
\end{aligned}
$$

Now, to get coefficient of term independent of x that is coefficient of x^{0} we must have,
(x) ${ }^{10-2 r}=x^{0}$

- $10-2 \mathrm{r}=0$
- $2 \mathrm{r}=10$
- $r=5$

Therefore, coefficient of $x^{0}=-\binom{10}{5}(2)^{5}$
Therefore,
$\frac{\text { coefficient of } x^{10} \text { in }\left(1-x^{2}\right)^{10}}{\text { coefficient of } x^{0} \text { in }\left(x-\frac{2}{x}\right)^{10}}=\frac{-\binom{15}{5}}{-\binom{15}{5}(2)^{5}}$
$=\frac{1}{(2)^{5}}$
$=\frac{1}{32}$
Hence,
Coefficient of x^{10} in $\left(1-x^{2}\right)^{10}:$ coefficient of x^{0} in $\left(x-\frac{2}{x}\right)^{10}=1: 32$
Q. 28. Find the term independent of x in the expansion of (91+x+ $\left.2 \mathbf{x}^{3}\right)^{\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9} \text {. } ~ . ~}$

Answer: To Find : term independent of x, i.e. coefficient of x^{0}
Formula: $t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
We have a formula,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

Therefore, the expansion of $\left(x-\frac{2}{x}\right)^{10}$ is given by,

$$
\begin{aligned}
& \left(x-\frac{2}{x}\right)^{10}=\sum_{r=0}^{10}\binom{10}{r}(x)^{10-r}\left(\frac{-2}{x}\right)^{r} \\
& =\binom{10}{0}(x)^{10}\left(\frac{-2}{x}\right)^{0}+\binom{10}{1}(x)^{9}\left(\frac{-2}{x}\right)^{1}+\binom{10}{2}(x)^{8}\left(\frac{-2}{x}\right)^{2}+\cdots \ldots \ldots \\
& \quad+\binom{10}{10}(x)^{0}\left(\frac{-2}{x}\right)^{10} \\
& =x^{10}+\binom{10}{1}(x)^{9}(-2) \frac{1}{x}+\binom{10}{2}(x)^{8}(-2)^{2} \frac{1}{x^{2}}+\cdots+\binom{10}{10}(x)^{0}(-2)^{10} \frac{1}{x^{10}} \\
& =x^{10}-(2)\binom{10}{1}(x)^{8}+(2)^{2}\binom{10}{2}(x)^{6}+\cdots \ldots+(2)^{10}\binom{10}{10} \frac{1}{x^{10}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left(91+x+2 x^{3}\right)\left(x-\frac{2}{x}\right)^{10} \\
& =\left(91+x+2 x^{3}\right)\left(x^{10}-(2)\binom{10}{1}(x)^{8}+(2)^{2}\binom{10}{2}(x)^{6}+\cdots \ldots \ldots\right. \\
& \left.\quad+(2)^{10}\binom{10}{10} \frac{1}{x^{10}}\right)
\end{aligned}
$$

Multiplying the second bracket by $91, \mathrm{x}$ and $2 \mathrm{x}^{3}$

$$
\begin{aligned}
=\left\{91 x^{10}-\right. & \left.91(2)\binom{10}{1}(x)^{8}+91(2)^{2}\binom{10}{2}(x)^{6}+\cdots+91(2)^{10}\binom{10}{10} \frac{1}{x^{10}}\right\} \\
& +\left\{x \cdot x^{10}-x \cdot(2)\binom{10}{1}(x)^{8}+x \cdot(2)^{2}\binom{10}{2}(x)^{6}+\cdots \cdots \cdots\right. \\
& \left.+x \cdot(2)^{10}\binom{10}{10} \frac{1}{x^{10}}\right\} \\
& +\left\{2 x^{3} \cdot x^{10}-2 x^{3} \cdot(2)\binom{10}{1}(x)^{8}+2 x^{3} \cdot(2)^{2}\binom{10}{2}(x)^{6}+\cdots \cdots \cdots\right. \\
& \left.+2 x^{3} \cdot(2)^{10}\binom{10}{10} \frac{1}{x^{10}}\right\}
\end{aligned}
$$

In the first bracket, there will be a $6^{\text {th }}$ term of x^{0} having coefficient $91(-2)^{5}\binom{10}{5}$

While in the second and third bracket, the constant term is absent.
Therefore, the coefficient of term independent of x , i.e. constant term in the above expansion
$=91(-2)^{5}\binom{10}{5}$
$=-91 .(2)^{5} \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}$
$=-91(2)^{5}(252)$
Conclusion: coefficient of term independent of $x=-91(2)^{5}(252)$
Q. 29. Find the coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$.

Answer : To Find : coefficient of x
Formula : ${ }^{\mathrm{r}_{\mathrm{r}+1}}=\binom{\mathrm{n}}{\mathrm{r}} a^{\mathrm{n}-\mathrm{r}} b^{\mathrm{r}}$
We have a formula,

$$
\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}^{\mathrm{r}}
$$

Therefore, expansion of $(1-x)^{16}$ is given by,

$$
\begin{aligned}
& (1-x)^{16}=\sum_{r=0}^{16}\binom{16}{r}(1)^{16-r}(-x)^{r} \\
& =\binom{16}{0}(1)^{16}(-x)^{0}+\binom{16}{1}(1)^{15}(-x)^{1}+\binom{16}{2}(1)^{14}(-x)^{2}+\cdots \ldots \ldots \\
& \\
& \quad+\binom{16}{16}(1)^{0}(-x)^{16} \\
& =1-\binom{16}{1} x+\binom{16}{2} x^{2}+\cdots \ldots \ldots+\binom{16}{16} x^{16}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left(1-3 x+7 x^{2}\right)(1-x)^{16} \\
& \quad=\left(1-3 x+7 x^{2}\right)\left(1-\binom{16}{1} x+\binom{16}{2} x^{2}+\cdots \ldots \ldots+\binom{16}{16} x^{16}\right)
\end{aligned}
$$

Multiplying the second bracket by $1,(-3 x)$ and $7 x^{2}$

$$
\begin{aligned}
=\left(1-\binom{16}{1}\right. & \left.x+\binom{16}{2} x^{2}+\cdots \ldots \ldots+\binom{16}{16} x^{16}\right) \\
& +\left(-3 x+3 x\binom{16}{1} x-3 x\binom{16}{2} x^{2}+\cdots \ldots \ldots-3 x\binom{16}{16} x^{16}\right) \\
& +\left(7 x^{2}-7 x^{2}\binom{16}{1} x+7 x^{2}\binom{16}{2} x^{2}+\cdots \ldots \ldots+7 x^{2}\binom{16}{16} x^{16}\right)
\end{aligned}
$$

In the above equation terms containing x are
$-\binom{16}{1} x$ and $-3 x$
Therefore, the coefficient of x in the above expansion
$=-\binom{16}{1}-3$
$=-16-3$
$=-19$
Conclusion: coefficient of $x=-19$
Q. 30. Find the coefficient of
(i) x^{5} in the expansion of $(x+3)^{8}$
(ii) x^{6} in the expansion of $\left(3 x^{2}-\frac{1}{3 x}\right)^{9}$.
(iii) x^{-15} in the expansion of $\left(3 x^{2}-\frac{a}{3 x^{3}}\right)^{10}$.
(iv) $a^{7} b^{5}$ in the expansion of $(a-2 b)^{12}$.

Answer : (i) Here, $a=x, b=3$ and $n=8$

We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{8}{r}(x)^{8-r}(3)^{r} \\
& =\binom{8}{r}(3)^{r}(x)^{8-r}
\end{aligned}
$$

To get coefficient of x^{5} we must have,
$(x)^{8-r}=x^{5}$

- $8-r=5$
- $r=3$

Therefore, coefficient of $x^{5}=\binom{8}{3}(3)^{3}$
$=\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$. (27)
$=1512$
(ii) Here, $a=3 x^{2}, b=\frac{-1}{3 x}$ and $n=9$

We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{9}{r}\left(3 x^{2}\right)^{9-r}\left(\frac{-1}{3 x}\right)^{r} \\
& =\binom{9}{r}(3)^{9-r}\left(x^{2}\right)^{9-r}\left(\frac{-1}{3}\right)^{r}(x)^{-r} \\
& =\binom{9}{r}(3)^{9-r}(x)^{18-2 r}\left(\frac{-1}{3}\right)^{r}(x)^{-r}
\end{aligned}
$$

$=\binom{9}{r}(3)^{9-r}(x)^{18-2 r-r}\left(\frac{-1}{3}\right)^{r}$
$=\binom{9}{r}(3)^{9-r}\left(\frac{-1}{3}\right)^{r}(x)^{18-3 r}$
To get coefficient of x^{6} we must have,
$(x)^{18-3 r}=x^{6}$

- $18-3 \mathrm{r}=6$
- $3 \mathrm{r}=12$
-r $=4$
Therefore, coefficient of $\mathrm{x}^{6}=\binom{9}{4}(3)^{9-4}\left(\frac{-1}{3}\right)^{4}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot(3)^{5}\left(\frac{1}{3}\right)^{4}$
$=126 \times 3$
$=378$
(iii) Here, $a=3 x^{2}, b=\frac{-a}{3 x^{3}}$ and $n=10$

We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{10}{r}\left(3 x^{2}\right)^{10-r}\left(\frac{-a}{3 x^{3}}\right)^{r} \\
& =\binom{10}{r}(3)^{10-r}\left(x^{2}\right)^{10-r}\left(\frac{-a}{3}\right)^{r}(x)^{-3 r} \\
& =\binom{10}{r}(3)^{10-r}(x)^{20-2 r}\left(\frac{-a}{3}\right)^{r}(x)^{-3 r}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{10}{r}(3)^{10-r}(x)^{20-2 r-3 r}\left(\frac{-a}{3}\right)^{r} \\
& =\binom{10}{r}(3)^{10-r}\left(\frac{-a}{3}\right)^{r}(x)^{20-5 r}
\end{aligned}
$$

To get coefficient of X^{-15} we must have,
$(x)^{20-5 r}=x^{-15}$

- $20-5 r=-15$
- $5 r=35$
- $r=7$

Therefore, coefficient of $x^{-15}=\binom{10}{7}(3)^{10-7}\left(\frac{-a}{3}\right)^{7}$
But $\binom{10}{7}=\binom{10}{3}_{\ldots \ldots \ldots .}\left[\because\binom{n}{r}=\binom{n}{n-r}\right]$
Therefore, the coefficient of $\mathrm{x}^{-15}=\frac{10 \times 9 \times 8}{3 \times 2 \times 1} \cdot(3)^{3}\left(\frac{-\mathrm{a}}{3}\right)^{7}$
$=120 .(-a)^{7}\left(\frac{1}{3}\right)^{4}$
$=(-a)^{7} \frac{120}{3^{4}}$
$=(-a)^{7} \frac{40}{27}$
(iv) Here, $a=a, b=-2 b$ and $n=12$

