Geometrical Progression

Exercise 12A

Q. 1. Find the $6^{\text {th }}$ and nth terms of the GP 2, 6, 18, $54 \ldots$

Answer : Given: GP is $2,6,18,54 \ldots$
The given GP is of the form, $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3} \ldots$.
Where r is the common ratio.

First term in the given GP, $\mathrm{a}_{1}=\mathrm{a}=2$
Second term in GP, a2 = 6
Now, the common ratio, $r=\frac{a_{2}}{a_{1}}$
$r=\frac{6}{2}=3$
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{an}_{\mathrm{n}}=\operatorname{ar}^{\mathrm{n}-1}$
So, the $6^{\text {th }}$ term in the GP,
$a 6=a r^{5}$
$=2 \times 3^{5}$
$=486$
$\mathrm{n}^{\text {th }}$ term in the GP,
$a_{n}=a r^{n-1}$
$=2.3^{n-1}$
Hence, $6^{\text {th }}$ term $=486$ and $n^{\text {th }}$ term $=2.3^{n-1}$
Q. 2. Find the $17^{\text {th }}$ and nth terms of the GP $2,2 \sqrt{ } 2,4,8 \sqrt{ } 2 \ldots$

Answer: Given GP is $2,2 \sqrt{ } 2,4,8 \sqrt{ } 2 \ldots$.
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$

Where r is the common ratio.
First term in the given GP, $\mathrm{a}_{1}=\mathrm{a}=2$
Second term in GP, a $2=2 \sqrt{ } 2$

Now, the common ratio, $\mathrm{r}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}$
$r=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{a}_{\mathrm{n}}=\operatorname{ar}^{\mathrm{n}-1}$
So, the $17^{\text {th }}$ term in the GP,
$a_{17}=a r^{16}$
$=2 \times(\sqrt{ } 2)^{16}$
$=512$
$\mathrm{n}^{\text {th }}$ term in the GP,
$a_{n}=a r^{n-1}$
$=2(\sqrt{ } 2)^{n-1}$
$=(\sqrt{ } 2)^{n+1}$
Hence, $17^{\text {th }}$ term $=512$ and $n^{\text {th }}$ term $=(\sqrt{ } 2)^{n+1}$
Q. 3. Find the $7^{\text {th }}$ and nth terms of the GP $0.4,0.8,1.6 \ldots$

Answer : Given GP is $0.4,0.8,1.6 \ldots$
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$
Where r is the common ratio.
First term in the given GP, $\mathrm{a}_{1}=\mathrm{a}=0.4$
Second term in GP, $\mathrm{a}_{2}=0.8$

Now, the common ratio, $r=\frac{a_{2}}{a_{1}}$
$r=\frac{0.8}{0.4}=2$
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So, the $7^{\text {th }}$ term in the GP,
$\mathrm{a}_{7}=\mathrm{ar}^{6}$
$=0.4 \times 2^{6}$
$=25.6$
$\mathrm{n}^{\text {th }}$ term in the GP,
$a_{n}=a r^{n-1}$
$=(0.4)(2)^{n-1}$
$=(0.2) 2^{n}$
Hence, $7^{\text {th }}$ term $=25.6$ and $\mathrm{n}^{\text {th }}$ term $=(0.2) 2^{\text {n }}$
Q. 4. Find the $10^{\text {th }}$ and nth terms of the GP $-\frac{3}{4}, \frac{1}{2},-\frac{1}{3}, \frac{2}{9} \ldots$

Answer : Given GP is $-\frac{3}{4}, \frac{1}{2},-\frac{1}{3}, \frac{2}{9} \ldots$.
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$
Where r is the common ratio.

The first term in the given GP, $a=a_{1}=-\frac{3}{4}$

The second term in GP, $a_{2}=\frac{1}{2}$

Now, the common ratio, $r=\frac{a_{2}}{a_{1}}$

$$
\mathrm{r}=-\frac{\frac{1}{2}}{\frac{3}{4}}=-\frac{2}{3}
$$

Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So, the $10^{\text {th }}$ term, $\mathrm{a}_{10}=\mathrm{ar}{ }^{9}$
$\mathrm{a}_{10}=\mathrm{ar}^{9}=\left(-\frac{3}{4}\right)\left(-\frac{2}{3}\right)^{9}=\frac{128}{6561}$
Now, the required $\mathrm{n}^{\text {th }}$ term, $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$a_{n}=\left(-\frac{3}{4}\right)\left(-\frac{2}{3}\right)^{n-1}=\left(\frac{9}{8}\right)\left(-\frac{2}{3}\right)^{n}$
Hence, the $10^{\text {th }}$ term, $\mathrm{a}_{10}=\frac{128}{6561}$ and $\mathrm{n}^{\text {th }}$ term,

$$
\mathrm{a}_{\mathrm{n}}=\left(\frac{9}{8}\right)\left(-\frac{2}{3}\right)^{\mathrm{n}} .
$$

Q. 5. Which term of the GP $3,6,12,24 \ldots$ Is 3072 ?

Answer : Given GP is $3,6,12,24 \ldots$.
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$
Where r is the common ratio.
First term in the given GP, $a_{1}=a=3$

Second term in GP, a2 $=6$

Now, the common ratio, $r=\frac{a_{2}}{a_{1}}$
$r=\frac{6}{3}=2$
Let us consider 3072 as the $\mathrm{n}^{\text {th }}$ term of the GP.
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{an}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$3072=3.2^{n-1}$
$\frac{3072 \times 2}{3}=2^{n}$
$2^{n}=2^{11}$
$\mathrm{n}=11$
So, 3072 is the $11^{\text {th }}$ term in GP.
Q. 6. Which term of the GP $\frac{1}{4}, \frac{-1}{2}, 1 \ldots$ is $-128 ?$

Answer : Given GP is $\frac{1}{4}, \frac{-1}{2}, 1 \ldots$.
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$
Where r is the common ratio.

The first term in the given GP, $a=a_{1}=\frac{1}{4}$

The second term in GP, $a_{2}=-\frac{1}{2}$

Now, the common ratio, $r=\frac{a_{2}}{a_{1}}$
$r=-\frac{4}{2}=-2$
Let us consider - 128 as the $\mathrm{n}^{\text {th }}$ term of the GP.
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$-128=\left(\frac{1}{4}\right)(-2)_{n-1}$
$(-2)^{\mathrm{n}}=1024=(-2)^{10}$
$\mathrm{n}=10$
So, -128 is the $10^{\text {th }}$ term in GP.
Q. 7. Which term of the $\mathbf{G P} \sqrt{ } 3,3,3 \sqrt{ } 3 \ldots$ is 729 ?

Answer : Given GP is $\sqrt{ } 3,3,3 \sqrt{ } 3 \ldots$
The given GP is of the form, $a, a r, a r^{2}, \mathrm{ar}^{3} \ldots$
Where r is the common ratio.
First term in the given GP, $a_{1}=a=\sqrt{ } 3$
Second term in GP, $\mathrm{a}_{2}=3$
Now, the common ratio, $r=\frac{a_{2}}{a_{1}}$
$r=\frac{3}{\sqrt{3}}=\sqrt{3}$
Let us consider 729 as the $\mathrm{n}^{\text {th }}$ term of the GP.
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$729=\sqrt{3}(\sqrt{3})^{n-1}$
$\sqrt{ } 3^{n}=\sqrt{3}{ }^{12}$
$\mathrm{n}=12$
So, 729 is the $12^{\text {th }}$ term in GP.
Q. 8. Find the geometric series whose $5^{\text {th }}$ and $8^{\text {th }}$ terms are 80 and 640 respectively.

Answer : The $\mathrm{n}^{\text {th }}$ term of a GP is $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
It's given in the question that $5^{\text {th }}$ term of the GP is 80 and $8^{\text {th }}$ term of GP is 640 .
So, $\mathrm{a}_{5}=\mathrm{ar}^{4}=80 \rightarrow(1)$
$\mathrm{a}_{8}=\mathrm{ar}^{7}=640 \rightarrow(2)$
$\stackrel{(2)}{(1)} \rightarrow \frac{\mathrm{ar}^{3}}{\mathrm{ar}^{4}}=\mathrm{r}^{3}=\frac{640}{80}=8$
Common ratio, $r=2$,
$a r^{4}=80$
$16 a=80$
$a=5$
The required GP is of the form $a, a r, a r^{2}, a r^{3}, a r^{4} \ldots$
First term of GP, $a=5$
Second term of GP, ar $=5 \times 2=10$
Third term of GP, $\mathrm{ar}^{2}=5 \times \mathrm{2}^{2}=20$

Fourth term of GP, $\mathrm{ar}^{3}=5 \times 2^{3}=40$
Fifth term of GP, $a r^{4}=5 \times 2^{4}=80$
And so on...
The required GP is $5,10,20,40,80 \ldots$
Q. 9. Find the GP whose $4^{\text {th }}$ and $7^{\text {th }}$ terms are $\frac{1}{18}$ and $\frac{-1}{486}$ respectively.

Answer: The $\mathrm{n}^{\text {th }}$ term of a GP is $\mathrm{a}_{\mathrm{n}}=\mathrm{ar} \mathrm{r}^{\mathrm{n}-1}$
It's given in the question that $4^{\text {th }}$ term of the GP is $\frac{1}{18}$ and $7^{\text {th }}$ term of GP is $-\frac{1}{486}$.

So, $\mathrm{a}_{4}=\mathrm{ar}^{3}=\frac{1}{18} \rightarrow(1)$
$a^{7}=a r^{6}=-\frac{1}{486}(2)$
$\frac{(2)}{(1)} \rightarrow \frac{\mathrm{ar}^{6}}{\mathrm{ar}^{3}}=\mathrm{r}^{3}=-\frac{1}{27}$

Common ratio, $\mathrm{r}=-\frac{1}{3}$
$\mathrm{ar}^{3}=\frac{1}{18}$
$a=-\frac{3}{2}$

The required GP is of form $\mathrm{a}, \mathrm{ar}, a r^{2}, a r^{3}, a r^{4} \ldots$.
The first term of GP, $a=-\frac{3}{2}$

The second term of GP, ar $=-\frac{3}{2} \mathrm{x}-\frac{1}{3}=\frac{1}{2}$

The third term of GP, $\operatorname{ar}^{2}=\frac{1}{2} x-\frac{1}{3}=-\frac{1}{6}$

The fourth term of GP, $\operatorname{ar}^{3}=-\frac{1}{6} x-\frac{1}{3}=\frac{1}{18}$

The fifth term of GP, $\mathrm{ar}^{4}=\frac{1}{18} \mathrm{x}-\frac{1}{3}=-\frac{1}{54}$

And so on...

The required GP is $-\frac{3}{2}, \frac{1}{2},-\frac{1}{6}, \frac{1}{18},-\frac{1}{54} \ldots \ldots .$.
Q. 10. The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a GP are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively. Show that $\mathrm{b}^{\mathbf{2}}=\mathrm{ac}$

Answer : It is given in the question that $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of GP are a, b and c respectively.

Let us assume the GP is A, AR, AR ${ }^{2}$, and AR3....
So, the $\mathrm{n}^{\text {th }}$ term of this GP is $\mathrm{a}_{\mathrm{n}}=\mathrm{AR}^{\mathrm{n-1}}$
Now, $5^{\text {th }}$ term, $\mathrm{a}_{5}=\mathrm{AR}^{4}=\mathrm{a} \rightarrow(1)$

$$
\begin{aligned}
& 8^{\text {th }} \text { term, } \mathrm{a}_{8}=\mathrm{AR}^{7}=\mathrm{b} \rightarrow(2) \\
& 11^{\text {th }} \text { term, } \mathrm{a}_{11}=\mathrm{AR}^{10}=\mathrm{c} \rightarrow(3)
\end{aligned}
$$

Dividing equation (3) by (2) and (2) by (1),
$\frac{(3)}{(2)} \rightarrow \frac{\mathrm{AR}^{10}}{\mathrm{AR}^{7}}=\mathrm{R}^{3}=\frac{\mathrm{c}}{\mathrm{b}} \rightarrow(4)$
$\frac{(2)}{(1)} \rightarrow \frac{\mathrm{AR}^{7}}{\mathrm{AR}^{4}}=\mathrm{R}^{3}=\frac{\mathrm{b}}{\mathrm{a}} \rightarrow$
So, both equation (4) and (5) gives the value of R^{3}. So we can equate them.
$\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{b}}{\mathrm{a}}=\mathrm{R}^{3}$,
$\therefore \mathrm{b}^{2}=\mathrm{ac}$,
Hence proved.
Q. 11. The first term of a GP is $\mathbf{- 3}$ and the square of the second term is equal to its $4^{\text {th }}$ term. Find its $7^{\text {th }}$ term.