We have formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{12}{r}(a)^{12-r}(-2 b)^{r}
\end{aligned}
$$

$=\binom{12}{r}(-2)^{r}(a)^{12-r}(b)^{r}$
To get coefficient of $a^{7} b^{5}$ we must have,
$(a)^{12-r}(b)^{r}=a^{7} b^{5}$

- $r=5$

Therefore, coefficient of $a^{7} b^{5}=\binom{12}{5}(-2)^{5}$
$=\frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} \cdot(-32)$
$=792 .(-32)$
$=-25344$
Q. 31. Show that the term containing x^{3} does not exist in the expansion
of $\left(3 x-\frac{1}{2 x}\right)^{8}$.
Answer: For $\left(3 x-\frac{1}{2 x}\right)^{8}$,

$$
a=3 x, b=\frac{-1}{2 x} \text { and } n=8
$$

We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{8}{r}(3 x)^{8-r}\left(\frac{-1}{2 x}\right)^{r} \\
& =\binom{8}{r}(3)^{8-r}(x)^{8-r}\left(\frac{-1}{2}\right)^{r}(x)^{-r}
\end{aligned}
$$

$=\binom{8}{r}(3)^{8-r}(x)^{8-r-r}\left(\frac{-1}{2}\right)^{r}$
$=\binom{8}{r}(3)^{8-r}\left(\frac{-1}{2}\right)^{r}(x)^{8-2 r}$
To get coefficient of x^{3} we must have,
$(x)^{8-2 r}=(x)^{3}$

- $8-2 \mathrm{r}=3$
- $2 \mathrm{r}=5$
- $r=2.5$

As $\binom{8}{r}=\binom{8}{2.5}$ is not possible
Therefore, the term containing x^{3} does not exist in the expansion of $\left(3 x-\frac{1}{2 x}\right)^{8}$
Q. 32. Show that the expansion of $\left(2 \mathrm{x}^{2}-\frac{1}{\mathrm{x}}\right)^{20}$
does not contain any term involving x^{9}.

Answer : For $\left(2 x^{2}-\frac{1}{x}\right)^{20}$,
$a=2 x^{2}, \quad b=\frac{-1}{x}$ and $n=20$
We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{20}{r}\left(3 x^{2}\right)^{20-r}\left(\frac{-1}{x}\right)^{r} \\
& =\binom{20}{r}(3)^{20-r}\left(x^{2}\right)^{20-r}(-1)^{r}(x)^{-r}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{20}{r}(3)^{20-r}(x)^{40-2 r}(-1)^{r}(x)^{-r} \\
& =\binom{20}{r}(3)^{20-r}(x)^{40-2 r-r}(-1)^{r} \\
& =\binom{20}{r}(3)^{20-r}(-1)^{r}(x)^{40-3 r}
\end{aligned}
$$

To get coefficient of x^{9} we must have,
$(x)^{40-3 r}=(x)^{9}$

- $40-3 r=9$
- $3 r=31$
- $r=10.3333$

As $\binom{20}{r}=\binom{20}{10.3333}$ is not possible
Therefore, the term containing x^{9} does not exist in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{20}$
Q. 33. Show that the expansion of $\left(x^{2}+\frac{1}{x}\right)^{12}$
does not contain any term involving \mathbf{x}^{-1}.

Answer : For $\left(x^{2}+\frac{1}{x}\right)^{12}$,
$a=x^{2}, \quad b=\frac{1}{x}$ and $n=12$
We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{12}{r}\left(x^{2}\right)^{12-r}\left(\frac{1}{x}\right)^{r}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{12}{r}(x)^{24-2 r}(x)^{-r} \\
& =\binom{12}{r}(x)^{24-2 r-r} \\
& =\binom{12}{r}(x)^{24-3 r}
\end{aligned}
$$

To get coefficient of x^{-1} we must have,
$(x)^{24-3 r}=(x)^{-1}$

- $24-3 r=-1$
- $3 r=25$
- $r=8.3333$

As $\binom{20}{r}=\binom{20}{8.3333}$ is not possible
Therefore, the term containing x^{-1} does not exist in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{12}$
Q. 34. Write the general term in the expansion of
$\left(x^{2}-y\right)^{6}$
Answer : To Find : General term, i.e. $\mathrm{tr}_{\mathrm{+}+1}$
For $\left(x^{2}-y\right)^{6}$
$a=x^{2}, b=-y$ and $n=6$
General term t_{r+1} is given by,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{6}{r}\left(x^{2}\right)^{6-r}(-y)^{r}
\end{aligned}
$$

Conclusion : General term $=\binom{6}{r}\left(x^{2}\right)^{6-r}(-y)^{r}$
Q. 35. Find the $5^{\text {th }}$ term from the end in the expansion of $\left(x-\frac{1}{x}\right)^{12}$.

Answer : To Find : $5^{\text {th }}$ term from the end
Formulae :
. $\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} b^{\mathrm{r}}$
$.\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}$
For $\left(x-\frac{1}{x}\right)^{12}$,
$a=x, \quad b=\frac{-1}{x}$ and $n=12$
As $n=12$, therefore there will be total $(12+1)=13$ terms in the expansion
Therefore,
$5^{\text {th }}$ term from the end $=(13-5+1)^{\text {th }}$ i.e. $9^{\text {th }}$ term from the starting.
We have a formula,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
For t9, $r=8$
$\therefore \mathrm{t}_{9}=\mathrm{t}_{8+1}$
$=\binom{12}{8}(x)^{12-8}\left(\frac{-1}{x}\right)^{8}$
$=\binom{12}{4}(x)^{4}(\mathrm{x})^{-8} \ldots \ldots \ldots . .\left[\because\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}\right]$
$=\frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1}(x)^{4-8}$

$$
=495(\mathrm{x})^{-4}
$$

Therefore, a $5^{\text {th }}$ term from the end $=495(\mathrm{x})^{-4}$
Conclusion : $5^{\text {th }}$ term from the end $=495(x)^{-4}$
Q. 36. Find the $4^{\text {th }}$ term from the end in the expansion of $\left(\frac{4 \mathrm{x}}{5}-\frac{5}{2 \mathrm{x}}\right)^{9}$.

Answer: To Find : $4^{\text {th }}$ term from the end
Formulae :
. $\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
. $\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}$
For $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{9}$,
$\mathrm{a}=\frac{4 \mathrm{x}}{5}, \mathrm{~b}=\frac{-5}{2 \mathrm{x}}$ and $\mathrm{n}=9$
As $n=9$, therefore there will be total $(9+1)=10$ terms in the expansion
Therefore,
$4^{\text {th }}$ term from the end $=(10-4+1)^{\text {th }}$ i.e. $7^{\text {th }}$ term from the starting.
We have a formula,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

For $\mathrm{t}_{7}, \mathrm{r}=6$

$$
\therefore \mathrm{t}_{7}=\mathrm{t}_{6+1}
$$

$$
=\binom{10}{6}\left(\frac{4 x}{5}\right)^{10-6}\left(\frac{-5}{2 x}\right)^{6}
$$

$$
\begin{aligned}
& \left.=\binom{10}{4}\left(\frac{4 x}{5}\right)^{4}\left(\frac{-5}{2 x}\right)^{6} \ldots \ldots \ldots\binom{n}{r}=\binom{n}{n-r}\right] \\
& =\binom{10}{4} \frac{(4)^{4}}{(5)^{4}}(x)^{4} \frac{(-5)^{6}}{(2)^{6}}(x)^{-6} \\
& =\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}(100)(x)^{-2} \\
& =21000(x)^{-2}
\end{aligned}
$$

Therefore, a $4^{\text {th }}$ term from the end $=21000(\mathrm{x})^{-2}$
Conclusion: $4^{\text {th }}$ term from the end $=21000(x)^{-2}$
Q. 37. Find the $4^{\text {th }}$ term from the beginning and end in the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{\mathrm{n}}$.

Answer: To Find :
I. $4^{\text {th }}$ term from the beginning
II. $4^{\text {th }}$ term from the end

Formulae :

. $\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} b^{\mathrm{r}}$
$.\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}$
For $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$,
$a=\sqrt[3]{2}, \quad b=\frac{1}{\sqrt[3]{3}}$ and $n=9$
As $n=n$, therefore there will be total $(n+1)$ terms in the expansion
Therefore,
I. For the $4^{\text {th }}$ term from the starting.

We have a formula,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
For $t_{4}, r=3$
$\therefore \mathrm{t}_{4}=\mathrm{t}_{3+1}$
$=\binom{\mathrm{n}}{3}(\sqrt[3]{2})^{\mathrm{n}-3}\left(\frac{1}{\sqrt[3]{3}}\right)^{3}$
$=\binom{\mathrm{n}}{3}(2)^{\frac{\mathrm{n}-3}{3} \frac{1}{3}}$
$=\binom{n}{3} \cdot \frac{(2)^{\frac{n-3}{3}}}{3}$
$=\frac{n!}{(n-3)!\times 3!} \cdot \frac{(2)^{\frac{n-3}{3}}}{3}$
Therefore, a $4^{\text {th }}$ term from the starting $=\frac{n!}{(n-3)!\times 3!} \cdot \frac{(2)^{\frac{n-a}{a}}}{3}$
Now,
II. For the $4^{\text {th }}$ term from the end

We have a formula,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

For $t_{(n-2)}, r=(n-2)-1=(n-3)$
$\therefore \mathrm{t}_{(\mathrm{n}-2)}=\mathrm{t}_{(\mathrm{n}-3)+1}$

$$
\begin{aligned}
& =\binom{n}{n-3}(\sqrt[3]{2})^{n-(n-3)}\left(\frac{1}{\sqrt[3]{3}}\right)^{(n-3)} \\
& \left.=\binom{n}{3}(\sqrt[3]{2})^{3}(3)^{\frac{-(n-3)}{3}} \ldots \ldots \ldots .{ }^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right)=\binom{n}{n-r}\right] \\
& =\binom{n}{4}(2)(3)^{\frac{3-n}{3}} \\
& =\frac{n!}{(n-4)!\times 4!}(2)(3)^{\frac{3-n}{3}}
\end{aligned}
$$

Therefore, a $4^{\text {th }}$ term from the end $=\frac{n!}{(n-4)!\times 4!}(2)(3)^{\frac{3-n}{3}}$
Conclusion :
I. $4^{\text {th }}$ term from the beginning $=\frac{n!}{(n-3)!\times 3!} \cdot \frac{(2)^{\frac{n-3}{3}}}{3}$
II. $4^{\text {th }}$ term from the end $=\frac{n!}{(n-4)!\times 4!}(2)(3)^{\frac{3-n}{3}}$
Q. 38. Find the middle term in the expansion of :
(i) $(3+x)^{6}$
(ii) $\left(\frac{x}{3}+3 y\right)^{8}$
(iii) $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
(iv) $\left(x^{2}-\frac{2}{x}\right)^{10}$

Answer: (i) For $(3+x)^{6}$,
$a=3, b=x$ and $n=6$

As n is even, $\left(\frac{n+2}{2}\right)^{\text {th }}$ is the middle term
Therefore, the middle term $=\left(\frac{6+2}{2}\right)^{\text {th }}=\left(\frac{8}{2}\right)^{\text {th }}=(4)^{\text {th }}$

General term t_{r+1} is given by,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

Therefore, for $4^{\text {th }}, r=3$
Therefore, the middle term is

$$
\begin{aligned}
& t_{4}=t_{3+1} \\
& =\binom{6}{3}(3)^{6-3}(x)^{3} \\
& =\frac{6 \times 5 \times 4}{3 \times 2 \times 1} \cdot(3)^{3}(x)^{3} \\
& =(20) \cdot(27) x^{3} \\
& =540 x^{3}
\end{aligned}
$$

(ii) For $\left(\frac{x}{3}+3 y\right)^{8}$,
$a=\frac{x}{3}, b=3 y$ and $n=8$
As n is even, $\left(\frac{\mathrm{n}+2}{2}\right)^{\text {th }}$ is the middle term
Therefore, the middle term $=\left(\frac{8+2}{2}\right)^{\text {th }}=\left(\frac{10}{2}\right)^{\text {th }}=(5)^{\text {th }}$
General term t_{r+1} is given by,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

Therefore, for $5^{\text {th }}, r=4$
Therefore, the middle term is

$$
\begin{aligned}
& t_{5}=t_{4+1} \\
& =\binom{8}{4}\left(\frac{x}{3}\right)^{8-4}(3 y)^{4} \\
& =\binom{8}{4}\left(\frac{x}{3}\right)^{4}(3)^{4}(y)^{4} \\
& =\binom{8}{4} \frac{(x)^{4}}{(3)^{4}}(3)^{4}(y)^{4} \\
& =\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \cdot(x)^{4}(y)^{4} \\
& =(70) \cdot x^{4} y^{4} \\
& \text { (iii) For }\left(\frac{x}{a}-\frac{a}{x}\right)^{10}, \\
& a=\frac{x}{a}, b=\frac{-a}{x} \text { and } n=10
\end{aligned}
$$

As n is even, $\left(\frac{\mathrm{n}+2}{2}\right)^{\text {th }}$ is the middle term
Therefore, the middle term $=\left(\frac{10+2}{2}\right)^{\text {th }}=\left(\frac{12}{2}\right)^{\text {th }}=(6)^{\text {th }}$
General term t_{r+1} is given by,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
Therefore, for $6^{\text {th }}$, $r=5$
Therefore, the middle term is

$$
t_{6}=t_{5+1}
$$

$$
\begin{aligned}
& =\binom{10}{5}\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^{5} \\
& =\binom{10}{5}\left(\frac{x}{a}\right)^{5}(-a)^{5}\left(\frac{1}{x}\right)^{5} \\
& =\binom{10}{5} \frac{(x)^{5}}{(a)^{5}}(-a)^{5}\left(\frac{1}{x}\right)^{5} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} \cdot(-1) \\
& =-252
\end{aligned}
$$

(iv) For $\left(x^{2}-\frac{2}{x}\right)^{10}$,
$a=x^{2}, \quad b=\frac{-2}{x}$ and $n=10$
As n is even, $\left(\frac{\mathrm{n}+2}{2}\right)^{\text {th }}$ is the middle term
Therefore, the middle term $=\left(\frac{10+2}{2}\right)^{\text {th }}=\left(\frac{12}{2}\right)^{\text {th }}=(6)^{\text {th }}$
General term t_{r+1} is given by,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

Therefore, for the $6^{\text {th }}$ middle term, $r=5$
Therefore, the middle term is

$$
\begin{aligned}
& t_{6}=t_{5+1} \\
& =\binom{10}{5}\left(x^{2}\right)^{10-5}\left(\frac{-2}{x}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{10}{5}\left(\mathrm{x}^{2}\right)^{5}(-2)^{5}\left(\frac{1}{\mathrm{x}}\right)^{5} \\
& =\binom{10}{5} \frac{(\mathrm{x})^{10}}{(\mathrm{x})^{5}}(-32) \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} \cdot(-32)(\mathrm{x})^{5} \\
& =-252(32) \mathrm{x}^{5} \\
& =-8064 \mathrm{x}^{5}
\end{aligned}
$$

Q. 39. A. Find the two middle terms in the expansion of :
$\left(x^{2}+a^{2}\right)^{5}$
Answer: For $\left(x^{2}+a^{2}\right)^{5}$,
$a=x^{2}, b=a^{2}$ and $n=5$
As n is odd, there are two middle terms i.e.
I. $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and II. $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$

General term t_{r+1} is given by,

$$
\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} b^{\mathrm{r}}
$$

I. The first, middle term is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}=\left(\frac{5+1}{2}\right)^{\text {th }}=\left(\frac{6}{2}\right)^{\text {th }}=(3)^{\text {rd }}$

Therefore, for the $3^{\text {rd }}$ middle term, $r=2$
Therefore, the first middle term is

$$
\begin{aligned}
& t_{3}=t_{2+1} \\
& =\binom{5}{2}\left(x^{2}\right)^{5-2}\left(a^{2}\right)^{2}
\end{aligned}
$$

$=\binom{5}{2}\left(x^{2}\right)^{3}(a)^{4}$
$=\binom{5}{2}(x)^{6}(a)^{4}$
$=\frac{5 \times 4}{2 \times 1} \cdot(\mathrm{x})^{6}(\mathrm{a})^{4}$
$=10 \cdot a^{4} \cdot x^{6}$
II. The second middle term is $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}=\left(\frac{5+3}{2}\right)^{\text {th }}=\left(\frac{8}{2}\right)^{\text {th }}=(4)^{\text {th }}$

Therefore, for the $4^{\text {th }}$ middle term, $r=3$
Therefore, the second middle term is

$$
\begin{aligned}
& t_{4}=t_{3+1} \\
& =\binom{5}{3}\left(x^{2}\right)^{5-3}\left(a^{2}\right)^{3} \\
& =\binom{5}{3}\left(x^{2}\right)^{2}(a)^{6} \\
& =\binom{5}{2}(x)^{4}(a)^{6} \ldots \ldots \ldots . \quad\left[\because\binom{n}{r}=\binom{n-r}{n-r}\right] \\
& =\frac{5 \times 4}{2 \times 1} \cdot(x)^{4}(a)^{6} \\
& =10 \cdot a^{6} \cdot x^{4}
\end{aligned}
$$

Q. 39. B. Find the two middle terms in the expansion of:
$\left(x^{4}-\frac{1}{x^{3}}\right)^{11}$
Answer : For $\left(\mathrm{x}^{4}-\frac{1}{\mathrm{x}^{3}}\right)^{11}$,

$$
a=x^{4}, b=\frac{-1}{x^{3}} \text { and } n=11
$$

As n is odd, there are two middle terms i.e.
II. $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and II. $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$

General term $\mathrm{t}_{\mathrm{r}+1}$ is given by,

$$
\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}^{\mathrm{r}}
$$

I. The first middle term is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}=\left(\frac{11+1}{2}\right)^{\text {th }}=\left(\frac{12}{2}\right)^{\text {th }}=(6)^{\text {th }}$

Therefore, for the $6^{\text {th }}$ middle term, $r=5$
Therefore, the first middle term is

$$
t_{6}=t_{5+1}
$$

$$
=\binom{11}{5}\left(x^{4}\right)^{11-5}\left(\frac{-1}{x^{3}}\right)^{5}
$$

$$
=\binom{11}{5}\left(x^{4}\right)^{6}(-1)^{5}\left(\frac{1}{x^{3}}\right)^{5}
$$

$$
=\binom{11}{5}(x)^{24}(-1) \frac{1}{x^{15}}
$$

$$
=\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} \cdot(\mathrm{x})^{9}(-1)
$$

$$
=-462 . x^{9}
$$

II. The second middle term is $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}=\left(\frac{11+3}{2}\right)^{\text {th }}=\left(\frac{14}{2}\right)^{\text {th }}=(7)^{\text {th }}$

Therefore, for the $7^{\text {th }}$ middle term, $r=6$
Therefore, the second middle term is

$$
\begin{aligned}
& t_{7}=t_{6+1} \\
& =\binom{11}{6}\left(x^{4}\right)^{11-6}\left(\frac{-1}{x^{3}}\right)^{6} \\
& =\binom{11}{5}\left(x^{4}\right)^{5}(-1)^{6}\left(\frac{1}{x^{3}}\right)^{6} \ldots \ldots . . . \quad\left[\because\binom{n}{r}=\binom{n}{n-r}\right] \\
& =\binom{11}{5}(x)^{20}(1) \frac{1}{x^{18}} \\
& =\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} \cdot(x)^{2} \\
& =462 . x^{2}
\end{aligned}
$$

Q. 39. C. Find the two middle terms in the expansion of :
$\left(\frac{p}{x}+\frac{x}{p}\right)^{9}$
Answer : For $\left(\frac{p}{x}+\frac{x}{p}\right)^{9}$,
$\mathrm{a}=\frac{\mathrm{p}}{\mathrm{x}}, \mathrm{b}=\frac{\mathrm{x}}{\mathrm{p}}$ and $\mathrm{n}=9$
As n is odd, there are two middle terms i.e.
I. $\left(\frac{n+1}{2}\right)^{\text {th }}$ and II. $\left(\frac{n+3}{2}\right)^{\text {th }}$

General term t_{r+1} is given by,

$$
t_{r+1}=\binom{n}{r} a^{n-r} b^{r}
$$

I. The first middle term is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}=\left(\frac{9+1}{2}\right)^{\text {th }}=\left(\frac{10}{2}\right)^{\text {th }}=(5)^{\text {th }}$

Therefore, for $5^{\text {th }}$ middle term, $r=4$

Therefore, the first middle term is

$$
\begin{aligned}
& t_{5}=t_{4+1} \\
& =\binom{9}{4}\left(\frac{p}{x}\right)^{9-4}\left(\frac{\mathrm{x}}{\mathrm{p}}\right)^{4} \\
& =\binom{9}{4}\left(\frac{\mathrm{p}}{\mathrm{x}}\right)^{5}(\mathrm{x})^{4}\left(\frac{1}{\mathrm{p}}\right)^{4} \\
& =\binom{9}{4}\left(\frac{\mathrm{p}}{\mathrm{x}}\right) \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot(\mathrm{p}) \cdot(\mathrm{x})^{-1} \\
& =126 \mathrm{p} \cdot \mathrm{x}^{-1}
\end{aligned}
$$

II. The second middle term is $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}=\left(\frac{9+3}{2}\right)^{\text {th }}=\left(\frac{12}{2}\right)^{\text {th }}=(6)^{\text {th }}$