Answer : It is given that the first term of GP is -3.
So, $a=-3$
It is also given that the square of the second term is equal to its $4^{\text {th }}$ term.
$\therefore\left(\mathrm{a}_{2}\right)^{2}=\mathrm{a}_{4}$
$n^{\text {th }}$ term of GP, $a_{n}=a^{n-1}$
So, $a_{2}=a r ; a_{4}=a r^{3}$
$(a r)^{2}=a r^{3} \rightarrow a=r=-3$
Now, the $7^{\text {th }}$ term in the GP, $a_{7}=a r^{6}$
$\mathrm{a}_{7}=(-3)^{7}=-2187$
Hence, the $7^{\text {th }}$ term of GP is -2187 .
Q. 12. Find the $6^{\text {th }}$ term from the end of GP $8,4,2 \ldots \frac{1}{1024}$.

Answer : The given GP is $8,4,2 \ldots \frac{1}{1024} \cdot \rightarrow(1)$

First term in the GP, $\mathrm{a}_{1}=\mathrm{a}=8$
Second term in the GP, $\mathrm{a}_{2}=\mathrm{ar}=4$
The common ratio, $r=\frac{4}{8}=\frac{1}{2}$
The last term in the given GP is $\frac{1}{1024}$.
Second last term in the GP $=a_{n-1}=a r^{n-2}$
Starting from the end, the series forms another GP in the form,
$a r^{n-1}, a r^{n-2}, a r^{n-3} \ldots a r^{3}, a r^{2}, a r, a \rightarrow(2)$
Common ratio of this GP is $\frac{1}{\mathrm{r}}$.
So, common ratio $=2$
$a=\frac{1}{1024}$
So, $6^{\text {th }}$ term of the GP (2),
$a_{6}=a r^{5}$
$=\frac{1}{1024} \times 2^{5}=\frac{1}{32}$

Hence, the $6^{\text {th }}$ term from the end of the given GP is $\frac{1}{32}$.
Q. 13. Find the $4^{\text {th }}$ term from the end of the GP $\frac{2}{27} \cdot \frac{2}{9}, \frac{2}{3}, \ldots, 162$.

Answer : The given GP is $\frac{2}{27} \cdot \frac{2}{9}, \frac{2}{3}, \ldots, 162 . \rightarrow(1)$
The first term in the GP, $\mathrm{a}_{1}=\mathrm{a}=\frac{2}{27}$

The second term in the GP, $\mathrm{a}_{2}=\frac{2}{9}$

The common ratio, $r=3$
The last term in the given GP is $a_{n}=162$.
Second last term in the GP $=a_{n-1}=a r^{n-2}$
Starting from the end, the series forms another GP in the form,
$a r^{n-1}, a r^{n-2}, a r^{n-3} \ldots a r^{3}, a r^{2}, a r, a \rightarrow(2)$
Common ratio of this GP is $\mathrm{r}^{\prime}=\frac{1}{r}$.
So, $r^{\prime}=\frac{1}{3}$
So, $4^{\text {th }}$ term of the GP (2),
$a_{4}=a r^{3}$
$=162 \times \frac{1}{3^{3}}=6$
Hence, the $4^{\text {th }}$ term from the end of the given GP is 6 .
Q. 14. If a, b, c are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a GP, show that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

Answer : As per the question, a, b and c are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ term of GP.
Let us assume the required GP as $A, A R, A R^{2}, A R^{3} \ldots$
Now, the $n^{\text {th }}$ term in the GP, $a_{n}=A R^{n-1}$
$p^{\text {th }}$ term, $a_{p}=A R^{p-1}=a \rightarrow(1)$
$q^{\text {th }}$ term, $\mathrm{a}_{\mathrm{q}}=\mathrm{AR}^{\mathrm{q}-1}=\mathrm{b} \rightarrow(2)$
$r^{\text {th }}$ term, $\mathrm{a}_{\mathrm{r}}=\mathrm{AR}^{\mathrm{r}-1}=\mathrm{c} \rightarrow(3)$
$\frac{(1)}{(2)} \rightarrow \frac{R^{p-1}}{R^{q-1}}=R^{p-q}=\frac{a}{b} \rightarrow$ (i)
$\frac{(2)}{(3)} \rightarrow \frac{\mathrm{R}^{\mathrm{q}-1}}{\mathrm{R}^{\mathrm{r}-1}}=\mathrm{R}^{\mathrm{q}-\mathrm{r}}=\frac{\mathrm{b}}{\mathrm{c}} \rightarrow$ (ii)
$\frac{(3)}{(1)} \rightarrow \frac{\mathrm{R}^{\mathrm{r}-1}}{\mathrm{R}^{\mathrm{p}-1}}=\mathrm{R}^{\mathrm{r}-\mathrm{p}}=\frac{\mathrm{c}}{\mathrm{a}} \rightarrow$ (iii)

Taking logarithm on both sides of equation (i), (ii) and (iii).

$$
\begin{aligned}
& (p-q) \log R=\log a-\log b, \\
& \therefore(p-q)=\frac{\log a-\log b}{\log R} \rightarrow(4) \\
& (q-r) \log R=\log b-\log c \\
& \therefore(q-r)=\frac{\log b-\log c}{\log R} \rightarrow(5) \\
& (r-p) \log R=\log c-\log a \\
& \therefore(r-p)=\frac{\log c-\log a}{\log R} \rightarrow(6)
\end{aligned}
$$

Now, multiply equation (4) with $\log c$,

$$
(p-q) \log c=\left(\frac{\log a-\log b}{\log R}\right) \log c \rightarrow(7)
$$

Now, multiply equation (5) with $\log a$,

$$
(q-r) \log a=\left(\frac{\log b-\log c}{\log R}\right) \log a \rightarrow(8)
$$

Now, multiply equation (6) with $\log \mathrm{b}$,

$$
(r-p) \log b=\left(\frac{\log c-\log a}{\log R}\right) \log b \rightarrow(9)
$$

Now, add equations (7), (8) and (9).

$$
\begin{gathered}
(p-q) \log c+(q-r) \log a+(r-p) \log b=\left(\frac{\log a-\log b}{\log R}\right) \log c \\
+\left(\frac{\log b-\log c}{\log R}\right) \log a+\left(\frac{\log c-\log a}{\log R}\right) \log b
\end{gathered}
$$

On solving the above equation, we will get,
$(p-q) \log c+(q-r) \log a+(r-p) \log b=0$
Hence proved.
Q. 15. The third term of a GP is $\mathbf{4}$; Find the product of its five terms.

Answer : Given that the third term of the GP, $\mathrm{a}_{3}=4$

Let us assume the GP mentioned in the question be,
$\frac{\mathrm{A}}{\mathrm{R}^{2}}, \frac{\mathrm{~A}}{\mathrm{R}}, \mathrm{A}, \mathrm{AR}, \mathrm{AR}^{2}$.
With the first term $\frac{A}{R^{2}}$ and common ratio R.

Now, the third term in the assumed GP is A.
So, $A=4$ (given data)
Now,
Product of the first five terms of $G P=\frac{A}{R^{2}} \times \frac{A}{R} \times A \times A R \times A R^{2}=A^{5}$

So, the required product $=A^{5}=4^{5}=1024$
\therefore The product of first five terms of a GP with its third term 4 is 1024 .
Q. 16. In a finite GP, prove that the product of the terms equidistant from the beginning and end is the product of first and last terms.

Answer: We need to prove that the product of the terms equidistant from the beginning and end is the product of first and last terms in a finite GP.

Let us first consider a finite GP.
$A, A R, A R^{2} \ldots A R^{n-1}, A R^{n}$.
Where n is finite.
Product of first and last terms in the given GP = A.AR ${ }^{n}$
$=A^{2} R^{n} \rightarrow(a)$
Now, $\mathrm{n}^{\text {th }}$ term of the GP from the beginning $=\mathrm{AR}^{\mathrm{n-1}} \rightarrow(1)$
Now, starting from the end,
First term $=\mathrm{AR}^{\mathrm{n}}$
Last term = A
$\frac{1}{\mathrm{R}}=$ Common Ratio
So, an $n^{\text {th }}$ term from the end of GP, $A_{n}=\left(A R^{n}\right)\left(\frac{1}{R^{n-1}}\right)=A R \rightarrow(2)$

So, the product of $n^{\text {th }}$ terms from the beginning and end of the considered GP from (1) and $(2)=\left(A R^{n-1}\right)(A R)$
$=A^{2} R^{n} \rightarrow(b)$
So, from (a) and (b) its proved that the product of the terms equidistant from the beginning and end is the product of first and last terms in a finite GP.
Q. 17. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$ then show that a, b, c, d are in GP.

Answer : $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}$ (Given data in the question) $\rightarrow(1)$
Cross multiplying (1) and expanding,
$(a+b x)(b-c x)=(b+c x)(a-b x)$
$a b-a c x+b^{2} x-b c x^{2}=b a-b^{2} x+a c x-b c x^{2}$
$2 b^{2} x=2 a c x$
$b^{2}=a c \rightarrow(i)$
If three terms are in GP, then the middle term is the Geometric Mean of first term and last term.
$\rightarrow b^{2}=a c$
So, from (i) b, is the geometric mean of a and b.
So, a, b, c are in GP.

$$
\frac{\mathrm{b}+\mathrm{cx}}{\mathrm{~b}-\mathrm{cx}}=\frac{\mathrm{c}+\mathrm{dx}}{\mathrm{c}-\mathrm{dx}}(\text { Given data in the question }) \rightarrow(2)
$$

Cross multiplying (2) and expanding,
$(b+c x)(c-d x)=(c+d x)(b-c x)$
$b c-b d x+c^{2} x-c d x^{2}=c b-c^{2} x+b d x-d c x^{2}$
$2 c^{2} x=2 b d x$
$c^{2}=\mathrm{bd} \rightarrow$ (ii)

So, from (ii), c is the geometric mean of band d.
So, b, c, d is in GP.
$\therefore \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in GP.
Q. 18. If a and b are the roots of $x^{2}-3 x+p=0$ and c and d are the roots of $x^{2}-$ $12 x+q=0$, where a, b, c, d from a GP, prove that $(q+p):(q-p)=17: 15$.

Answer : Given data is,
$x^{2}-3 x+p=0 \rightarrow(1)$
a and b are roots of (1)
So, $(x+a)(x+b)=0$
$x^{2}-(a+b) x+a b=0$
So, $a+b=3$ and $a b=p \rightarrow(2)$
Given data is,
$x^{2}-12 x+q=0 \rightarrow(3)$
c and d are roots of (1)
So, $(x+c)(x+d)=0$
$x^{2}-(c+d) x+c d=0$
So, $c+d=12$ and $c d=q \rightarrow(4)$
a, b, c, d are in GP.(Given data)
Similarly A, AR, $A R^{2}, A R^{3}$ also forms a GP, with common ratio R.
From (2),
$a+b=3$
$A+A R=3$
$\frac{3}{\mathrm{~A}}=1+\mathrm{R} \rightarrow(5)$

From (4),
$c+d=12$
$A R^{2}+A R^{3}=12$
$A R^{2}(1+R)=12 \rightarrow(6)$
Substituting value of $(1+R)$ in (6).
$R=2$
Now, substitute value of R in (5) to get value of A,
$A=1$
Now, the GP required is $A, A R, A R^{2}$, and $A R^{3}$
$1,2,4,8 \ldots$ is the required GP.
So,
$a=1, b=2, c=4, d=8$
From (2) and (4),
$\mathrm{ab}=\mathrm{p}$ and $\mathrm{cd}=\mathrm{q}$
So, $p=2$, and $q=32$.
$\frac{q+p}{q-p}=\frac{c d+a b}{c d-a b}=\frac{34}{30}=\frac{17}{15}$

So, $(q+p):(q-p)=17: 15$.