Therefore, for the $6^{\text {th }}$ middle term, $r=5$
Therefore, the second middle term is

$$
\begin{align*}
& t_{6}=t_{5+1} \\
& =\binom{9}{5}\left(\frac{p}{x}\right)^{9-5}\left(\frac{x}{p}\right)^{5} \\
& \left.=\binom{9}{4}\left(\frac{p}{x}\right)^{4}(x)^{5}\left(\frac{1}{p}\right)^{5} \ldots \ldots \ldots\binom{n}{r}=\binom{n}{n-r}\right] \\
& =\binom{9}{4}\left(\frac{x}{p}\right) \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot\left(\frac{1}{p}\right) \cdot(x) \tag{x}
\end{align*}
$$

$=126\left(\frac{1}{\mathrm{p}}\right) \cdot(\mathrm{x})$
Q. 39. D. Find the two middle terms in the expansion of :
$\left(3 x-\frac{x^{3}}{6}\right)^{9}$
Answer: For $\left(3 x-\frac{x^{3}}{6}\right)^{9}$,
$a=3 x, b=\frac{-x^{3}}{6}$ and $n=9$
As n is odd, there are two middle terms i.e.
I. $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and II. $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$

General term $\mathrm{t}_{\mathrm{r}+1}$ is given by,

$$
\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}^{\mathrm{r}}
$$

I. The first middle term is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}=\left(\frac{9+1}{2}\right)^{\text {th }}=\left(\frac{10}{2}\right)^{\text {th }}=(5)^{\text {th }}$

Therefore, for $5^{\text {th }}$ middle term, $\mathrm{r}=4$
Therefore, the first middle term is

$$
\begin{aligned}
& t_{5}=t_{4+1} \\
& =\binom{9}{4}(3 x)^{9-4}\left(\frac{-x^{3}}{6}\right)^{4} \\
& =\binom{9}{4}(3 x)^{5}\left(x^{3}\right)^{4}\left(\frac{1}{6}\right)^{4}
\end{aligned}
$$

$=\binom{9}{4}(3)^{5}(x)^{5}(x)^{12}\left(\frac{1}{6}\right)^{4}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot \frac{243}{1296}(\mathrm{x})^{17}$
$=\frac{189}{8}(x)^{17}$
II. The second middle term is $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}=\left(\frac{9+3}{2}\right)^{\text {th }}=\left(\frac{12}{2}\right)^{\text {th }}=(6)^{\text {th }}$

Therefore, for the $6^{\text {th }}$ middle term, $\mathrm{r}=5$
Therefore, the second middle term is

$$
\begin{aligned}
& \mathrm{t}_{6}=\mathrm{t}_{5+1} \\
& =\binom{9}{5}(3 \mathrm{x})^{9-5}\left(\frac{-\mathrm{x}^{3}}{6}\right)^{5} \\
& =\binom{9}{4}(3 \mathrm{x})^{4}\left(-\mathrm{x}^{3}\right)^{5}\left(\frac{1}{6}\right)^{5} \ldots \ldots . . \quad\left[\because\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}\right] \\
& =\binom{9}{4}(3)^{4}(\mathrm{x})^{4}(-\mathrm{x})^{15}\left(\frac{1}{6}\right)^{5} \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \cdot \frac{81}{7776}(-\mathrm{x})^{19} \\
& =-\frac{21}{16}(\mathrm{x})^{19}
\end{aligned}
$$

Q. 40. A. Find the term independent of x in the expansion of :

$$
\left(2 x+\frac{1}{3 x^{2}}\right)^{9}
$$

Answer: To Find : term independent of x, i.e. x^{0}

For $\left(2 x+\frac{1}{3 x^{2}}\right)^{9}$

$$
a=2 x, b=\frac{1}{3 x^{2}} \text { and } n=9
$$

We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{9}{r}(2 x)^{9-r}\left(\frac{1}{3 x^{2}}\right)^{r} \\
& =\binom{9}{r}(x)^{9-r}(2)^{9-r}\left(\frac{1}{3}\right)^{r}\left(\frac{1}{x^{2}}\right)^{r} \\
& =\binom{9}{r}(x)^{9-r} \frac{(2)^{9-r}}{(3)^{r}}(x)^{-2 r} \\
& =\binom{9}{r} \frac{(2)^{9-r}}{(3)^{r}}(x)^{9-r-2 r} \\
& =\binom{9}{r} \frac{(2)^{9-r}}{(3)^{r}}(x)^{9-3 r}
\end{aligned}
$$

Now, to get coefficient of term independent of x that is coefficient of x^{0} we must have,
$(x)^{9-3 r}=x^{0}$

- $9-3 r=0$
- $3 \mathrm{r}=9$
-r $=3$
Therefore, coefficient of $x^{0}=\binom{9}{3} \frac{(2)^{9-3}}{(3)^{3}}$
$=\frac{9 \times 8 \times 7}{3 \times 2 \times 1} \frac{(2)^{6}}{(3)^{3}}$
$=\frac{1792}{3}$
Conclusion : coefficient of $\mathrm{x}^{0}=\frac{1792}{3}$
Q. 40. B. Find the term independent of x in the expansion of :

$$
\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{6}
$$

Answer : To Find : term independent of x, i.e. x^{0}
For $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{6}$
$\mathrm{a}=\frac{3 \mathrm{x}^{2}}{2}, \mathrm{~b}=-\frac{1}{3 \mathrm{x}}$ and $\mathrm{n}=6$
We have a formula,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
$=\binom{6}{r}\left(\frac{3 x^{2}}{2}\right)^{6-r}\left(-\frac{1}{3 x}\right)^{r}$
$=\binom{6}{r}\left(\frac{3}{2}\right)^{6-r}\left(x^{2}\right)^{6-r}\left(\frac{-1}{3}\right)^{r}\left(\frac{1}{x}\right)^{r}$
$=\binom{6}{r}\left(\frac{3}{2}\right)^{6-r}\left(\frac{-1}{3}\right)^{r}(x)^{12-2 r}(x)^{-r}$
$=\binom{6}{r}\left(\frac{3}{2}\right)^{6-r}\left(\frac{-1}{3}\right)^{r}(x)^{12-2 r-r}$
$=\binom{6}{r}\left(\frac{3}{2}\right)^{6-r}\left(\frac{-1}{3}\right)^{r}(x)^{12-3 r}$
Now, to get coefficient of term independent of x that is coefficient of x^{0} we must have,
$(x)^{12-3 r}=x^{0}$

- $12-3 r=0$
- $3 \mathrm{r}=12$
-r $=4$
Therefore, coefficient of $x^{0}=\binom{6}{4}\left(\frac{3}{2}\right)^{6-4}\left(\frac{-1}{3}\right)^{4}$
$=\binom{6}{2}\left(\frac{3}{2}\right)^{2} \frac{1}{81} \ldots \ldots \ldots . \quad\left[\because\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}\right]$
$=\frac{6 \times 5}{2 \times 1} \cdot \frac{9}{4} \cdot \frac{1}{81}$
$=\frac{15}{36}$
Conclusion : coefficient of $x^{0}=\frac{15}{36}$
Q. 40. C. Find the term independent of x in the expansion of :
$\left(x-\frac{1}{x^{2}}\right)^{3 n}$
Answer : To Find : term independent of x, i.e. x^{0}
For $\left(x-\frac{1}{x^{2}}\right)^{3 n}$
$a=x, b=-\frac{1}{x^{2}}$ and $N=3 n$
We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{N}{r} a^{N-r} b^{r} \\
& =\binom{3 n}{r}(x)^{3 n-r}\left(-\frac{1}{x^{2}}\right)^{r} \\
& =\binom{3 n}{r}(x)^{3 n-r}(-1)^{r}\left(\frac{1}{x^{2}}\right)^{r} \\
& =\binom{3 n}{r}(x)^{3 n-r}(-1)^{r}(x)^{-2 r} \\
& =\binom{3 n}{r}(-1)^{r}(x)^{3 n-r-2 r} \\
& =\binom{3 n}{r}(-1)^{r}(x)^{3 n-3 r}
\end{aligned}
$$

Now, to get coefficient of term independent of x that is coefficient of x^{0} we must have,
$(x)^{3 n-3 r}=x^{0}$

- $3 n-3 r=0$
- $3 \mathrm{r}=3 \mathrm{n}$
- $r=n$

Therefore, coefficient of $x^{0}=\binom{3 n}{n}(-1)^{n}$
Conclusion : coefficient of $x^{0}=\binom{3 n}{n}(-1)^{n}$
Q. 40. D. Find the term independent of x in the expansion of :

$$
\left(3 x-\frac{2}{x^{2}}\right)^{15}
$$

Answer: To Find : term independent of x, i.e. x^{0}

For $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
$a=3 x, \quad b=\frac{-2}{x^{2}}$ and $n=15$
We have a formula,

$$
\begin{aligned}
& t_{r+1}=\binom{n}{r} a^{n-r} b^{r} \\
& =\binom{15}{r}(3 x)^{15-r}\left(\frac{-2}{x^{2}}\right)^{r} \\
& =\binom{15}{r}(3)^{15-r}(x)^{15-r}(-2)^{r}\left(\frac{1}{x^{2}}\right)^{r} \\
& =\binom{15}{r}(3)^{15-r}(x)^{15-r}(-2)^{r}(x)^{-2 r} \\
& =\binom{15}{r}(3)^{15-r}(-2)^{r}(x)^{15-r-2 r} \\
& =\binom{15}{r}(3)^{15-r}(-2)^{r}(x)^{15-3 r}
\end{aligned}
$$

Now, to get coefficient of term independent of x that is coefficient of x^{0} we must have,
$(x)^{15-3 r}=x^{0}$

- $15-3 r=0$
- $3 \mathrm{r}=15$
- $r=5$

Therefore, coefficient of $x^{0}=\binom{15}{5}(3)^{15-5}(-2)^{5}$

$$
\begin{aligned}
& =\frac{15 \times 14 \times 13 \times 12 \times 11}{5 \times 4 \times 3 \times 2 \times 1} \cdot(3)^{10} \cdot(-32) \\
& =-3003 .(3)^{10} \cdot(32)
\end{aligned}
$$

Conclusion : coefficient of $x^{0}=-3003$.(3) ${ }^{10}$. (32)
Q. 41. Find the coefficient of x^{5} in the expansion of $(1+x)^{3}(1-x)^{6}$.