Exercise 12C

Q. 1. A. Find the sum of the GP :
$1+3+9+27+\ldots$ To 7 terms

Answer: Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=1$
$r=($ ratio between the n term and $n-1$ term $) 3 \div 1=3$
$\mathrm{n}=7$ terms
$\therefore \mathrm{S}_{\mathrm{n}}=1 \frac{3^{7}-1}{3-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{2187-1}{3-1}$
$\Rightarrow S_{n}=\frac{2186}{2}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=1093$

Q. 1. B. Find the sum of the GP :

$1+\sqrt{3}+3+3^{\sqrt{3}}+\ldots$. to 10 terms
Answer : Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, 'r' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=1$
$r=($ ratio between the n term and $n-1$ term $) \sqrt{3} \div 1=\sqrt{3}=1.732$
$\mathrm{n}=10$ terms

$$
\begin{aligned}
& \therefore \mathrm{S}_{\mathrm{n}}=1 \cdot \frac{\sqrt{3}^{10}-1}{\sqrt{3}-1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{1.732^{10}-1}{1.732-1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{242.929-1}{0.732} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{241.929}{0.732} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=330.504
\end{aligned}
$$

Q. 1. C. Find the sum of the GP :

$0.15+0.015+0.0015+\ldots$. To 6 terms

Answer : Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=0.15$
$r=($ ratio between the n term and $n-1$ term $) 0.015 \div 0.15=0.1$
$\mathrm{n}=6$ terms
$\Rightarrow S_{n}=0.15 \times \frac{1-0.1^{6}}{1-0.1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=0.15 \times \frac{1-0.000001}{0.9}$
$\Rightarrow S_{n}=0.15 \times \frac{0.999999}{0.9}$
$\therefore \mathrm{S}_{\mathrm{n}}=16.67$

Q. 1. D. Find the sum of the GP :

$1-\frac{1}{2}+\frac{1}{4}=\frac{1}{8}+\ldots$ to 9 terms
Answer : Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, 'r' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=1$
$r=($ ratio between the n term and $\mathrm{n}-1$ term $)-\frac{1}{2} \div 1=-\frac{1}{2}$
$\mathrm{n}=9$ terms

$$
\begin{aligned}
& \therefore \mathrm{S}_{\mathrm{n}}=1 \times \frac{1-\frac{-1^{9}}{2}}{1-\left(\frac{-1}{2}\right)} \\
& \Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{1+\frac{1}{512}}{1+\frac{1}{2}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{\frac{513}{2}}{\frac{3}{2}} \\
& \therefore \mathrm{~S}_{\mathrm{n}}=171
\end{aligned}
$$

Q. 1. E. Find the sum of the GP :

$\sqrt{2}+\frac{1}{\sqrt{2}}+\frac{1}{2 \sqrt{2}}+\ldots \ldots$ to 8 terms
Answer : Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=\sqrt{2}$
$\mathrm{r}=($ ratio between the n term and $\mathrm{n}-1$ term $) \frac{1}{\sqrt{2}} \div \sqrt{2}=\frac{1}{2}$
$\mathrm{n}=8$ terms
$\therefore \mathrm{S}_{\mathrm{n}}=\sqrt{2} \times \frac{1-\frac{1}{2}^{8}}{1-\frac{1}{2}}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\sqrt{2} \times \frac{1-\frac{1}{256}}{\frac{1}{2}}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\sqrt{2} \times \frac{\frac{255}{256}}{\frac{1}{2}}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\sqrt{2} \times \frac{255}{128}$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{255 \sqrt{2}}{128}$

Q. 1. F. Find the sum of the GP :

$\frac{2}{9}-\frac{1}{3}-\frac{1}{2}-\frac{3}{4}+\ldots$... To 6 terms
Answer: Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=\frac{2}{9}$
$r=($ ratio between the n term and $n-1$ term $) ~-\frac{1}{3} \div \frac{2}{9}=-\frac{3}{2}=1.5$
$\mathrm{n}=6$ terms
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{2}{9} \times \frac{1.5^{6}-1}{1.5-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{2}{9} \times \frac{10.39}{0.5}$
$\therefore \mathrm{S}_{\mathrm{n}}=4.62$

Q. 2. A. Find the sum of the GP :

$\sqrt{7}+\sqrt{21}+3 \sqrt{7}+\ldots$ to n terms
Answer: Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=\sqrt{7}$
$r=($ ratio between the n term and $\mathrm{n}-1$ term $) \sqrt{7} \div \sqrt{21}=\sqrt{3}$
n terms

$$
\begin{aligned}
& \therefore \mathrm{S}_{\mathrm{n}}=\sqrt{7} \times \frac{\sqrt{3}^{\mathrm{n}}-1}{\sqrt{3}^{3}-1} \text { [Rationalizing the denominator] } \\
& \Rightarrow \mathrm{S}_{\mathrm{n}}=\sqrt{7} \times \frac{\sqrt{3}^{\mathrm{n}}-1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\sqrt{7} \times \frac{\left(\sqrt{3}^{\mathrm{n}}-1\right)(\sqrt{3}+1)}{3-1} \\
& \therefore \mathrm{~S}_{\mathrm{n}}=\frac{\sqrt{7}\left(\sqrt{3}^{\mathrm{n}}-1\right)(\sqrt{3}+1)}{2}
\end{aligned}
$$

Q. 2. B. Find the sum of the GP :

$1-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+$
... to n terms
Answer : Sum of a G.P. series is represented by the formula, $\mathrm{S}_{\mathrm{n}}=\mathrm{a} \frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}$, when $|\mathrm{r}|<1$. 'Sn' represents the sum of the G.P. series upto $\mathrm{n}^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=1$
$r=($ ratio between the n term and $n-1$ term $)-\frac{1}{3} \div 1=-\frac{1}{3}$
n terms
$\therefore \mathrm{S}_{\mathrm{n}}=1 \times \frac{1-\frac{-1^{\mathrm{n}}}{3}}{1-\frac{1}{3}}$
$\Rightarrow S_{n}=\frac{1-\frac{1^{n}}{3}}{\frac{2}{3}}$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{3-\frac{1}{3}^{\mathrm{n}-1}}{2}$

Q. 2. C. Find the sum of the GP :

$1-a+a^{2}-a^{3}+\ldots$ to n terms ($a \neq 1$)
Answer : Sum of a G.P. series is represented by the formula, $\mathrm{S}_{\mathrm{n}}=\mathrm{a} \frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}$, when $\mathrm{r} \neq 1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, 'r' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=1$
$r=($ ratio between the n term and $n-1$ term $)-a \div 1=-a$
n terms
$\therefore \mathrm{S}_{\mathrm{n}}=1 \times \frac{(-\mathrm{a})^{\mathrm{n}}-1}{-\mathrm{a}-1}$
[Multiplying both numerator and denominator by -1]
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{1-(-\mathrm{a})^{\mathrm{n}}}{1+\mathrm{a}}$
Q. 2. D. Find the sum of the GP :
$x^{3}+x^{5}+x^{7}+\ldots$ To n terms
Answer: Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=x^{3}$
$r=($ ratio between the n term and $n-1$ term $) x^{5} \div x^{3}=x^{2}$
n terms

$$
\begin{aligned}
& \therefore \mathrm{S}_{\mathrm{n}}=\mathrm{x}^{3} \times \frac{\mathrm{x}^{2 \mathrm{n}}-1}{\mathrm{x}^{2}-1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{x}^{3}\left(\mathrm{x}^{\mathrm{n}}-1\right)\left(\mathrm{x}^{\mathrm{n}}+1\right)}{(\mathrm{x}-1)(\mathrm{x}+1)}
\end{aligned}
$$

Q. 2. E. Find the sum of the GP :

$x(x+y)+x^{2}\left(x^{2}+y^{2}\right)+x^{3}\left(x^{3}+y^{3}\right)+\ldots$ To n terms
Answer : The given expression can be written as
$=\left(x^{2}+x y\right)+\left(x^{4}+x^{2} y^{2}\right)+\left(x^{6}+x^{3} y^{3}\right)+\ldots$ To n terms
$=\left(x^{2}+x^{4}+x^{6}+\ldots\right.$ to n terms $)+\left(x y+x^{2} y^{2}+x^{3} y^{3}+\ldots\right.$ to n terms $)$

Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.
$a=x^{2}$ first part and $x y$ for the second part
$r=($ ratio between the n term and $n-1$ term $) x^{2}$ for the first part and $x y$ for the second part n terms

$$
\begin{aligned}
& \therefore S_{n}=x^{2} \times \frac{x^{2 n}-1}{x^{2}-1}+x y \times \frac{x^{n} y^{n}-1}{x y-1} \\
& \Rightarrow S_{n}=\frac{x^{2}\left(x^{n}-1\right)\left(x^{n}+1\right)}{(x+1)(x-1)}+\frac{x^{n+1} y^{n+1}-1}{x y-1}
\end{aligned}
$$

Q. 3. Find the sum to n terms of the sequence :
(i) $\left(x+\frac{1}{x}\right)^{2},\left(x^{2}+\frac{1}{x^{2}}\right)^{2},\left(x^{3}+\frac{1}{x^{3}}\right)^{2}, \ldots$. to n terms
(ii) $\left.(x+y), 9 x^{2}+x y+y^{2}\right),\left(x^{3}+x 2 y+x y^{2}+y^{3}\right), \ldots$ to n terms

Answer : This can also be written as

$$
\begin{aligned}
= & \left(x^{2}+\frac{1}{x^{2}}+2\right)+\left(x^{4}+\frac{1}{x^{4}}+2\right)+\left(x^{6}+\frac{1}{x^{6}}+2\right)+\ldots \ldots \text { to } n \text { term } \\
& \left(x^{2}+x^{4}+x^{6}+\ldots \text { to } n \text { terms }\right)+\left(\frac{1}{x^{2}}+\frac{1}{x^{4}}+\frac{1}{x^{6}}+\ldots . \text { to } n \text { terms }\right)+(2+ \\
= & 2+2+\ldots \text { to } n \text { terms }) \\
= & \left(x^{2}+x^{4}+x^{6}+\ldots . \text { to } n \text { terms }\right)+\left(\frac{1}{x^{2}}+\frac{1}{x^{4}}+\frac{1}{x^{6}}+\ldots . \text { to } n \text { terms }\right)+2 n
\end{aligned}
$$

Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.
$\mathrm{a}=\mathrm{x}^{2}, \frac{1}{\mathrm{x}^{2}}$
$r=(\text { ratio between the } n \text { term and } n-1 \text { term })^{2}, \frac{1}{x^{2}}$
n terms

$$
\begin{aligned}
& \quad S_{n}=x^{2} \times \frac{x^{2 n}-1}{x^{2}-1}+\frac{1}{x^{2}} \times \frac{\left(\frac{1}{x^{2}}\right)^{n}-1}{\frac{1}{x^{2}}-1}+2 n \\
& \therefore \\
& \Rightarrow S_{n}=\frac{x^{2}\left(x^{n}-1\right)\left(x^{n}+1\right)}{(x-1)(x+1)}+\frac{1}{x^{2}} \times \frac{\frac{1}{x^{2}}-1}{\frac{x^{2}-1}{x^{2}}}+2 n \\
& \Rightarrow S_{n}=\frac{x^{2}\left(x^{n}-1\right)\left(x^{n}+1\right)}{(x-1)(x+1)}+\frac{\frac{1}{x^{2}}-1}{x^{2}-1}+2 n \\
& \Rightarrow S_{n}=\frac{x^{2}\left(x^{n}-1\right)\left(x^{n}+1\right)}{(x-1)(x+1)}+\frac{\frac{1}{x^{2}}-1}{(x-1)(x+1)}+2 n \\
& \therefore S_{n}=\frac{x^{2}\left(x^{n}-1\right)\left(x^{n}+1\right)+\frac{1}{x^{2}}-1}{(x-1)(x+1)}+2 n
\end{aligned}
$$

(ii) If we divide and multiply the terms by ($x-y$)

$$
=\frac{(x-y)(x+y)+(x-y)\left(x^{2}+x y+y^{2}\right)+(x-y)\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots \text { to n terms }}{(x-y)}
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}-y^{2}\right)+\left(x^{3}-y^{3}\right)+\left(x^{4}-y^{4}\right)+\ldots \text { to } n \text { terms }}{(x-y)} \\
& =\frac{\left(x^{2}+x^{3}+x^{4}+\ldots \text {.to } n \text { terms }\right)+\left(y^{2}+y^{3}+y^{4}+\ldots \text { to } n \text { terms }\right)}{(x-y)}
\end{aligned}
$$

Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=x^{2}, y^{2}$
$r=($ ratio between the n term and $\mathrm{n}-1$ term) x, y
n terms

$$
\begin{aligned}
& \therefore S_{n}=\frac{x^{2} \times \frac{x^{n}-1}{x-1}+y^{2} \times \frac{y^{n}-1}{y-1}}{(x-y)} \\
& \Rightarrow S_{n}=\frac{\frac{x^{2}\left(x^{n}-1\right)}{x-1}+\frac{y^{2}\left(y^{n}-1\right)}{y-1}}{(x-y)}
\end{aligned}
$$

Q. 4. Find the sum :

$$
\frac{3}{5}+\frac{4}{5^{2}}+\frac{3}{5^{3}}+\frac{4}{5^{4}}+\ldots \text { To } 2 n \text { terms }
$$

Answer : We can split the above expression into 2 parts. We will split 2 n terms into 2 parts also which will leave it as n terms and another n terms.

$$
=\left(\frac{3}{5}+\frac{3}{5^{3}}+\ldots \text { to } \mathrm{n} \text { terms }\right)+\left(\frac{4}{5}+\frac{4}{5^{2}}+\ldots \text { to } \mathrm{n} \text { terms }\right)
$$

Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, 'r' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=\frac{3}{5}, \frac{4}{5}$
$r=($ ratio between the n term and $n-1$ term $) \frac{3}{5^{3}} \div \frac{3}{5}, \frac{4}{5^{2}} \div \frac{4}{5}=\frac{1}{5^{2}}, \frac{1}{5}$
n terms

$$
\begin{aligned}
& \quad \mathrm{S}_{\mathrm{n}}=\frac{3}{5} \times \frac{1-\frac{1^{n}}{5^{2}}}{1-\frac{1}{5^{2}}}+\frac{4}{5} \times \frac{1-\frac{\frac{1}{n}^{n}}{1-\frac{1}{5}}}{\therefore} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{3}{5} \times \frac{1-\frac{1 \frac{1}{5}^{n}}{\frac{24}{5^{2}}}+\frac{4}{5} \times \frac{1-\frac{1^{n}}{5}}{\frac{4}{5}}}{} .
\end{aligned}
$$

$\Rightarrow S_{n}=\frac{5\left(1-{\frac{1}{5^{2}}}^{n}\right)}{8}+\left(1-\frac{1}{5}^{n}\right)$

$$
\Rightarrow S_{n}=\frac{\left(5-\frac{5}{5^{2 n}}\right)}{8}+\left(1-\frac{1}{5}^{\mathrm{n}}\right)
$$

$$
\therefore \mathrm{S}_{\mathrm{n}}=\frac{\left(5-\frac{1}{5^{2 \mathrm{n}-1}}\right)}{8}+\left(1-\frac{1}{5}^{\mathrm{n}}\right)
$$

Q. 5. Evaluate :

NOTE: In an expression like this $\Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}, \mathrm{n}$ represents the upper limit, 1 represents the lower limit, x is the variable expression which we are finding out the sum of and i represents the index of summarization.
(i) $\sum_{n=1}^{10}\left(2+3^{n}\right)$
$\sum_{k=1}^{n}\left[2^{k}+3^{(k-1)}\right]$
(ii)
(iii) $\sum_{n=1}^{8} 5^{n}$

Answer : We can write this as $\left(2+3^{1}\right)+\left(2+3^{2}\right)+\left(2+3^{3}\right)+\ldots$ to 10 terms $=(2+2+2+\ldots$ to 10 terms $)+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
$=2 \times 10+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
$=20+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=3$
$r=($ ratio between the n term and $n-1$ term $) 3$
$\mathrm{n}=10$ terms
$S_{n}=3 \times \frac{3^{10}-1}{3-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=3 \times \frac{59049-1}{2}$
$\Rightarrow S_{n}=3 \times \frac{59049}{2}$
$\Rightarrow S_{n}=88572$

Thus, sum of the given expression is
$=20+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
$=20+88572$
$=88592$
(ii) The given expression can be written as,
$\left(2^{1}+3^{1-1}\right)+\left(2^{2}+3^{2-1}\right)+\ldots$ to n terms
$=\left(2+3^{0}\right)+\left(2^{2}+3^{1}\right)+\ldots$ to n terms
$=(2+1)+\left(2^{2}+3\right)+\ldots$ to n terms
$=\left(2+2^{2}+\ldots\right.$ to $\frac{\mathrm{n}}{\frac{2}{2}}$ terms $)+\left(1+3+\ldots\right.$ to $\frac{\mathrm{n}}{\frac{2}{2}}$ terms $)$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=2,1$
$r=($ ratio between the n term and $n-1$ term $) 2,3$
$\frac{\mathrm{n}}{2}$
2 terms
$S_{n}=2 \times \frac{2^{\frac{n}{2}}-1}{2-1}+1 \times \frac{3^{\frac{n}{2}}-1}{3-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=2 \times \frac{2^{\frac{\mathrm{n}}{2}-1}}{1}+1 \times \frac{3^{\frac{\mathrm{n}}{2}-1}}{2}$

$$
\Rightarrow S_{n}=2^{\frac{n}{2}+1}-2+\frac{3^{\frac{n}{2}}-1}{2}
$$

(iii) We can rewrite the given expression as
$\left(5^{1}+5^{2}+5^{3}+\ldots\right.$ to 8 terms $)$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. ' S_{n} ' represents the sum of the G.P. series upto $\mathrm{n}^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=5$
$r=($ ratio between the n term and $n-1$ term) 5
$\mathrm{n}=8$ terms
$S_{n}=5 \times \frac{5^{8}-1}{5-1}$
$\Rightarrow S_{n}=5 \times \frac{390625-1}{4}$
$\Rightarrow S_{n}=5 \times \frac{390624}{4}$
$\Rightarrow S_{\mathrm{n}}=488280$

Q. 6. Find the sum of the series :

NOTE: The following terms are not G.P. series, but we can convert them to form one.
(i) $8+88+888+\ldots$ To n terms
(ii) $3+33+333+\ldots$. To n terms
(iii) $0.7+0.77+0.777+\ldots$. To n terms

Answer : The expression can be rewritten as
[Taking 8 as a common factor]
$8(1+11+111+\ldots$ to n terms $)$
[Multiplying and dividing the expression by 9]
$=\frac{8}{9}(9+99+999+\ldots$ to n terms $)$
$=\frac{8}{9}((10-1)+(100-1)+(1000-1)+\ldots$ to n terms $)$
$=\frac{8}{9}((10+100+1000+\ldots$ to n terms $)-(1+1+1+\ldots$ to n terms $)$
$=\frac{8}{9}((10+100+1000+\ldots$ to n terms $)-n)$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=10$
$r=($ ratio between the n term and $n-1$ term $) 10$
n terms
$S_{n}=10 \times \frac{10^{\mathrm{n}}-1}{10-1}$
$\Rightarrow S_{n}=10 \times \frac{10^{n}-1}{9}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{10^{\mathrm{n}+1}-10}{9}$
\therefore The sum of the given expression is

$$
=\frac{8}{9}((10+100+1000+\ldots \text { to } n \text { terms })-n)
$$

$=\frac{8}{9}\left(\frac{10^{\mathrm{n}+1}-10}{9}-\mathrm{n}\right)$
(ii) The given expression can be rewritten as
[taking 3 common]
$=3(1+11+111+\ldots$ to n terms $)$
[Multiplying and dividing the expression by 9]
$=\frac{3}{9}(9+99+999+\ldots$ to n terms $)$
$=\frac{3}{9}((10-1)+(100-1)+(1000-1)+\ldots$ to n terms $)$
$=\frac{3}{9}((10+100+1000+\ldots$ to n terms $)-(1+1+1+\ldots$ to n terms $))$
$=\frac{3}{9}((10+100+1000+$ to n terms $)-\mathrm{n})$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=10$
$r=($ ratio between the n term and $n-1$ term $) 10$
n terms

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=10 \times \frac{10^{\mathrm{n}}-1}{10-1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=10 \times \frac{10^{\mathrm{n}}-1}{9} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{10^{\mathrm{n}+1}-10}{9}
\end{aligned}
$$

\therefore The sum of the given expression is
$=\frac{3}{9}((10+100+1000+$ to n terms $)-n)$
$=\frac{3}{9}\left(\frac{10^{\mathrm{n}+1}-10}{9}-\mathrm{n}\right)$
(iii) We can rewrite the expression as
[taking 7 as a common factor]
$=7(0.1+0.11+0.111+\ldots$ to n terms $)$
[multiplying and dividing by 9]
$=\frac{7}{9}(0.9+0.99+0.999+\ldots$ to n terms $)$
$=\frac{7}{9}((1-0.1)+(1-0.01)+(1-0.001)+\ldots$ to n terms $)$
$=\frac{7}{9}((1+1+1+\ldots$ to n terms $)-(0.1+0.01+0.001+\ldots$ to n terms $))$
$=\frac{7}{9}(n-(0.1+0.01+0.001+\ldots$ to n terms $))$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=0.1$
$r=($ ratio between the n term and $\mathrm{n}-1$ term) 0.1
n terms

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=0.1 \times \frac{1-0.1^{\mathrm{n}}}{1-0.1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=0.1 \times \frac{1-0.1^{\mathrm{n}}}{0.9}
\end{aligned}
$$

[multiplying both numerator and denominator by 10]
$\Rightarrow S_{\mathrm{n}}=\frac{1-0.1^{\mathrm{n}}}{9}$
\therefore The sum of the given expression is
$=\frac{7}{9}(n-(0.1+0.01+0.001+\ldots$ to n terms $))$
$=\frac{7}{9}\left(n-\left(\frac{1-0.1^{n}}{9}\right)\right)$
Q. 7. The sum of n terms of a progression is $\left(2^{n}-1\right)$. Show that it is a GP and find its common ratio.

Answer : In this question, we will try to rewrite the given sum of the progression like the formula for the sum a G.P. series.

It is given that $S_{n}=\left(2^{n}-1\right)$
The formula for the sum of a G.P. series is,
$\mathrm{S}_{\mathrm{n}}=\mathrm{a} \frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}$
By solving the 2 equations together, we can say that

$$
\begin{aligned}
& \left(2^{n}-1\right)=a \frac{r^{n}-1}{r-1} \\
& \Rightarrow 1 \times \frac{\left(2^{n}-1\right)}{2-1}=a \frac{r^{n}-1}{r-1}
\end{aligned}
$$

By corresponding the numbers with the variables, we can conclude
$a=1$
$r=2$
The G.P. series will therefore look like $\Rightarrow 1,2,4,8,16, \ldots \ldots$.to n terms
\therefore The given progression is a G.P. series with the common ration being 2 .
Q. 8. In a GP, the ratio of the sum of the first three terms is to first six terms is 125 $: 152$. Find the common ratio.

Answer: Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Sum of first 3 terms $=a \times \frac{r^{3}-1}{r-1}$
Sum of first 6 terms $=a \times \frac{r^{6}-1}{r-1}$

$$
\begin{aligned}
& \frac{a \times \frac{r^{3}-1}{r-1}}{\mathrm{r} \times \frac{r^{6}-1}{r-1}}=\frac{125}{152} \\
\therefore & \frac{\left(r^{3}-1\right)}{\left(r^{6}-1\right)}=\frac{125}{152} \\
\Rightarrow & 152 r^{3}-152=125 r^{6}-125 \\
\Rightarrow & 125 r^{6}-152 r^{3}-125+152=0 \\
\Rightarrow & 125 r^{6}-152 r^{3}+27=0 \\
\Rightarrow & 125 r^{6}-125 r^{3}-27 r^{3}+27=0 \\
\Rightarrow & \left(125 r^{3}-27\right)\left(r^{3}-1\right)=0
\end{aligned}
$$

Either $125 r^{3}-27=0$ or $r^{3}-1=0$
Either $125 r^{3}=27$ or $r^{3}=1$
Either $r^{3}=\frac{27}{125}$ or $r=1$
Either $r=\frac{3}{5}$ or $r=1$

Since $r \neq 1$ [if r is 1 , all the terms will be equal which destroys the purpose]
$\therefore r=\frac{3}{5}$
Q. 9. Find the sum of the geometric series $3+6+12+\ldots+1536$.

Answer : Tn represents the $\mathrm{n}^{\text {th }}$ term of a G.P. series.

$$
\begin{aligned}
& r=6 \div 3=2 \\
& T_{n}=\mathrm{ar}^{n-1} \\
& \Rightarrow 1536=3 \times 2^{n-1} \\
& \Rightarrow 1536 \div 3=2^{n} \div 2 \\
& \Rightarrow 1536 \div 3 \times 2=2^{n} \\
& \Rightarrow 1024=2^{n} \\
& \Rightarrow 2^{10}=2^{n} \\
& \therefore n=10
\end{aligned}
$$

Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=3$
$r=2$
$\mathrm{n}=10$ terms

$$
\begin{aligned}
& \therefore \mathrm{S}_{\mathrm{n}}=3 \times \frac{2^{10}-1}{2-1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=3 \times(1024-1) \\
& \Rightarrow \mathrm{S}_{\mathrm{n}}=3 \times 1023 \\
& \therefore \mathrm{~S}_{\mathrm{n}}=3069
\end{aligned}
$$

Q. 10. How many terms of the series $2+6+18+\ldots+$ must be taken to make the sum equal to 728 ?

Answer : Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r>1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=2$
$r=($ ratio between the n term and $n-1$ term $) 6 \div 2=3$
$S_{n}=728$
$\therefore 728=2 \times \frac{3^{\mathrm{n}}-1}{3-1}$
$\Rightarrow 728=2 \times \frac{3^{\mathrm{n}}-1}{2}$
$\Rightarrow 728=3^{n}-1$
$\Rightarrow 728+1=3^{n}$
$\Rightarrow 729=3^{n}$
$\Rightarrow 3^{6}=3^{n}$
$\therefore \mathrm{n}=6$
$\therefore 6$ terms must be taken to reach the desired answer.
Q. 11. The common ratio of a finite GP is 3 , and its last term is 486 . If the sum of these terms is 728 , find the first term.