Answer : To Find : coefficient of x^{5}
For $(1+x)^{3}$
$a=1, b=x$ and $n=3$
We have a formula,
$(1+x)^{3}=\sum_{r=0}^{3}\binom{3}{r}$
$(1)^{3-r} X^{r}$
$=\binom{3}{0}$
$(1)^{3} x^{0}+\binom{3}{1}$
$(1)^{2} x^{1}+\binom{3}{2}$
$(1)^{1} x^{2}+\binom{3}{3}$
$(1)^{0} \mathrm{x}^{3}$
$=1+3 x+3 x^{2}+x^{3}$

For $(1-x)^{6}$
$a=1, b=-x$ and $n=6$
We have formula,

$$
\begin{aligned}
& (1-x)^{6}=\sum_{r=0}^{6}\binom{6}{r}(1)^{6-r}(-x)^{r} \\
& =\binom{6}{0}(1)^{6}(-x)^{0}+\binom{6}{1}(1)^{5}(-x)^{1}+\binom{6}{2}(1)^{4}(-x)^{2}+\binom{6}{3}(1)^{3}(-x)^{3} \\
& \quad+\binom{6}{4}(1)^{2}(-x)^{4}+\binom{6}{5}(1)^{1}(-x)^{5}+\binom{6}{6}(1)^{0}(-x)^{6}
\end{aligned}
$$

We have a formula,
$\binom{n}{r}=\frac{n!}{(n-r)!\times r!}$
By using this formula, we get, \times
$(1-x)^{6}=1-6 x+15 x^{2}-20 x^{3}+15 x^{4}-6 x^{5}+x^{6}$
$\therefore(1+x)^{3}(1-x)^{6}$
$=\left(1+3 x+3 x^{2}+x^{3}\right)\left(1-6 x+15 x^{2}-20 x^{3}+15 x^{4}-6 x^{5}+x^{6}\right)$
Coefficients of x^{5} are
$x^{0} \cdot x^{5}=1 \times(-6)=-6$
$x^{1} \cdot x^{4}=3 \times 15=45$
$x^{2} \cdot x^{3}=3 \times(-20)=-60$
$x^{3} \cdot x^{2}=1 \times 15=15$
Therefore, Coefficients of $x^{5}=-6+45-60+15=-6$
Conclusion : Coefficients of $x^{5}=-6$
Q. 42. Find numerically the greatest term in the expansion of $(2+3 x)^{9}$, where $\mathrm{x}=\frac{3}{2}$.

Answer : To Find : numerically greatest term
For $(2+3 x)^{9}$,
$a=2, b=3 x$ and $n=9$
We have relation,
$t_{r+1} \geq t_{r}$ or $\frac{t_{r+1}}{t_{r}} \geq 1$
We have a formula,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
$=\binom{9}{r} 2^{9-r}(3 x)^{r}$

$$
\begin{aligned}
& =\frac{9!}{(9-r)!\times r!} 2^{9-r}(3)^{r}(x)^{r} \\
& \therefore t_{r}=\binom{n}{r-1} a^{n-r+1} b^{r-1} \\
& =\binom{9}{r-1} 2^{9-r+1}(3 x)^{r-1} \\
& =\frac{9!}{(9-r+1)!\times(r-1)!} 2^{10-r}(3)^{r-1}(x)^{r-1} \\
& =\frac{9!}{(10-r)!\times(r-1)!} 2^{10-r}(3)^{r-1}(x)^{r-1} \\
& \therefore \frac{t_{r+1}}{t_{r}} \geq 1
\end{aligned}
$$

$$
\therefore \frac{\frac{9!}{(9-r)!\times r!} 2^{9-r}(3)^{r}(x)^{r}}{\frac{9!}{(10-r)!\times(r-1)!} 2^{10-r}(3)^{r-1}(x)^{r-1}} \geq 1
$$

$$
\therefore \frac{9!}{(9-r)!\times r!} 2^{9-r}(3)^{r}(x)^{r} \geq \frac{9!}{(10-r)!\times(r-1)!} 2^{10-r}(3)^{r-1}(x)^{r-1}
$$

$$
\therefore \frac{9!}{(9-r)!\times r(r-1)!} 2^{9-r}(3)(3)^{r-1}(x)(x)^{r-1}
$$

$$
\geq \frac{9!}{(10-r)(9-r)!\times(r-1)!}(2) 2^{9-r}(3)^{r-1}(x)^{r-1}
$$

$$
\begin{equation*}
\therefore \frac{1}{\mathrm{r}}(3)(\mathrm{x}) \geq \frac{1}{(10-\mathrm{r})} \tag{2}
\end{equation*}
$$

At $x=3 / 2$
$\therefore \frac{1}{r}(3) \frac{3}{2} \geq \frac{1}{(10-r)}$
$\therefore \frac{9}{4} \geq \frac{r}{(10-r)}$
$\therefore 9(10-r) \geq 4 r$
$\therefore 90-9 r \geq 4 r$

- $90 \geq 13 r$
- $r \leq 6.923$

Therefore, $r=6$ and hence the $7^{\text {th }}$ term is numerically greater.
By using formula,
$t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
$t_{7}=\binom{9}{7} 2^{9-7}(3 x)^{7}$
$=\binom{9}{2} 2^{2}(3)^{7}(x)^{7}$
Conclusion : the $7^{\text {th }}$ term is numerically greater with value $\binom{9}{2} 2^{2}(3)^{7}(x)^{7}$
Q. 43. If the coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $(1+x)^{2 n}$ are in $A P$, show that $2 n^{2}-9 n+7=0$.

Answer : For $(1+x)^{2 n}$
$a=1, b=x$ and $N=2 n$
We have, $\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{N}}{\mathrm{r}} \mathrm{a}^{\mathrm{N}-\mathrm{r}} b^{\mathrm{r}}$
For the $2^{\text {nd }}$ term, $r=1$

$$
\begin{aligned}
& \therefore t_{2}=t_{1+1} \\
& =\binom{2 n}{1}(1)^{2 n-1}(x)^{1}
\end{aligned}
$$

$\left.=(2 n) \times \ldots \ldots \ldots\binom{n}{1}=n\right]$
Therefore, the coefficient of $2^{\text {nd }}$ term $=(2 n)$
For the $3^{\text {rd }}$ term, $r=2$
$\therefore \mathrm{t}_{3}=\mathrm{t}_{2+1}$
$=\binom{2 \mathrm{n}}{2}(1)^{2 \mathrm{n}-2}(\mathrm{x})^{2}$
$=\frac{(2 n)!}{(2 n-2)!\times 2!} x^{2}$
$=\frac{(2 n)(2 n-1)(2 n-2)!}{(2 n-2)!\times 2} x^{2}$. $\ldots \ldots \ldots . .(n!=n .(n-1)!)$
$=(n)(2 n-1) x^{2}$
Therefore, the coefficient of $3^{\text {rd }}$ term $=(n)(2 n-1)$
For the $4^{\text {th }}$ term, $r=3$

$$
\begin{aligned}
& \therefore t_{4}=t_{3+1} \\
& =\binom{2 n}{3}(1)^{2 n-3}(x)^{3}
\end{aligned}
$$

$$
=\frac{(2 n)!}{(2 n-3)!\times 3!} x^{3}
$$

$$
=\frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!\times 6} x^{3}
$$

$$
.(n!=n .(n-1)!)
$$

$=\frac{(n)(2 n-1) \cdot 2(n-1)}{3} x^{3}$
$=\frac{2(\mathrm{n})(2 \mathrm{n}-1) \cdot(\mathrm{n}-1)}{3} \mathrm{X}^{3}$

Therefore, the coefficient of $3^{\text {rd }}$ term $=\frac{2(n)(2 n-1) \cdot(\mathrm{n}-1)}{3}$
As the coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms are in A.P.
Therefore,
$2 \times$ coefficient of $3^{\text {rd }}$ term $=$ coefficient of $2^{\text {nd }}$ term + coefficient of the $4^{\text {th }}$ term
$\therefore 2 \times(n)(2 n-1)=(2 n)+\frac{2(n)(2 n-1) \cdot(n-1)}{3}$
Dividing throughout by (2n),
$\therefore 2 \mathrm{n}-1=1+\frac{(2 \mathrm{n}-1)(\mathrm{n}-1)}{3}$
$\therefore 2 n-1=\frac{3+(2 n-1)(n-1)}{3}$

- $3(2 n-1)=3+(2 n-1)(n-1)$
- $6 n-3=3+\left(2 n^{2}-2 n-n+1\right)$
- $6 n-3=3+2 n^{2}-3 n+1$
$\cdot 3+2 n^{2}-3 n+1-6 n+3=0$
- $2 n^{2}-9 n+7=0$

Conclusion: If the coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms of $(1+x)^{2 n}$ are in A.P. then $2 n^{2}-$ $9 n+7=0$
Q. 44. Find the $6^{\text {th }}$ term of the expansion $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$, if the binomial coefficient of the $3^{\text {rd }}$ term from the end is 45 .

Answer : Given : $3^{\text {rd }}$ term from the end $=45$
To Find : $6^{\text {th }}$ term
For $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$,
$a=y^{1 / 2}, b=x^{1 / 3}$

We have, ${ }^{\mathrm{t}_{r+1}}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
As $n=n$, therefore there will be total $(\mathrm{n}+1)$ terms in the expansion.
$3^{\text {rd }}$ term from the end $=(n+1-3+1)^{\text {th }}$ i.e. $(n-1)^{\text {th }}$ term from the starting
For $(\mathrm{n}-1)^{\text {th }}$ term, $\mathrm{r}=(\mathrm{n}-1-1)=(\mathrm{n}-2)$
$\mathrm{t}_{(\mathrm{n}-1)}=\mathrm{t}_{(\mathrm{n}-2)+1}$
$=\binom{n}{n-2}\left(y^{\frac{1}{2}}\right)^{n-(n-2)}\left(x^{\frac{1}{3}}\right)^{(n-2)}$
$\left.=\binom{\mathrm{n}}{2}\left(y^{\frac{1}{2}}\right)^{2}(x)^{\frac{\mathrm{n}-2}{3}} \ldots \ldots \ldots . . \begin{array}{c}\mathrm{n} \\ \mathrm{n}-\mathrm{r}\end{array}\right)=\binom{\mathrm{n}}{\mathrm{r}}$
$=\frac{\mathrm{n}(\mathrm{n}-1)}{2}(\mathrm{y})(\mathrm{x})^{\frac{\mathrm{n}-2}{3}}$
Therefore $3^{\text {rd }}$ term from the end $=\frac{n(n-1)}{2}(y)(x)^{\frac{n-2}{3}}$
Therefore coefficient $3^{\text {rd }}$ term from the end $=\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
$\therefore 45=\frac{\mathrm{n}(\mathrm{n}-1)}{2}$

- $90=\mathrm{n}(\mathrm{n}-1)$
- $10(9)=\mathrm{n}(\mathrm{n}-1)$

Comparing both sides, $\mathrm{n}=10$
For $6^{\text {th }}$ term, $r=5$
$\mathrm{t}_{6}=\mathrm{t}_{5+1}$
$=\binom{10}{5}\left(y^{\frac{1}{2}}\right)^{10-5}\left(x^{\frac{1}{3}}\right)^{5}$
$=\binom{10}{5}(y)^{\frac{5}{2}}(x)^{\frac{5}{3}}$
$=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}(y)^{\frac{5}{2}}(x)^{\frac{5}{3}}$
$=252(\mathrm{y})^{\frac{5}{2}}(\mathrm{x})^{\frac{5}{3}}$
Conclusion : $6^{\text {th }}$ term $=252(\mathrm{y})^{\frac{5}{2}}(\mathrm{x})^{\frac{5}{3}}$
Q. 45. If the $17^{\text {th }}$ and $18^{\text {th }}$ terms in the expansion of $(2+a)^{50}$ are equal, find the value of a.

Answer : Given : $\mathrm{t}_{17}=\mathrm{t}_{18}$
To Find : value of a
For $(2+a)^{50}$
$A=2, b=a$ and $n=50$
We have, ${ }^{t_{r+1}}=\binom{n}{r} A^{n-r} b^{r}$
For the $17^{\text {th }}$ term, $r=16$
$\therefore \mathrm{t}_{17}=\mathrm{t}_{16+1}$
$=\binom{50}{16}(2)^{50-16}(a)^{16}$
$=\binom{50}{16}(2)^{34}(a)^{16}$

For the $18^{\text {th }}$ term, $r=17$

$$
\begin{aligned}
& \therefore t_{18}=t_{17+1} \\
& =\binom{50}{17}(2)^{50-17}(\mathrm{a})^{17}
\end{aligned}
$$

$$
=\binom{50}{17}(2)^{33}(\mathrm{a})^{17}
$$

As $17^{\text {th }}$ and $18^{\text {th }}$ terms are equal
$\therefore \mathrm{t}_{18}=\mathrm{t}_{17}$
$\therefore\binom{50}{17}(2)^{33}(a)^{17}=\binom{50}{16}$
$(2)^{34}(a)^{16}$
$\therefore\binom{50}{17}$
$(2)^{33}(a)^{17}=\binom{50}{16}$
$(2)^{34}(a)^{16}$
$\therefore \frac{50!}{(50-17)!\times(17)!}(2)^{33}(a)^{17}=\frac{50!}{(50-16)!\times(16)!}(2)^{34}(a)^{16}$
$\left.\ldots \ldots \ldots\binom{\mathrm{n}}{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!\times(\mathrm{r})!}\right]$
$\therefore \frac{(a)^{17}}{(a)^{16}}=\frac{50!}{(50-16)!\times(16)!} \cdot \frac{(50-17)!\times(17)!}{50!} \cdot \frac{(2)^{34}}{(2)^{33}}$
$\therefore \mathrm{a}=\frac{(50-17) \times(50-16)!\times 17 \times(16)!}{(50-16)!\times(16)!}$.
$\ldots \ldots . .[\because n!=n(n-1)!]$
$\therefore \mathrm{a}=(50-17) \times 17$.

- $\mathrm{a}=1122$

Conclusion : value of $\mathrm{a}=1122$
Q. 46. Find the coefficient of x^{4} in the expansion of $(1+x)^{n}(1-x)^{n}$. Deduce that $\mathrm{C}_{2}=\mathrm{C}_{0} \mathrm{C}_{4}-\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{C}_{1}+\mathrm{C}_{4} \mathrm{C}_{0}$, where C_{r} stands for ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$.

Answer: To Find : Coefficients of x^{4}
For $(1+x)^{n}$
$a=1, b=x$

We have a formula,

$$
\begin{aligned}
& (1+x)^{n}=\sum_{r=0}^{n}\binom{n}{r}(1)^{n-r} x^{r} \\
& =\binom{n}{0}(1)^{n} x^{0}+\binom{n}{1}(1)^{n-1} x^{1}+\binom{n}{2}(1)^{n-2} x^{2}+\cdots+\binom{n}{n}(1)^{n-n} x^{n} \\
& =\binom{n}{0} x^{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}
\end{aligned}
$$

For $(1-x)^{n}$
$a=1, b=-x$ and $n=n$
We have formula,

$$
\begin{aligned}
& (1-x)^{n}=\sum_{r=0}^{n}\binom{n}{r}(1)^{n-r}(-x)^{r} \\
& =\binom{n}{0}(1)^{n}(-x)^{0}+\binom{n}{1}(1)^{n-1}(-x)^{1}+\binom{n}{2}(1)^{n-2}(-x)^{2}+\cdots \\
& \quad+\binom{n}{n}(1)^{n-n}(-x)^{n} \\
& =\binom{n}{0}(-x)^{0}-\binom{n}{1}(x)^{1}+\binom{n}{2}(x)^{2}+\cdots+\binom{n}{n}(-x)^{n} \\
& \begin{aligned}
& \mathrm{n}(1+x)^{3}(1-x)^{6} \\
&=\left\{\binom{n}{0} x^{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}\right\}\left\{\binom{n}{0}(-x)^{0}-\binom{n}{1}(x)^{1}+\binom{n}{2}(x)^{2}\right. \\
&\left.\quad+\cdots+\binom{n}{n}(-x)^{n}\right\}
\end{aligned}
\end{aligned}
$$

Coefficients of x^{4} are
$x^{0} \cdot x^{4}=\binom{n}{0} \times\binom{ n}{4}=C_{0} C_{4}$
$x^{1} \cdot x^{3}=\binom{n}{1} \times(-1)\binom{n}{3}=-\binom{n}{1}\binom{n}{3}=-C_{1} C_{3}$
$x^{2} \cdot x^{2}=\binom{n}{2} \times\binom{ n}{2}=C_{2} C_{2}$
$x^{3} \cdot x^{1}=\binom{n}{3} \times(-1)\binom{n}{1}=-\binom{n}{3}\binom{n}{1}=-C_{3} C_{1}$
$x^{4} \cdot x^{0}=\binom{n}{4} \times\binom{ n}{0}=C_{4} C_{0}$
Therefore, Coefficient of x^{4}
$=\mathrm{C}_{4} \mathrm{C}_{0}-\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{C}_{1}+\mathrm{C}_{4} \mathrm{C}_{0}$
Let us assume, $n=4$, it becomes
${ }^{4} \mathrm{C}_{4}{ }^{4} \mathrm{C}_{0}-{ }^{4} \mathrm{C}_{1}{ }^{4} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{2}{ }^{4} \mathrm{C}_{2}-{ }^{4} \mathrm{C}_{3}{ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{4}{ }^{4} \mathrm{C}_{0}$
We know that,
$\binom{n}{r}=\frac{n!}{(n-r)!\times r!}$

By using above formula, we get,
${ }^{4} \mathrm{C}_{4}{ }^{4} \mathrm{C}_{0}-{ }^{4} \mathrm{C}_{1}{ }^{4} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{2}{ }^{4} \mathrm{C}_{2}-{ }^{4} \mathrm{C}_{3}{ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{4}{ }^{4} \mathrm{C}_{0}$
$=(1)(1)-(4)(4)+(6)(6)-(4)(4)+(1)(1)$
$=1-16+36-16+1$
$=6$
$={ }^{4} \mathrm{C}_{2}$
Therefore, in general,
$\mathrm{C}_{4} \mathrm{C}_{0}-\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{C}_{1}+\mathrm{C}_{4} \mathrm{C}_{0}=\mathrm{C}_{2}$
Therefore, Coefficient of $\mathrm{x}^{4}=\mathrm{C}_{2}$
Conclusion :

- Coefficient of $x^{4}=\mathrm{C}_{2}$
- $\mathrm{C}_{4} \mathrm{C}_{0}-\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{C}_{1}+\mathrm{C}_{4} \mathrm{C}_{0}=\mathrm{C}_{2}$
Q. 47. Prove that the coefficient of $x n$ in the binomial expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the binomial expansion of $(1+x)^{2 n-1}$.

Answer: To Prove : coefficient of x^{n} in $(1+x)^{2 n}=2 \times$ coefficient of x^{n} in $(1+x)^{2 n-1}$
For $(1+x)^{2 n}$,
$a=1, b=x$ and $m=2 n$
We have a formula,
$\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{m}}{\mathrm{r}} \mathrm{a}^{\mathrm{m}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$=\binom{2 \mathrm{n}}{\mathrm{r}}(1)^{2 \mathrm{n}-\mathrm{r}}(\mathrm{x})^{\mathrm{r}}$
$=\binom{2 \mathrm{n}}{\mathrm{r}}(\mathrm{x})^{\mathrm{r}}$
To get the coefficient of x^{n}, we must have,
$x^{n}=x^{r}$

- $r=n$

Therefore, the coefficient of $x^{n}=\binom{2 n}{n}$
$=\frac{(2 n)!}{n!\times(2 n-n)!} \quad \ldots \ldots \ldots\left(\because\binom{n}{r}=\frac{n!}{r!\times(n-r)!}\right)$
$=\frac{(2 n)!}{n!\times n!}$
$=\frac{2 \mathrm{n} \times(2 \mathrm{n}-1)!}{\mathrm{n}!\times \mathrm{n}(\mathrm{n}-1)!} \ldots \ldots \ldots . .(\because \mathrm{n}!=n(\mathrm{n}-1)!)$
$=\frac{2 \times(2 \mathrm{n}-1)!}{\mathrm{n}!\times(\mathrm{n}-1)!}$
.........cancelling n
Therefore, the coefficient of x^{n} in $(1+x)^{2 n}=\frac{2 \times(2 n-1)!}{n!\times(n-1)!}$.eq(1)

Now for $(1+x)^{2 n-1}$,

$$
a=1, b=x \text { and } m=2 n-1
$$

We have formula,
$t_{r+1}=\binom{m}{r} a^{m-r} b^{r}$
$=\binom{2 n-1}{r}(1)^{2 n-1-r}(x)^{r}$
$=\binom{2 n-1}{r}(x)^{r}$
To get the coefficient of x^{n}, we must have,
$x^{n}=x^{r}$

- $r=n$

Therefore, the coefficient of x^{n} in $(1+x)^{2 n-1}=\binom{2 n-1}{n}$
$=\frac{(2 n-1)!}{n!\times(2 n-1-n)!}$
$=\frac{1}{2} \times \frac{2 \times(2 n-1)!}{n!\times(n-1)!}$
.....multiplying and dividing by 2
Therefore,
Coefficient of x^{n} in $(1+x)^{2 n-1}=>\times$ coefficient of x^{n} in $(1+x)^{2 n}$
Or coefficient of x^{n} in $(1+x)^{2 n}=2 \times$ coefficient of x^{n} in $(1+x)^{2 n-1}$
Hence proved.
Q. 48. Find the middle term in the expansion of $\left(\frac{p}{2}+2\right)^{8}$

Answer : Given : $a=\frac{p}{2}, b=2$ and $n=8$
To find : middle term
Formula :

- The middle term $=\left(\frac{\mathrm{n}+2}{2}\right)$
. $\mathrm{t}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$

Here, n is even.
Hence,
$\left(\frac{\mathrm{n}+2}{2}\right)=\left(\frac{8+2}{2}\right)=5$
Therefore, $5^{\text {th }}$ the term is the middle term.
For ${ }^{t_{5}}, r=4$
We have, $t_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
$\therefore t_{5}=\binom{8}{4}\left(\frac{p}{2}\right)^{8-4} 2^{4}$
$\therefore t_{5}=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \cdot\left(\frac{p}{2}\right)^{4}$.
$\therefore t_{5}=70 .\left(\frac{\mathrm{p}^{4}}{16}\right)$.
$\therefore \mathrm{t}_{5}=70 \mathrm{p}^{4}$
Conclusion : The middle term is $70 \mathrm{p}^{4}$.
Q. 1. Show that the term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{10}$ is $\mathbf{- 2 5 2}$.