Answer : 'Tn' represents the $\mathrm{n}^{\text {th }}$ term of a G.P. series.
$T_{n}=a^{n-1}$
$\Rightarrow 486=\mathrm{a}(3)^{\mathrm{n}-1}$
$\Rightarrow 486=\mathrm{a}\left(3^{\mathrm{n}} \div 3\right)$)
$\Rightarrow 486 \times 3=\mathrm{a}\left(3^{\mathrm{n}}\right)$
$\Rightarrow 1458=\mathrm{a}\left(3^{\mathrm{n}}\right)$

Sum of a G.P. series is represented by the formula, $S n=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

$$
\begin{aligned}
& 728=\mathrm{a} \times \frac{3^{\mathrm{n}}-1}{3-1} \\
& \Rightarrow 728=\mathrm{a} \times \frac{3^{\mathrm{n}}-1}{2} \\
& \Rightarrow 728 \times 2=\mathrm{a}\left(3^{\mathrm{n}}\right)-\mathrm{a} \ldots . .\left[\text { Putting } \mathrm{a}\left(3^{\mathrm{n}}\right)=1458\right. \text { from (i)] } \\
& \Rightarrow 1456=1458-\mathrm{a} \\
& \Rightarrow 1456-1458=-\mathrm{a} \\
& \Rightarrow-2=-\mathrm{a}[\text { Multipying both sides by }-1] \\
& \Rightarrow \mathrm{a}=2
\end{aligned}
$$

Q. 12. The first term of a GP is 27 , and its $8^{\text {th }}$ term is $\frac{1}{81}$. Find the sum of its first 10 terms.

Answer : ' T_{n} ' represents the $\mathrm{n}^{\text {th }}$ term of a G.P. series.

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

$$
\Rightarrow \frac{1}{81}=27 \times r^{8-1}
$$

$$
\Rightarrow \frac{1}{81}=27 \times \mathrm{r}^{7}
$$

$$
\Rightarrow \frac{1}{81} \div \frac{1}{27}=r^{7}
$$

$$
\Rightarrow \frac{1}{2187}=\mathrm{r}^{7}
$$

$$
\Rightarrow\left(\frac{1}{3}\right)^{7}=r^{7}
$$

$$
\therefore \mathrm{r}=\frac{1}{3}
$$

Sum of a G.P. series is represented by the formula, $\operatorname{Sn}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=27$
$r=(\text { ratio between the } n \text { term and } n-1 \text { term })^{\frac{1}{3}}$
$\mathrm{n}=10$ terms
$\therefore \mathrm{S}_{\mathrm{n}}=27 \times \frac{1-{\frac{1^{10}}{}}^{1-\frac{1}{3}}}{1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=27 \times \frac{1-\frac{1}{59049}}{\frac{2}{3}}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=27 \times \frac{\frac{59048}{59099}}{\frac{2}{3}}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=27 \times \frac{39524}{19683}$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{39524}{729}$
Q. 13. The $2^{\text {nd }}$ and $5^{\text {th }}$ terms of a GP are $\frac{-1}{2}$ and $\frac{1}{16}$ respectively. Find the sum of n terms GP up to 8 terms.

Answer : $2^{\text {nd }}$ term $=a r^{2-1}=a r^{1}$
$5^{\text {th }}$ term $=a r^{5-1}=a r^{4}$
Dividing the $5^{\text {th }}$ term using the $3^{\text {rd }}$ term
$\frac{\operatorname{ar}^{4}}{\operatorname{ar}}=\frac{\frac{1}{16}}{\frac{-1}{2}}$
$r^{3}=-\frac{1}{8}$
$\therefore r=-\frac{-1}{2}$
$\therefore \mathrm{a}=1$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.
$\mathrm{n}=8$ terms

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=1 \times \frac{1-\frac{-1^{8}}{2}}{1-\frac{-1}{2}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{1-\frac{1}{256}}{\frac{3}{2}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{\frac{255}{256}}{\frac{3}{2}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{170}{256}
\end{aligned}
$$

Q. 14. The $4^{\text {th }}$ and $7^{\text {th }}$ terms of a GP are $\frac{1}{27}$ and $\frac{1}{729}$ respectively. Find the sum of n terms of the GP.

Answer : $4^{\text {th }}$ term $=a r^{4-1}=a r^{3}=\frac{1}{27}$
$7^{\text {th }}$ term $=a r^{7-1}=a r^{6}=\frac{1}{729}$
Dividing the $7^{\text {th }}$ term by the $4^{\text {th }}$ term,
$\frac{\mathrm{ar}^{6}}{\mathrm{ar}^{3}}=\frac{\frac{1}{729}}{\frac{1}{27}}$

$$
\begin{align*}
& { }^{r^{3}}=\frac{1}{27} \ldots \ldots \text { (i) } \tag{i}\\
& \therefore r=\frac{1}{3} \\
& \mathrm{ar}^{3}=\frac{1}{27} \text { [putting from eqn (i)] } \\
& \mathrm{a} \frac{1}{27}=\frac{1}{27} \\
& \therefore \mathrm{a}=1
\end{align*}
$$

Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{1-r^{n}}{1-r}$, when $|r|<1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Here,
$a=1$
$\mathrm{r}=\frac{1}{3}$
n terms

$$
\begin{aligned}
& \quad \mathrm{S}_{\mathrm{n}}=1 \times \frac{1-\frac{1^{\mathrm{n}}}{3}}{1-\frac{1}{3}} \\
& \therefore \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{1-\frac{1^{\mathrm{n}}}{3}}{\frac{2}{3}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{3\left(1-\frac{1}{3^{\mathrm{n}}}\right)}{2} \\
& \therefore \mathrm{~S}_{\mathrm{n}}=\frac{3-\frac{1}{3^{\mathrm{n}-1}}}{2}
\end{aligned}
$$

Q. 15. A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places, find the common ratio of the GP.

Answer : Let the terms of the G.P. be a, ar, $a r^{2}, a r^{3}, \ldots, a r^{n-2}, a r^{n-1}$
Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. ' S_{n} ' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, 'a' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Thus, the sum of this G.P. series is $S_{n}=a \frac{r^{n}-1}{r-1}$
The odd terms of this series are $\mathrm{a}, \mathrm{ar}^{2}, \mathrm{ar}^{4}, \ldots, \mathrm{ar}^{\mathrm{n}-2}$
\{Since the number of terms of the G.P. series is even; the $2^{\text {nd }}$ last term will be an odd term.\}

Here,
No. of terms will be ${ }^{\frac{n}{2}}$ as we are splitting up the n terms into 2 equal parts of odd and even terms. \{since the no. of terms is even, we have 2 equal groups of odd and even terms \}

Sum of the odd terms \Rightarrow

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\mathrm{a} \times \frac{\mathrm{r}^{2\left(\frac{\mathrm{n}}{2}\right)}-1}{\mathrm{r}^{2}-1} \\
& \mathrm{~S}_{\mathrm{n}}=\mathrm{a} \times \frac{\mathrm{r}^{\mathrm{n}}-1}{(\mathrm{r}-1)(\mathrm{r}+1)}
\end{aligned}
$$

By the problem,

$$
\begin{aligned}
& a \frac{r^{n}-1}{r-1}=5 \times a \times \frac{r^{n}-1}{(r-1)(r+1)} \\
& \Rightarrow 1=\frac{5}{(r+1)} \\
& \Rightarrow r+1=5 \\
& \Rightarrow \therefore r=4
\end{aligned}
$$

Thus, the common ratio $(r)=4$

Q. 16. Show that the ratio of the sum of first n terms of a GP to the sum of the

 terms from $(n+1)$ th to $(2 n)$ th term is $\frac{1}{r^{n}}$.Answer: Sum of a G.P. series is represented by the formula, $S_{n}=a \frac{r^{n}-1}{r-1}$, when $r \neq 1$. 'Sn' represents the sum of the G.P. series upto $n^{\text {th }}$ terms, ' a ' represents the first term, ' r ' represents the common ratio and ' n ' represents the number of terms.

Thus, the sum of the first n terms of the G.P. series is, $S_{n}=a \frac{r^{n}-1}{r-1}$
Sum of $(n+1)^{\text {th }}$ term to $2 n^{\text {th }}$ term
$=$ Sum of the first $2 n^{\text {th }}$ term - the sum of $1^{\text {st }}$ term to $n^{\text {th }}$ term

$$
\begin{aligned}
& =a \frac{r^{2 n}-1}{r-1}-a \frac{r^{n}-1}{r-1} \\
& =\frac{\left(a^{2 n}-a\right)-\left(a^{n}-a\right)}{r-1} \\
& =\frac{\mathrm{ar}^{2 n}-a-a r^{n}+a}{r-1} \\
& =\frac{\mathrm{ar}^{n}\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

The ratio of the sum of first n terms of the G.P. to the sum of the terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term
$=\frac{\frac{r^{n}-1}{a^{n}-1}}{\operatorname{ar}^{1}\left(r^{\mathrm{H}}-1\right)}$
[Cancelling out the common factors from the numerator and denominator $\Rightarrow a$, $(r-1)$, $\left.\left(r^{n}-1\right)\right]$
$=\frac{1}{r^{\mathrm{n}}}$
Hence Proved.
Q. 1. What will 15625 amount to in 3 years after its deposit in a bank which pays annual interest at the rate of 8\% per annum, compounded annually?

Answer : To find: The amount after three years
Given: (i) Principal - 15625
(ii) Time - 3 years
(iii) Rate - 8\% per annum

Formula used: $A=P\left(1+\frac{r}{100}\right)^{t}$
$A=15625\left(1+\frac{8}{100}\right)^{3}$
$A=15625\left(\frac{108}{100}\right)^{3}$
$A=19683$
Ans) 19683
Q. 2. The value of a machine costing 80000 depreciates at the rate of 15% per annum. What will be the worth of this machine after 3 days?

Answer : To find: The amount after three days
Given: (i) Principal - 80000
(ii) Time - 3 days
(iii) Rate - 15\% per annum

Deduction $=P \times R \times T$
$=80000 \times \frac{15}{100} \times \frac{3}{365}$
$=98.63$
The final amount after deduction $=80000-98.63$
$=79901.37$
The value of the machine after 3 days is Rs. 79901.37
Q. 3. Three years before the population of a village was 10000 . If at the end of each year, 20% of the people migrated to a nearby town, what is its present population?

Answer : To find: Present population of the village
Given: (i) Three years back population - 10000
(ii) Time - 3 years
(iii) Rate - 20\% per annum

Number of people migrated on the very first year is 20% of 10000

$$
\Rightarrow \frac{10000 \times 20}{100}=2000
$$

People left after migration in the very first year $=10000-2000$
$=8000$
Number of people migrated in the second year is 20% of 8000

$$
\Rightarrow \frac{8000 \times 20}{100}=1600
$$

People left after migration in the second year $=8000-1600$
$=6400$
Number of people migrated in the third year is 20% of 6400

$$
\Rightarrow \frac{6400 \times 20}{100}=1280
$$

People left after migration in the third year $=6400-1280$
$=5120$
Ans) The present population is 5120
Q. 4. What will 5000 amount to in 10 years, compounded annually at $\mathbf{1 0 \%}$ per annum? [Given $\left.(1.1)^{10}=2.594\right]$

Answer : To find: The amount after ten years
Given: (i) Principal - 5000
(ii) Time - 10 years
(iii) Rate - 10\% per annum

Formula used: $A=P\left(1+\frac{r}{100}\right)^{t}$

$$
\begin{aligned}
& \Rightarrow A=5000\left(1+\frac{10}{100}\right)^{10} \\
& \Rightarrow A=5000\left(\frac{110}{100}\right)^{10} \\
& \Rightarrow A=5000(1.1)^{10} \\
& \Rightarrow A=5000 \times 2.594 \\
& \Rightarrow A=12970
\end{aligned}
$$

Ans) The amount after years will be Rs. 12970
Q. 5. A manufacturer reckons that the value of a machine which costs him 156250 , will depreciate each year by 20%. Find the estimated value at the end of 5 years.

Answer : To find: The amount after five years
Given: (i) Principal - 156250
(ii) Time - 5 years
(iii) Rate -20% per annum

Formula used: $A=P\left(1-\frac{r}{100}\right)^{t}$

$$
\begin{aligned}
& \Rightarrow A=156250\left(1-\frac{20}{100}\right)^{5} \\
& \Rightarrow A=156250\left(\frac{80}{100}\right)^{5} \\
& \Rightarrow A=156250(0.8)^{5} \\
& \Rightarrow A=156250 \times 0.32768 \\
& \Rightarrow A=51200
\end{aligned}
$$

Ans) The amount after five years will be Rs. 51200
Q. 6. The number of bacteria in a certain culture doubles every hour. If there were 50 bacteria present in the culture originally, how many bacteria would be present at the end of (i) $2^{\text {nd }}$ hour, (ii) $5^{\text {th }}$ hour and (iii) nth hour?