Answer : To show: the term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{10}$ is -252 . Formula Used:

General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,
$T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$ where
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}$
Now, finding the general term of the expression, $\left(x-\frac{1}{x}\right)^{10}$, we get

$$
T_{r+1}={ }^{10} C_{r} \times x^{10-r} \times\left(\frac{-1}{x}\right)^{r}
$$

For finding the term which is independent of x,
$10-2 r=5$
$r=5$
Thus, the term which would be independent of x is T_{6}

$$
\begin{aligned}
& T_{6}={ }^{10} C_{5} \times \mathrm{x}^{10-5} \times\left(\frac{-1}{\mathrm{x}}\right)^{5} \\
& \mathrm{~T}_{6}={ }^{10} C_{5} \times \mathrm{x}^{10-5} \times\left(\frac{-1}{\mathrm{x}}\right)^{5} \\
& T_{6}=-{ }^{10} C_{5} \\
& T_{6}=-\frac{10!}{5!(10-5)!} \\
& T_{6}=-\frac{10!}{5!\times 5!} \\
& T_{6}=-\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2} \\
& T_{6}=-\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2} \\
& T_{6}=252
\end{aligned}
$$

Thus, the term independent of x in the expansion of $\left(x-\frac{1}{x}\right)^{10}$ is -252 .
Q. 2. If the coefficients of x^{2} and x^{3} in the expansion of $(3+p x)^{9}$ are the same then prove that $P=\frac{9}{7}$.

Answer : To prove: that. If the coefficients of x^{2} and x^{3} in the expansion of $(3+p x)^{9}$ are the same then $\boldsymbol{P}=\frac{\mathbf{9}}{\mathbf{7}}$.

Formula Used:
General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Now, finding the general term of the expression, $(3+p x)^{9}$, we get

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times 3^{9-\mathrm{r}} \times(\mathrm{px})^{\mathrm{r}}
$$

For finding the term which has x^{2} in it, is given by $r=2$

Thus, the coefficients of x^{2} are given by,

$$
\begin{aligned}
& \mathrm{T}_{3}={ }^{9} \mathrm{C}_{2} \times 3^{9-2} \times(\mathrm{px})^{2} \\
& \mathrm{~T}_{3}={ }^{9} \mathrm{C}_{2} \times 3^{7} \times \mathrm{p}^{2} \times \mathrm{x}^{2}
\end{aligned}
$$

For finding the term which has x^{2} in it, is given by $r=3$

Thus, the coefficients of x^{3} are given by,

$$
\begin{aligned}
& T_{3}={ }^{9} \mathrm{C}_{3} \times 3^{9-3} \times(\mathrm{px})^{3} \\
& \mathrm{~T}_{3}={ }^{9} \mathrm{C}_{3} \times 3^{6} \times \mathrm{p}^{3} \times \mathrm{x}^{3}
\end{aligned}
$$

As the coefficients of x^{2} and x^{3} in the expansion of $(3+p x)^{9}$ are the same.
${ }^{9} \mathrm{C}_{3} \times 3^{6} \times \mathrm{p}^{3}={ }_{9} \mathrm{C}_{2} \times 3^{7} \times \mathrm{p}^{2}$
${ }_{9} \mathrm{C}_{3} \times \mathrm{p}={ }_{9} \mathrm{C}_{2} \times 3$
$\frac{9!}{3!\times 6!} \times p=\frac{9!}{2!\times 7!} \times 3$
$\frac{9!}{3 \times 2!\times 6!} \times p=\frac{9!}{2!\times 7 \times 6!} \times 3$
$\mathrm{p}=\frac{9}{7}$
Thus, the value of p for which coefficients of x^{2} and x^{3} in the expansion of $(3+p x)^{9}$ are the same is $\frac{9}{7}$
Q. 3. Show that the coefficient of x^{-3} in the expansion of $\left(x-\frac{1}{x}\right)^{11}$ is -330 .

Answer : To show: that the coefficient of x^{-3} in the expansion of $\left(x-\frac{1}{x}\right)^{11}$ is -330 .
Formula Used:
General term, T_{r+1} of binomial expansion $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Now, finding the general term of the expression, $\left(x-\frac{1}{x}\right)^{11}$, we get

$$
T_{r+1}={ }^{11} C_{r} \times x^{11-r} \times\left(\frac{-1}{x}\right)^{r}
$$

For finding the term which has x^{-3} in it, is given by
$11-2 r=3$
$2 r=14$
$R=7$
Thus, the term which the term which has x^{-3} in it is T_{8}

$$
\begin{aligned}
& T_{8}={ }^{11} C_{7} \times x^{11-7} \times\left(\frac{-1}{x}\right)^{7} \\
& T_{8}=-{ }^{11} C_{7} \times \mathrm{x}^{-3} \\
& T_{8}=-\frac{11!}{7!(11-7)!} \\
& T_{6}=-\frac{11 \times 10 \times 9 \times 8 \times 7!}{7!\times 4 \times 3 \times 2} \\
& T_{6}=-330
\end{aligned}
$$

Thus, the coefficient of x^{-3} in the expansion of $\left(x-\frac{1}{x}\right)^{11}$ is -330 .
Q. 4. Show that the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ is 252 .

Answer : To show: that the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ is 252 .
Formula Used:
General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x} \text { n-r} y^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Total number of terms in the expansion is 11
Thus, the middle term of the expansion is T_{6} and is given by,

$$
\begin{aligned}
& \mathrm{T}_{6}={ }^{10} \mathrm{C}_{5 \times} \times\left(\frac{2 x^{2}}{3}\right)^{5} \times\left(\frac{3}{2 \mathrm{x}^{2}}\right)^{5} \\
& \mathrm{~T}_{6}={ }^{10} \mathrm{C}_{5} \\
& \mathrm{~T}_{6}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2}
\end{aligned}
$$

$$
T_{6}=252
$$

Thus, the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ is 252 .
Q. 5. Show that the coefficient of \mathbf{x}^{4} in the expansion of $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is $\frac{405}{256}$.

Answer : To show: that the coefficient of x^{4} in the expansion of $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is -330 . Formula Used:

General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times{ }^{\mathrm{n}-\mathrm{r}} \mathrm{Y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Now, finding the general term of the expression, $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$, we get

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} \times\left(\frac{\mathrm{x}}{2}\right)^{10-\mathrm{r}} \times\left(\frac{-3}{\mathrm{x}^{2}}\right)^{\mathrm{r}}
$$

For finding the term which has x^{4} in it, is given by
$10-3 r=4$
$3 r=6$
$R=2$
Thus, the term which has X^{4} in it is T_{3}
$T_{3}={ }^{10} C_{2} \times\left(\frac{x}{2}\right)^{8} \times\left(\frac{-3}{x^{2}}\right)^{2}$
$T_{3}=\frac{10!\times 9}{2!\times 8!\times 2^{8}}$
$T_{3}=\frac{10 \times 9 \times 8!\times 9}{2 \times 8!\times 2^{8}}$
$\mathrm{T}_{3}=\frac{405}{256}$

Thus, the coefficient of x^{4} in the expansion of $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is $\frac{405}{256}$
Q. 6. Prove that there is no term involving x^{6} in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{11}$.

Answer : To prove: that there is no term involving x^{6} in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{11}$
Formula Used:
General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,
$T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$ where
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}$

Now, finding the general term of the expression, $\left(2 x^{2}-\frac{3}{x}\right)^{11}$, we get

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{11} \mathrm{C}_{\mathrm{r}} \times\left(2 x^{2}\right)^{11-r} \times\left(\frac{-3}{\mathrm{x}}\right)^{\mathrm{r}}
$$

For finding the term which has X^{6} in it, is given by
$22-2 r-r=6$
$3 r=16$
$r=\frac{16}{3}$
Since, $r=\frac{16}{3}$ is not possible as r needs to be a whole number
Thus, there is no term involving x^{6} in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{11}$.
Q. 7. Show that the coefficient of x^{4} in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is 212.

Answer : To show: that the coefficient of x^{4} in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is 212 .
Formula Used:
We have,
$\left(1+2 x+x^{2}\right)^{5}=\left(1+x+x+x^{2}\right)^{5}$
$=(1+x+x(1+x))^{5}$
$=(1+x)^{5}(1+x)^{5}$
$=(1+x)^{10}$
General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,
$T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$ where s
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}$
Now, finding the general term,
$\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} \times \mathrm{X}^{10-\mathrm{r}} \times(1)^{\mathrm{r}}$
$10-r=4$
$r=6$
Thus, the coefficient of x^{4} in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is given by,
${ }^{10} \mathrm{C}_{4}=\frac{10!}{4!6!}$
${ }^{10} \mathrm{C}_{4}=\frac{10 \times 9 \times 8 \times 7 \times 6!}{24 \times 6!}$
${ }^{10} \mathrm{C}_{4}=210$
Thus, the coefficient of x^{4} in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is 210
Q. 8. Write the number of terms in the expansion of $(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$

Answer : To find: the number of terms in the expansion of $(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$
Formula Used:
Binomial expansion of $(x+y)^{n}$ is given by,
$(\mathrm{x}+\mathrm{y})^{\mathrm{n}}=\sum_{r=0}^{n}\binom{\mathrm{n}}{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}$
Thus,

$$
\begin{aligned}
(\sqrt{2}+1)^{5}+ & (\sqrt{2}-1)^{5} \\
& =\left((\sqrt{2})^{5}+(\sqrt{2})^{4}\binom{5}{1}+\cdots+\binom{5}{5}\right) \\
& +\left((\sqrt{2})^{5}-(\sqrt{2})^{4}\binom{5}{1}+\cdots-\binom{5}{5}\right)
\end{aligned}
$$

So, the no. of terms left would be 6
Thus, the number of terms in the expansion of $(\sqrt{2}+1)^{5}+(\sqrt{2}-1)^{5}$ is 6
Q. 9. Which term is independent of x in the expansion of $\left(x-\frac{1}{3 x^{2}}\right)^{9}$?

Answer : To find: the term independent of x in the expansion of $\left(x-\frac{1}{3 x^{2}}\right)^{9}$?
Formula Used:
A general term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Now, finding the general term of the expression, $\left(x-\frac{1}{3 x^{2}}\right)^{9}$, we get

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{9-\mathrm{r}} \times\left(\frac{-1}{3 \mathrm{x}^{2}}\right)^{\mathrm{r}} \\
& \mathrm{~T}_{\mathrm{r}+1}={ }^{9} C_{r} \times \mathrm{x}^{9-\mathrm{r}} \times(-1) \times 3 \mathrm{x}^{-2 \mathrm{r}} \\
& \mathrm{~T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times(-1) \times 3 \mathrm{x}^{9-3 \mathrm{r}}
\end{aligned}
$$

For finding the term which is independent of x ,
$9-3 r=0$
$r=3$
Thus, the term which would be independent of x is T_{4}
Thus, the term independent of x in the expansion of $\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{10}$ is T_{4} i.e $4^{\text {th }}$ term
Q. 10. Write the coefficient of the middle term in the expansion of $(1+x)^{2 n}$.

Answer : To find: that the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ is 252. Formula Used:

A general term, $\mathrm{T}_{\mathrm{r}+1}$ of binomial expansion $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Total number of terms in the expansion is 11
Thus, the middle term of the expansion is T_{6} and is given by,

$$
\begin{aligned}
& \mathrm{T}_{6}={ }^{10} \mathrm{C}_{5 \times}\left(\frac{2 x^{2}}{3}\right)^{5} \times\left(\frac{3}{2 \mathrm{x}^{2}}\right)^{5} \\
& \mathrm{~T}_{6}={ }^{10} \mathrm{C}_{5} \\
& \mathrm{~T}_{6}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2} \\
& \mathrm{~T}_{6}=252
\end{aligned}
$$

Thus, the middle term in the expansion of $\left(\frac{2 \mathrm{x}^{2}}{3}+\frac{3}{2 \mathrm{x}^{2}}\right)^{10}$ is 252 .
Q. 11. Write the coefficient of $x^{7} y^{2}$ in the expansion of $(x+2 y)^{9}$

Answer : To find: the coefficient of $x^{7} y^{2}$ in the expansion of $(x+2 y)^{9}$ Formula Used:

A general term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x} \text { n-r} \mathrm{y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Now, finding the general term of the expression, $(x+2 y)^{9}$, we get

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{9-\mathrm{r}} \times(2 \mathrm{y})^{\mathrm{r}}
$$

The value of r for which coefficient of $x^{7} y^{2}$ is defined
$R=2$
Hence, the coefficient of $x^{7} y^{2}$ in the expansion of $(x+2 y)^{9}$ is given by:

$$
\begin{aligned}
& T_{3}={ }^{9} C_{3} \times x^{9-2} \times(2 y)^{2} \\
& T_{3}={ }^{9} C_{3} \times 4 \times x^{7} \times(y)^{2} \\
& T_{3}=\frac{9!}{3!\times 6!} \times 4 \times x^{7} \times(y)^{2} \\
& T_{3}=\frac{9 \times 8 \times 7 \times 6!}{6 \times 6!} \times 4 \times x^{7} \times(y)^{2} \\
& T_{3}=336
\end{aligned}
$$

Thus, the coefficient of $x^{7} y^{2}$ in the expansion of $(x+2 y)^{9}$ is 336 .
Q. 12. If the coefficients of $(r-5)$ th and $(2 r-1)$ th terms in the expansion of $(1+$ $\mathrm{x})^{34}$ are equal, find the value of r.

Answer : To find: the value of r with respect to the binomial expansion of ($1+$ x) ${ }^{34}$ where the coefficients of the $(r-5)$ th and $(2 r-1)$ th terms are equal to each other Formula Used:

The general term, $\mathrm{T}_{\mathrm{r}+1}$ of binomial expansion $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ is given by,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}} \text { where } \\
& { }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Now, finding the $(r-5)$ th term, we get

$$
T_{r-5}={ }^{34} C_{r-6} \times x^{r-6}
$$

Thus, the coefficient of $(r-5)$ th term is ${ }^{34} \mathrm{C} r-6$

Now, finding the $(2 r-1)$ th term, we get

$$
\mathrm{T}_{2 \mathrm{r}-1}={ }^{34} C_{2 \mathrm{r}-2} \times(\mathrm{x})^{2 \mathrm{r}-2}
$$

Thus, coefficient of $(2 r-1)$ th term is ${ }^{34} \mathrm{C}_{2 r-2}$
As the coefficients are equal, we get

$$
{ }^{34} C_{2 r-2}={ }^{34} C_{r-6}
$$

$2 r-2=r-6$
$R=-4$
Value of $r=-4$ is not possible
$2 r-2+r-6=34$
$3 r=42$
$R=14$
Thus, value of r is 14
Q. 13. Write the $4^{\text {th }}$ term from the end in the expansion of $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{7}$

Answer : To find: $4^{\text {th }}$ term from the end in the expansion of $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{7}$
Formula Used:
A general term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,

$$
T_{r+1}={ }^{n} C_{r} \times{ }^{n-r} y^{r} \text { where }
$$

$$
{ }^{{ }^{n}} C_{\mathrm{r}}=\frac{n!}{r!(n-r)!}
$$

Total number of terms in the expansion is 8
Thus, the $4^{\text {th }}$ term of the expansion is T_{5} and is given by,

$$
\begin{aligned}
& \mathrm{T}_{5}={ }^{7} C_{5} \times\left(\frac{3}{x^{2}}\right)^{3} \times\left(\frac{-\mathrm{x}^{3}}{6}\right)^{4} \\
& \mathrm{~T}_{5}=\frac{7 \times 6 \times 5!}{2 \times 5!} \times \frac{3 \times 3 \times 3}{6 \times 6 \times 6 \times 6} \times \mathrm{x}^{-18} \\
& \mathrm{~T}_{5}=\frac{7 \times 6 \times 5!}{2 \times 5!} \times \frac{3 \times 3 \times 3}{6 \times 6 \times 6 \times 6} \times \mathrm{x}^{-18} \\
& \mathrm{~T}_{5}=\frac{7}{16} \mathrm{x}^{-18}
\end{aligned}
$$

Thus, a $4^{\text {th }}$ term from the end in the expansion of $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{7}$ is $T_{5}=\frac{7}{16} x^{-18}$
Q. 14. Find the coefficient of x^{n} in the expansion of $(1+x)(1-x)^{n}$.

Answer : To find: the coefficient of x^{n} in the expansion of $(1+x)(1-x)^{n}$.
Formula Used:
Binomial expansion of $(x+y)^{n}$ is given by,

$$
(\mathrm{x}+\mathrm{y})^{\mathrm{n}}=\sum_{r=0}^{n}\binom{\mathrm{n}}{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}
$$

Thus,
$(1+x)(1-x)^{n}$.

$$
\begin{aligned}
& =(1+x)\left(\binom{n}{0}(-x)+\binom{n}{1}(-x)^{1}\right. \\
& \left.+\binom{n}{2}(-x)^{2}+\ldots+\binom{n}{n-1}(-x)^{n-1}+\binom{n}{n}(-x)^{n}\right)
\end{aligned}
$$

Thus, the coefficient of $(\mathrm{x})^{\mathrm{n}}$ is,
${ }^{n} \mathrm{C}_{n}-{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1}$ (If n is even)
$-{ }^{n} \mathrm{C}_{n}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1}$ (If n is odd)
Thus, the coefficient of $(x)^{n}$ is, ${ }^{n} C_{n-}{ }^{n} C_{n-1}$ (If n is even) and $-{ }^{n} C_{n}+{ }^{n} C_{n-1}$ (If n is odd)
Q. 15. In the binomial expansion of $(a+b)^{\text {n }}$, the coefficients of the $4^{\text {th }}$ and $13^{\text {th }}$ terms are equal to each other. Find the value of n.

Answer : To find: the value of n with respect to the binomial expansion of ($\mathrm{a}+$ b) ${ }^{\text {n }}$ where the coefficients of the $4^{\text {th }}$ and $13^{\text {th }}$ terms are equal to each other

Formula Used:
A general term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,
$\mathrm{T}_{\mathrm{r}+1}={ }^{n} \mathrm{Cr} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{y}^{\mathrm{r}}$ where
${ }^{n} \mathrm{C}_{\mathrm{r}}=\frac{n!}{r!(n-r)!}$
Now, finding the $4^{\text {th }}$ term, we get
$\mathrm{T}_{4}={ }^{\mathrm{n}} \mathrm{C}_{3} \times \mathrm{a}^{\mathrm{n}-3} \times(\mathrm{b})^{3}$
Thus, the coefficient of a $4^{\text {th }}$ term is ${ }^{n} \mathrm{C}_{3}$
Now, finding the $13^{\text {th }}$ term, we get
$\mathrm{T}_{13}{ }^{=}{ }_{\mathrm{n}} \mathrm{C}_{12} \times \mathrm{a}^{\mathrm{n}-12} \times(\mathrm{b})^{12}$
Thus, coefficient of $4^{\text {th }}$ term is ${ }^{n} \mathrm{C}_{12}$
As the coefficients are equal, we get
${ }^{n} \mathrm{C}_{12}={ }^{\mathrm{n}} \mathrm{C}_{3}$
Also, ${ }^{n} C_{r}={ }^{n} C_{n-r}$
${ }^{n} C_{n-12}={ }^{n} C_{3}$
$n-12=3$
$\mathrm{n}=15$

Thus, value of n is 15
Q. 16. Find the positive value of m for which the coefficient of x^{2} in the expansion of $(1+x)^{m}$ is 6 .

Answer : To find: the positive value of m for which the coefficient of x^{2} in the expansion of $(1+x)^{m}$ is 6 .

Formula Used:
General term, T_{r+1} of binomial expansion $(x+y)^{n}$ is given by,
$T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$ where
${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
Now, finding the general term of the expression, $(1+x)^{m}$, we get
$\mathrm{T}_{\mathrm{r}+1}={ }_{\mathrm{m}}^{\mathrm{Cr}}$. $\times 1^{\mathrm{m}-\mathrm{r}} \times(\mathrm{x})^{\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}+1}={ }_{\mathrm{m}_{\mathrm{r}}} \times(\mathrm{x})^{\mathrm{r}}$
The coefficient of $(\mathrm{x})^{2}$ is ${ }^{\mathrm{m}} \mathrm{C}_{2}$
${ }^{\mathrm{m}} \mathrm{C}_{2}=6$
$\frac{m!}{2(m-2)!}=6$
$\frac{m(m-1)(m-2)!}{2(m-2)!}=6$
$m^{2}-m-6=0$
$(m-3)(m+2)=0$
$m=3,-2$
Since m cannot be negative. Therefore,
$m=3$

Thus, positive value of m is 3 for which the coefficient of $x 2$ in the expansion of ($1+$ $x)^{m}$ is 6