Answer : To find: The number of bacteria after
(i) $2^{\text {nd }}$ hour
(ii) $5^{\text {th }}$ hour
(iii) nth hour

Given: (i) Initially, there were 50 bacteria
(ii) Rate - 100\% per hour

The formula used: $A=P\left(1+\frac{r}{100}\right)^{t}$
(i) For $2^{\text {nd }}$ hour
\Rightarrow No. of bacteria=50 $\left(1+\frac{100}{100}\right)^{2}$
\Rightarrow No. of bacteria=50(1+1) ${ }^{2}$
\Rightarrow No. of bacteria $=50(2)^{2}$
\Rightarrow No. of bacteria $=50 \times 4$
\Rightarrow No. of bacteria $=200$
(ii) For $5^{\text {th }}$ hour
\Rightarrow No. of bacteria $=50\left(1+\frac{100}{100}\right)^{5}$
\Rightarrow No. of bacteria=50(1+1) ${ }^{5}$
\Rightarrow No. of bacteria $=50(2)^{5}$
\Rightarrow No. of bacteria $=50 \times 32$
\Rightarrow No. of bacteria $=1600$
(iii) For $\mathrm{n}^{\text {th }}$ hour
\Rightarrow No. of bacteria $=50\left(1+\frac{100}{100}\right)^{n}$
\Rightarrow No. of bacteria=50(1+1) ${ }^{n}$
\Rightarrow No. of bacteria $=50(2)^{n}$
\Rightarrow No. of bacteria $=2^{n} 50$
Ans) Number of bacteria in a $2^{\text {nd }}$ hour will be 200, the number of bacteria in a $5^{\text {th }}$ hour will be 1600 and number of bacteria in an $\mathrm{n}^{\text {th }}$ hour will be $2^{2^{n}} 50$

Exercise 12E

Q. 1. If p, q, r are in AP, then prove that p th, q th and r th terms of any GP are in GP.

Answer : To prove: $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of any GP are in GP.
Given: (i) p, q and r are in AP
The formula used: (i) General term of GP, $T_{n}=\mathbf{a} r^{n-1}$

As p, q, r are in A.P.
$\Rightarrow \mathrm{q}-\mathrm{p}=\mathrm{r}-\mathrm{q}=\mathrm{d}=$ common difference \ldots (i)
Consider a G.P. with the first term as a and common difference R
Then, the $\mathrm{p}^{\text {th }}$ term will be $\mathrm{ar}^{\mathrm{p}-1}$
The $q^{\text {th }}$ term will be ar $^{q-1}$
The $r^{\text {th }}$ term will be ar $^{r-1}$
Considering $\mathrm{p}^{\text {th }}$ term and $\mathrm{q}^{\text {th }}$ term
$\Rightarrow \frac{q^{\text {mp }} \text { term }}{p^{\text {mh }} \text { term }}=\frac{a r^{q-1}}{a r^{p-1}}$
$\Rightarrow \frac{q^{\text {th }} \text { term }}{p^{\text {th }} \text { term }}=r^{q-1-p+1}$
$\Rightarrow \frac{q^{\text {th }} \text { term }}{p^{\text {th }} \text { term }}=r^{q-p}$
From eqn. (i) $q-p=d$
$\Rightarrow \frac{q^{\text {th }} \text { term }}{p^{\text {th }} \text { term }}=r^{\text {d }}$
Considering $q^{\text {th }}$ term and $r^{\text {th }}$ term
$\Rightarrow \frac{r^{\text {mp }} \text { term }}{q^{\text {mp }} \text { term }}=\frac{a r^{r-1}}{a r^{q-1}}$
$\Rightarrow \frac{\mathrm{r}^{\text {th }} \text { term }}{\mathrm{q}^{\text {th }} \text { term }}=\mathrm{r}^{\mathrm{r}-1-\mathrm{q}+1}$
$\Rightarrow \frac{r^{\text {th }} \text { term }}{q^{\text {th }} \text { term }}=r^{r-q}$
From eqn. (i) $r-q=d$
$\Rightarrow \frac{\mathrm{r}^{\text {th }} \text { term }}{\mathrm{q}^{\text {th }} \text { term }}=\mathrm{r}^{\mathrm{d}}$
We can see that $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms have common ration i.e r^{d}
Hence they are in G.P.
Hence Proved
Q. 2. If a, b, c are in GP, then show that $\log a^{n}, \log b^{n}, \log c^{n}$ are in AP.

Answer : To prove: $\log a^{n}, \log b^{n}, \log c^{n}$ are in AP.
Given: a, b, c are in GP
Formula used: (i) $\log a b=\log a+\log b$
As a, b, c are in GP
$\Rightarrow b^{2}=a c$
Taking power n on both sides
$\Rightarrow b^{2 n}=(a c)^{n}$
Taking log both side
$\Rightarrow \log b^{2 n}=\log (a c)^{n}$
$\Rightarrow \log b^{2 n}=\log \left(a^{n} c^{n}\right)$
$\Rightarrow 2 \log b^{n}=\log \left(a^{n}\right)+\log \left(c^{n}\right)$
Whenever a, b, c are in AP then $2 b=a+c$, considering this and the above equation we can say that $\log a^{n}, \log b^{n}, \log c^{n}$ are in AP.

Hence Proved
Q. 3. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are GP, then show that $\frac{1}{\log _{\mathrm{a}} \mathrm{m}}, \frac{1}{\log _{\mathrm{b}} \mathrm{m}}, \frac{1}{\log _{\mathrm{c}} \mathrm{m}}$ are in AP.

Answer : To prove: ${ }^{\frac{1}{\log _{a} m}, \frac{1}{\log _{b} m}, \frac{1}{\log _{c} m}}$ are in AP.

Given: a, b, c are in GP
Formula used: (i) $\frac{1}{\log _{\mathrm{a}} \mathrm{m}}=\log _{\mathrm{m}} a=\frac{\log a}{\log m}$
As, a, b, c are in GP
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}$
Taking \log both side $\log \frac{b}{a}=\log \frac{c}{b}$
$\Rightarrow \log b-\log a=\log c-\log b$
$\Rightarrow 2 \log \mathrm{~b}=\log \mathrm{a}+\log \mathrm{c}$
Dividing by $\log m$

$$
\Rightarrow 2\left(\frac{\log b}{\log m}\right)=\frac{\log a}{\log m}+\frac{\log c}{\log m}
$$

$$
\Rightarrow 2 \log _{\mathrm{m}} \mathrm{~b}=\log _{\mathrm{m}} \mathrm{a}+\log _{\mathrm{m}} c \quad\left(A s_{r} \log _{\mathrm{m}} a=\frac{\log a}{\log \mathrm{~m}}\right)
$$

$$
\Rightarrow 2\left(\frac{1}{\log _{b} m}\right)=\frac{1}{\log _{a} m}+\frac{1}{\log _{c} m}\left(\text { As } \frac{1}{\log _{a} m}=\log _{m} a\right)
$$

Whenever any number a, b, c are in AP then $2 b=a+c$, considering this and the above equation we can say that $\frac{1}{\log _{a} m}, \frac{1}{\log _{b} m}, \frac{1}{\log _{c} m}$ are in AP

Hence proved

Q. 4. Find the values of k for which $k+12, k-6$ and 3 are in GP.

Answer: To find: Value of k
Given: $\mathrm{k}+12, \mathrm{k}-6$ and 3 are in GP
Formula used: (i) when a, b, c are in GP $b^{2}=a c$
As, $k+12, k-6$ and 3 are in GP
$\Rightarrow(\mathrm{k}-6)^{2}=(\mathrm{k}+12)(3)$
$\Rightarrow k^{2}-12 k+36=3 k+36$
$\Rightarrow \mathrm{k}^{2}-15 \mathrm{k}=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-15)=0$
$\Rightarrow \mathrm{k}=0$, Or $\mathrm{k}=15$
Ans) We have two values of k as 0 or 15
Q. 5. Three numbers are in AP, and their sum is 15 . If $1,4,19$ be added to them respectively, then they are in GP. Find the numbers.

Answer : To find: The numbers
Given: Three numbers are in A.P. Their sum is 15
Formula used: When a, b, c are in GP, $b^{2}=a c$
Let the numbers be $a-d, a, a+d$
According to first condition
$a+d+a+a-d=15$
$\Rightarrow 3 \mathrm{a}=15$
$\Rightarrow \mathrm{a}=5$
Hence numbers are $5-\mathrm{d}, 5,5+\mathrm{d}$
When 1, 4, 19 be added to them respectively then the numbers become -
$5-d+1,5+4,5+d+19$
$\Rightarrow 6-d, 9,24+d$
The above numbers are in GP
Therefore, $9^{2}=(6-d)(24+d)$
$\Rightarrow 81=144-24 d+6 d-d^{2}$
$\Rightarrow 81=144-18 d-d^{2}$
$\Rightarrow d^{2}+18 d-63=0$
$\Rightarrow d^{2}+21 d-3 d-63=0$
$\Rightarrow d(d+21)-3(d+21)=0$
$\Rightarrow(d-3)(d+21)=0$
$\Rightarrow d=3$, Or $d=-21$
Taking $d=3$, the numbers are
$5-d, 5,5+d=5-3,5,5+3$
$=2,5,8$
Taking $d=-21$, the numbers are
$5-d, 5,5+d=5-(-21), 5,5+(-21)$
$=26,5,-16$
Ans) We have two sets of triplet as 2, 5, 8 and 26, 5, -16.
Q. 6. Three numbers are in AP, and their sum is 21 . If the second number is reduced by 1 and the third is increased by 1, we obtain three numbers in GP. Find the numbers.

Answer: To find: Three numbers
Given: Three numbers are in A.P. Their sum is 21
Formula used: When a, b, c are in GP, $b^{2}=a c$
Let the numbers be $a-d, a, a+d$
According to first condition
$a+d+a+a-d=21$
$\Rightarrow 3 \mathrm{a}=21$
$\Rightarrow \mathrm{a}=7$
Hence numbers are $7-d, 7,7+d$
When second number is reduced by 1 and third is increased by 1 then the numbers become -
$7-d, 7-1,7+d+1$
$\Rightarrow 7-\mathrm{d}, 6,8+\mathrm{d}$
The above numbers are in GP
Therefore, $6^{2}=(7-d)(8+d)$
$\Rightarrow 36=56+7 d-8 d-d^{2}$
$\Rightarrow d^{2}+d-20=0$
$\Rightarrow d^{2}+5 d-4 d-20=0$
$\Rightarrow d(d+5)-4(d+5)=0$
$\Rightarrow(d-4)(d+5)=0$
$\Rightarrow d=4$, Or $d=-5$
Taking $d=4$, the numbers are
$7-d, 7,7+d=7-4,7,7+4$
$=3,7,11$
Taking $d=-5$, the numbers are
$7-d, 7,7+d=7-(-5), 7,7+(-5)$
$=12,7,2$
Ans) We have two sets of triplet as 3, 7, 11 and 12, 7, 2.
Q. 7. The sum of three numbers in GP is 56 . If $1,7,21$ be subtracted from them respectively, we obtain the numbers in AP. Find the numbers

Answer : To find: Three numbers
Given: Three numbers are in G.P. Their sum is 56
Formula used: When a, b, c are in GP, $b^{2}=a c$
Let the three numbers in GP be a , $\mathrm{ar}, \mathrm{ar}^{2}$
According to condition :-
$a+a r+a r^{2}=56$
$a\left(1+r+r^{2}\right)=56 \ldots$ (i)
1, 7, 21 be subtracted from them respectively, we obtain the numbers as :-
$a-1, a r-7, a r^{2}-21$
According to question the above numbers are in AP

$$
\begin{aligned}
& \Rightarrow a r-7-(a-1)=a r^{2}-21-(a r-7) \\
& \Rightarrow a r-7-a+1=a r^{2}-21-a r+7 \\
& \Rightarrow a r-a-6=a r^{2}-a r-14 \\
& \Rightarrow 8=a r^{2}-2 a r+a \\
& \Rightarrow 8=a\left(r^{2}-2 r+1\right)
\end{aligned}
$$

Multiplying the above eqn. with 7
$\Rightarrow 56=7 \mathrm{a}\left(\mathrm{r}^{2}-2 \mathrm{r}+1\right)$
$\Rightarrow a\left(1+r+r^{2}\right)=7 a\left(r^{2}-2 r+1\right)$
$\Rightarrow 1+r+r^{2}=7 r^{2}-14 r+7$
$\Rightarrow 6 r^{2}-15 r+6=0$
$\Rightarrow 6 r^{2}-12 r-3 r+6=0$
$\Rightarrow 6 r(r-2)-3(r-2)=0$
$\Rightarrow(6 r-3)(r-2)=0$
$\Rightarrow r=\frac{3}{6}=\frac{1}{2}$ Or $r=2$
Putting $r=\frac{1}{2}$ in eqn. (i)
$a\left(1+r+r^{2}\right)=56$

$$
\begin{aligned}
& a\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)=56 \\
& a\left(\frac{4+2+1}{4}\right)=56 \\
& a\left(\frac{7}{4}\right)=56 \\
& a=32
\end{aligned}
$$

The numbers are $a, a r, a r^{2}$

$$
\begin{aligned}
& \Rightarrow 32,32 \times \frac{1}{2}, 32 \times \frac{1}{2^{2}} \\
& \Rightarrow 32,16,8
\end{aligned}
$$

Putting $r=2$ in eqn. (i)

$$
\begin{aligned}
& a\left(1+r+r^{2}\right)=56 \\
& a\left(1+2+2^{2}\right)=56 \\
& a(1+2+4)=56 \\
& a(7)=56 \\
& a=8
\end{aligned}
$$

The numbers are $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$

$$
\Rightarrow 32,32 \times \frac{1}{2}, 32 \times \frac{1}{2^{2}}
$$

$\Rightarrow 8,16,32$
Ans) We have two sets of triplet as $32,16,8$ and $8,16,32$.
Q. 8. If a, b, c are in GP, prove that $\frac{a^{2}+a b+b^{2}}{a b+b c+c a}=\frac{b+a}{c+b}$.

Answer : To prove: $\frac{a^{2}+a b+b^{2}}{a b+b c+c a}=\frac{b+a}{c+b}$
Given: a, b, c are in GP
Formula used: When a, b, c are in GP, $b^{2}=a c$
a, b, c are in GP,
$\Rightarrow b^{2}=a c \ldots$ (i)
$\Rightarrow b=\sqrt{a c}$

Taking LHS $=\frac{a^{2}+a b+b^{2}}{a b+b c+c a}$
Substituting the value $b^{2}=a c$ from eqn. (i)
$L H S=\frac{a^{2}+a b+a c}{a b+b c+b^{2}}$
$\Rightarrow \frac{a(a+b+c)}{b(a+b+c)}$
$\Rightarrow \frac{a}{b}$
Substituting the value $b=\sqrt{\mathbf{a c}}$ from eqn. (ii)
$\Rightarrow \frac{a}{\sqrt{a c}}$
$\Rightarrow \frac{\sqrt{a}}{\sqrt{c}}$
Multiplying and dividing with $(\sqrt{a}+\sqrt{c})$
$\Rightarrow \frac{\sqrt{a}(\sqrt{a}+\sqrt{c})}{\sqrt{c}(\sqrt{a}+\sqrt{c})}$
$\Rightarrow \frac{(a+\sqrt{a c})}{(\sqrt{a c}+c)}$
$\Rightarrow \frac{a+b}{b+c}=R H S$
Hence Proved
Q. 9. If $(a-b),(b-c),(c-a)$ are in GP then prove that $(a+b+c)^{2}=3(a b+b c+$ ca).

Answer : To prove: $(a+b+c)^{2}=3(a b+b c+c a)$.
Given: $(a-b),(b-c),(c-a)$ are in GP
Formula used: When a, b, c are in GP, $b^{2}=a c$
As, $(a-b),(b-c),(c-a)$ are in GP
$\Rightarrow(\mathrm{b}-\mathrm{c})^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{c}-\mathrm{a})$
$\Rightarrow b^{2}-2 c b+c^{2}=a c-a^{2}-b c+a b$
$\Rightarrow a^{2}+b^{2}+c^{2}-b c-a c-a b=0$
Adding $3(a b+b c+a c)$ both side
$\Rightarrow a^{2}+b^{2}+c^{2}-b c-a c-a b+3(a b+b c+a c)=3(a b+b c+a c)$
$\Rightarrow a^{2}+b^{2}+c^{2}+2 b c+2 a c+2 a b=3(a b+b c+a c)$
$\Rightarrow(a+b+c)^{2}=3(a b+b c+a c)$
Hence Proved
Q. 10. If a, b, c are in GP, prove that
(i) $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
(ii) $\frac{1}{\left(a^{2}-b^{2}\right)}+\frac{1}{b^{2}}=\frac{1}{\left(b^{2}-c^{2}\right)}$
(iii) $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$
(iv)

$$
a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}
$$

Answer: (i) $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
To prove: $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
Given: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP
Formula used: When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, $\mathrm{b}^{2}=\mathrm{ac}$
When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, $\mathrm{b}^{2}=\mathrm{ac}$
Taking LHS $=a\left(b^{2}+c^{2}\right)$
$=\mathrm{a}\left(\mathrm{ac}+\mathrm{c}^{2}\right)\left[\mathrm{b}^{2}=\mathrm{ac}\right]$
$=\left(\mathrm{a}^{2} \mathrm{c}+\mathrm{ac}^{2}\right)$
$=c\left(a^{2}+a c\right)$
$=c\left(a^{2}+b^{2}\right)\left[b^{2}=a c\right]$
= RHS
Hence Proved
(ii) $\frac{1}{\left(a^{2}-b^{2}\right)}+\frac{1}{b^{2}}=\frac{1}{\left(b^{2}-c^{2}\right)}$

To prove: $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
Given: a, b, c are in GP
Formula used: When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, $\mathrm{b}^{2}=\mathrm{ac}$
Proof: When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, $\mathrm{b}^{2}=\mathrm{ac}$
Taking LHS $=\frac{1}{\left(a^{2}-b^{2}\right)}+\frac{1}{b^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{b^{2}+a^{2}-b^{2}}{\left(a^{2}-b^{2}\right)\left(b^{2}\right)} \\
& \Rightarrow \frac{a^{2}}{\left(a^{2}-b^{2}\right)(a c)} \\
& \Rightarrow \frac{a^{2}}{\left(a^{3} c-a^{2} c^{2}\right)} \\
& \Rightarrow \frac{a^{2}}{a^{2}\left(a c-c^{2}\right)} \\
& \Rightarrow \frac{1}{\left(b^{2}-c^{2}\right)}\left[b^{2}=a c\right]
\end{aligned}
$$

Hence Proved
(iii) $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$

To prove: $(a+2 b+2 c)(a-2 b+2 c)=a^{2}+4 c^{2}$
Given: a, b, c are in GP
Formula used: When a, b, c are in GP, $b^{2}=a c$
Proof: When a, b, c are in GP, $b^{2}=a c$
Taking LHS $=(a+2 b+2 c)(a-2 b+2 c)$
$\Rightarrow[(\mathrm{a}+2 \mathrm{c})+2 \mathrm{~b}][(\mathrm{a}+2 \mathrm{c})-2 \mathrm{~b}]$
$\Rightarrow\left[(a+2 c)^{2}-(2 b)^{2}\right]\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
$\Rightarrow\left[\left(a^{2}+4 a c+4 c^{2}\right)-4 b^{2}\right]$
$\Rightarrow\left[\left(a^{2}+4 a c+4 c^{2}\right)-4 b^{2}\right]\left[b^{2}=a c\right]$
$\Rightarrow\left[\left(a^{2}+4 a c+4 c^{2}-4 a c\right]\right.$
$\Rightarrow \mathrm{a}^{2}+4 \mathrm{c}^{2}=\mathrm{RHS}$

Hence Proved
(iv) $a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}$

To prove: $a^{2} b^{2} c^{2}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)=a^{3}+b^{3}+c^{3}$
Given: a, b, c are in GP
Formula used: When a, b, c are in GP, $b^{2}=a c$
Proof: When a, b, c are in GP, $b^{2}=a c$
Taking LHS $=a^{2} b^{2} c^{2}\left(\frac{b^{3} c^{3}+a^{3} c^{3}+a^{3} b^{3}}{a^{3} b^{3} c^{3}}\right)$
$\Rightarrow\left(\frac{b^{3} c^{3}+a^{3} c^{3}+a^{3} b^{3}}{a b c}\right)$
$\Rightarrow\left(\frac{b^{2} b c^{3}+(a c)^{2} a c+a^{3} b^{2} b}{a b c}\right)$
$\Rightarrow\left(\frac{a c b c^{3}+\left(b^{2}\right)^{2} a c+a^{3} a c b}{a b c}\right)_{\left[b^{2}=a c\right]}$
$\Rightarrow\left(\frac{a c b c^{3}+b^{3} a b c+a^{3} a c b}{a b c}\right)$
$\Rightarrow\left(a^{3}+b^{3}+c^{3}\right)=R H S$
Hence Proved
Q. 11. If a, b, c, d are in GP, prove that
(i) $(b+c)(b+d)=(c+a)(c+a)$
(ii) $\frac{a b-c d}{b^{2}-c^{2}}=\frac{a+c}{b}$
(iii) $(a+b+c+d)^{2}=(a+b)^{2}+2(b+c)^{2}+(c+d)^{2}$

Answer: $(\mathbf{i})(b+c)(b+d)=(c+a)(c+a)$
To prove: $(b+c)(b+d)=(c+a)(c+a)$
Given: a, b, c, d are in GP
Proof: When a, b, c, d are in GP then
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{d}}{\mathrm{c}}$
From the above, we can have the following conclusion
$\Rightarrow \mathrm{bc}=\mathrm{ad} \ldots$ (i)
$\Rightarrow b^{2}=a c \ldots$ (ii)
$\Rightarrow c^{2}=b d \ldots$ (iii)
Taking LHS $=(b+c)(b+d)$
$=b^{2}+b d+b c+c d$
Using eqn. (i), (ii) and (iii)
$=a c+c^{2}+a d+c d$
$=c(a+c)+d(a+c)$
$=(a+c)(c+d)$
Hence Proved
(ii) $\frac{a b-c d}{b^{2}-c^{2}}=\frac{a+c}{b}$

To prove: $\frac{a b-c d}{b^{2}-c^{2}}=\frac{a+c}{b}$
Given: $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in GP
Proof: When a, b, c, d are in GP then
$\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}$

From the above, we can have the following conclusion

$$
\begin{align*}
& \Rightarrow b c=a d \ldots \text { (i) } \\
& \Rightarrow b^{2}=a c \ldots \text { (ii) } \\
& \Rightarrow c^{2}=b d \\
& \Rightarrow d=\frac{c^{2}}{b} \ldots \text { (iii) } \tag{iii}
\end{align*}
$$

Taking LHS $=\frac{a b-c d}{b^{2}-c^{2}}$

$$
\begin{aligned}
& \frac{a b-c \frac{c^{2}}{b}}{b^{2}-c^{2}} \\
&= \text { From eqn. (iii)] } \\
&= \frac{a b-\frac{c^{3}}{b}}{b^{2}-c^{2}} \\
&= \frac{\frac{a b^{2}-c^{3}}{b}}{b^{2}-c^{2}} \\
&= \frac{a b^{2}-c^{3}}{b\left(b^{2}-c^{2}\right)} \\
&= \frac{a^{2} c-c^{3}}{b a c-b c^{2}}[\text { From eqn. (ii)] } \\
&= \frac{c\left(a^{2}-c^{2}\right)}{b\left(a c-c^{2}\right)} \\
&= \frac{c(a-c)(a+c)}{b\left(a c-c^{2}\right)} \\
&= \frac{\left(a c-c^{2}\right)(a+c)}{b\left(a c-c^{2}\right)} \\
&= b \\
& b
\end{aligned}
$$

$=$ RHS
Hence Proved
(iii) $(a+b+c+d)^{2}=(a+b)^{2}+2(b+c)^{2}+(c+d)^{2}$

To prove: $(a+b+c+d)^{2}=(a+b)^{2}+2(b+c)^{2}+(c+d)^{2}$
Given: a, b, c, d are in GP
Proof: When $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in GP then
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{d}}{\mathrm{c}}$
From the above, we can have the following conclusion
$\Rightarrow \mathrm{bc}=\mathrm{ad} \ldots$ (i$)$
$\Rightarrow b^{2}=a c \ldots$ (ii)
$\Rightarrow c^{2}=b d$
Taking LHS $=(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})^{2}$
$\Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})$
$\Rightarrow a^{2}+a b+a c+a d+b a+b^{2}+b c+b d+c a+c b+c^{2}+c d+d a+d b+d c+d^{2}$
On rearranging
$\Rightarrow a^{2}+a b+b a+b^{2}+a c+a d+b c+b d+c a+c b+c^{2}+c d+d a+d b+d c+d^{2}$ On rearranging
$\Rightarrow(\mathrm{a}+\mathrm{b})^{2}+\mathrm{ac}+\mathrm{ad}+\mathrm{bc}+\mathrm{bd}+\mathrm{ca}+\mathrm{cb}+\mathrm{da}+\mathrm{db}+\mathrm{c}^{2}+\mathrm{cd}+\mathrm{dc}+\mathrm{d}^{2}$
On rearranging
$\Rightarrow(a+b)^{2}+a c+a d+b c+b d+c a+c b+d a+d b+(c+d)^{2}$
On rearranging
$\Rightarrow(a+b)^{2}+a c+c a+a d+b c+c b+d a+b d+d b+(c+d)^{2}$
Using eqn. (i)
$\Rightarrow(a+b)^{2}+a c+c a+b c+b c+b c+b c+b d+d b+(c+d)^{2}$
Using eqn. (ii)
$\Rightarrow(a+b)^{2}+b^{2}+b^{2}+b c+b c+b c+b c+b d+d b+(c+d)^{2}$
Using eqn. (iii)
$\Rightarrow(a+b)^{2}+2 b^{2}+4 b c+c^{2}+c^{2}+(c+d)^{2}$
On rearranging
$\Rightarrow(\mathrm{a}+\mathrm{b})^{2}+2 \mathrm{~b}^{2}+4 \mathrm{bc}+2 \mathrm{c}^{2}+(\mathrm{c}+\mathrm{d})^{2}$
$\Rightarrow(a+b)^{2}+2\left[b^{2}+2 b c+c^{2}\right]+(c+d)^{2}$
$\Rightarrow(\mathrm{a}+\mathrm{b})^{2}+2(\mathrm{~b}+\mathrm{c})^{2}+(\mathrm{c}+\mathrm{d})^{2}$
$=$ RHS
Hence proved
Q. 12. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are in GP, prove that $\frac{1}{(a+b)}, \frac{1}{(2 b)}, \frac{1}{(b+c)}$ are in AP.

Answer : To prove: $\frac{1}{(\mathrm{a}+\mathrm{b})}, \frac{1}{(2 \mathrm{~b})}, \frac{1}{(\mathrm{~b}+\mathrm{c})}$ are in AP
Given: a, b, c are in GP
Formula used: When a, b, c are in GP, $b^{2}=a c$
When a, b, c are in GP, $b^{2}=a c$
Taking $\frac{1}{(a+b)}$ and $\frac{1}{(b+c)}$
$\frac{1}{(a+b)}+\frac{1}{(b+c)}$
$\Rightarrow \frac{b+c+a+b}{(a+b)(b+c)}$
$\Rightarrow \frac{a+c+2 b}{a b+a c+b^{2}+b c}$
$\Rightarrow \frac{a+c+2 b}{a b+b^{2}+b^{2}+b c}\left[b^{2}=a c\right]$
$\Rightarrow \frac{a+c+2 b}{a b+2 b^{2}+b c}$
$\Rightarrow \frac{a+c+2 b}{b(a+c+2 b)}$
$\Rightarrow \frac{1}{\mathrm{~b}}$
$\Rightarrow 2 \times \frac{1}{2 b}$

We can see that $\frac{1}{(a+b)}+\frac{1}{(b+c)}=2 \times \frac{1}{2 b}$
Hence we can say that $\frac{1}{(\mathrm{a}+\mathrm{b})}, \frac{1}{(2 \mathrm{~b})}, \frac{1}{(\mathrm{~b}+\mathrm{c})}$ are in AP.
Q. 13. If a, b, c are in $G P$, prove that a^{2}, b^{2}, c^{2} are in GP.

Answer : To prove: $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in GP
Given: a, b, c are in GP
Proof: As a, b, c are in GP
$\Rightarrow b^{2}=a c \ldots$ (i)
Considering b^{2}, c^{2}
$\frac{c^{2}}{b^{2}}=$ common ratio $=r$
$\Rightarrow \frac{\mathrm{c}^{2}}{\mathrm{ac}}$ [From eqn. (i)]
$\Rightarrow \frac{\mathrm{c}}{\mathrm{a}}=r$

Considering $\mathrm{a}^{2}, \mathrm{~b}^{2}$
$\frac{b^{2}}{a^{2}}=$ common ratio $=r$
$\Rightarrow \frac{a c}{a^{2}}$ [From eqn. (i)]
$\Rightarrow \frac{\mathrm{c}}{\mathrm{a}}=r$
We can see that in both the cases we have obtained a common ratio.
Hence $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in GP.
Q. 14. If a, b, c are in GP, prove that a^{3}, b^{3}, c^{3} are in GP

Answer : To prove: $\mathrm{a}^{3}, \mathrm{~b}^{3}, \mathrm{c}^{3}$ are in GP
Given: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP
Proof: As a, b, c are in GP
$\Rightarrow b^{2}=\mathrm{ac}$
Cubing both sides
$\Rightarrow\left(\mathrm{b}^{2}\right)^{3}=(\mathrm{ac})^{3}$
$\Rightarrow b^{6}=a^{3} c^{3}$
$\Rightarrow \frac{\mathrm{b}^{3}}{\mathrm{a}^{3}}=\frac{\mathrm{c}^{3}}{\mathrm{~b}^{3}}=$ common ratio $=r$
From the above equation, we can say that $\mathrm{a}^{3}, \mathrm{~b}^{3}, \mathrm{c}^{3}$ are in GP
Q. 15. If a, b, c are in GP, prove that $\left(a^{2}+b^{2}\right),(a b+b c),\left(b^{2}+c^{2}\right)$ are in GP.

Answer : To prove: $\left(a^{2}+b^{2}\right),(a b+b c),\left(b^{2}+c^{2}\right)$ are in GP
Given: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP
Formula used: When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, $\mathrm{b}^{2}=\mathrm{ac}$

Proof: When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP,
$\mathrm{b}^{2}=\mathrm{ac} \ldots$ (i)
Considering ($\mathrm{a}^{2}+\mathrm{b}^{2}$), $(\mathrm{ab}+\mathrm{bc}),\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
$(a b+b c)^{2}=\left(a^{2} b^{2}+2 a b^{2} c+b^{2} c^{2}\right)$
$=\left(a^{2} b^{2}+a b^{2} c+a b^{2} c+b^{2} c^{2}\right)$
$=\left(a^{2} b^{2}+b^{4}+a^{2} c^{2}+b^{2} c^{2}\right)$ [From eqn. (i)]
$=\left[b^{2}\left(a^{2}+b^{2}\right)+c^{2}\left(a^{2}+b^{2}\right)\right]$
$(a b+b c)^{2}=\left[\left(b^{2}+c^{2}\right)\left(a^{2}+b^{2}\right)\right]$
From the above equation we can say that $\left(a^{2}+b^{2}\right),(a b+b c),\left(b^{2}+c^{2}\right)$ are in GP
Q. 16. If a, b, c, d are in GP, prove that $\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right)$ are in GP.

Answer : To prove: $\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right)$ are in GP.
Given: a, b, c are in GP
Formula used: When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP, $\mathrm{b}^{2}=\mathrm{ac}$
Proof: When $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in GP then
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{d}}{\mathrm{c}}$
From the above, we can have the following conclusion
$\Rightarrow \mathrm{bc}=\mathrm{ad} \ldots$ (i$)$
$\Rightarrow b^{2}=a c \ldots$ (ii)
$\Rightarrow \mathrm{c}^{2}=\mathrm{bd} \ldots$ (iii)
Considering ($a^{2}-b^{2}$), $\left(b^{2}-c^{2}\right)$, $\left(c^{2}-d^{2}\right)$

$$
\begin{aligned}
& \left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)=a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}+b^{2} d^{2} \\
& =(a c)^{2}-(a d)^{2}-(b c)^{2}+(b d)^{2}
\end{aligned}
$$

From eqn. (i) , (ii) and (iii)
$=\left(b^{2}\right)^{2}-(b c)^{2}-(b c)^{2}+\left(c^{2}\right)^{2}$
$=b^{4}-2 b^{2} c^{2}+c^{4}$
$\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)=\left(b^{2}-c^{2}\right)^{2}$
From the above equation we can say that $\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right)$ are in GP
Q. 17. If a, b, c, d are in GP, then prove that
$\frac{1}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}, \frac{1}{\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)}, \frac{1}{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)}$ are in GP
Answer : To prove: $\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$ are in GP.
Given: a, b, c, d are in GP
Proof: When a,b,c,d are in GP then
$\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}$
From the above, we can have the following conclusion
$\Rightarrow \mathrm{bc}=\mathrm{ad} \ldots$ (i)
$\Rightarrow b^{2}=a c \ldots$ (ii)
$\Rightarrow c^{2}=b d$
Considering $\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$
$\frac{1}{\left(a^{2}+b^{2}\right)} \times \frac{1}{\left(c^{2}+d^{2}\right)}=\frac{1}{a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}}$
$=\frac{1}{(\mathrm{ac})^{2}+(\mathrm{ad})^{2}+(\mathrm{bc})^{2}+(\mathrm{bd})^{2}}$
From eqn. (i), (ii) and (iii)
$=\frac{1}{\left(b^{2}\right)^{2}+(b c)^{2}+(b c)^{2}+\left(c^{2}\right)^{2}}$
$=\frac{1}{b^{4}+2 b^{2} c^{2}+c^{4}}$
$\frac{1}{\left(a^{2}+b^{2}\right)} \times \frac{1}{\left(c^{2}+d^{2}\right)}=\frac{1}{\left(b^{2}+c^{2}\right)^{2}}$
From the above equation, we can say that $\frac{1}{\left(a^{2}+b^{2}\right)}, \frac{1}{\left(b^{2}+c^{2}\right)}, \frac{1}{\left(c^{2}+d^{2}\right)}$ are in GP.
Q. 18. If $\left(p^{2}+q^{2}\right),(p q+q r),\left(q^{2}+r^{2}\right)$ are in GP then prove that p, q, r are in GP

Answer: To prove: p, q, r are in GP
Given: $\left(p^{2}+q^{2}\right),(p q+q r),\left(q^{2}+r^{2}\right)$ are in GP
Formula used: When a, b, c are in GP, $b^{2}=a c$
Proof: When $\left(p^{2}+q^{2}\right),(p q+q r),\left(q^{2}+r^{2}\right)$ are in GP,
$(p q+q r)^{2}=\left(p^{2}+q^{2}\right)\left(q^{2}+r^{2}\right)$
$p^{2} q^{2}+2 p q^{2} r+q^{2} r^{2}=p^{2} q^{2}+p^{2} r^{2}+q^{4}+q^{2} r^{2}$
$2 p q^{2} r=p^{2} r^{2}+q^{4}$
$p q^{2} r+p q^{2} r=p^{2} r^{2}+q^{4}$
$p q^{2} r-q^{4}=p^{2} r^{2}-p q^{2} r$
$q^{2}\left(p r-q^{2}\right)=p r\left(p r-q^{2}\right)$
$q^{2}=p r$
From the above equation we can say that p, q and r are in G.P.
Q. 19. If a, b, c are in $A P$, and a, b, d are in GP, show that $a,(a-b)$ and $(d-c)$ are in GP.

Answer : To prove: $a,(a-b)$ and $(d-c)$ are in GP.
Given: a, b, c are in AP, and a, b, d are in GP

Proof: As a,b,d are in GP then
$b^{2}=a d \ldots$ (i)
As a, b, c are in AP
$2 \mathrm{~b}=(\mathrm{a}+\mathrm{c}) \ldots$ (ii)
Considering $\mathrm{a},(\mathrm{a}-\mathrm{b})$ and $(\mathrm{d}-\mathrm{c})$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$=a^{2}-(2 b) a+b^{2}$
From eqn. (i) and (ii)
$=a^{2}-(a+c) a+a d$
$=a^{2}-a^{2}-a c+a d$
$=\mathrm{ad}-\mathrm{ac}$
$(a-b)^{2}=a(d-c)$
From the above equation we can say that $a,(a-b)$ and $(d-c)$ are in GP.
Q. 20. If a, b, c are in $A P$, and a, x, b and b, y, c are in GP then show that x^{2}, b^{2}, \mathbf{y}^{2} are in AP.

Answer: To prove: x^{2}, b^{2}, y^{2} are in AP.
Given: a, b, c are in $A P$, and a, x, b and b, y, c are in GP
Proof: As, a,b,c are in AP
$\Rightarrow 2 b=a+c \ldots(i)$
As, a, x, b are in GP
$\Rightarrow x^{2}=a b$.
As, b, y, c are in GP
$\Rightarrow y^{2}=b c$
Considering $\mathrm{x}^{2}, \mathrm{~b}^{2}, \mathrm{y}^{2}$
$x^{2}+y^{2}=a b+b c[$ From eqn. (ii) and (iii)]
$=b(a+c)$
$=b(2 b)$ [From eqn. (i)]
$x^{2}+y^{2}=2 b^{2}$
From the above equation we can say that x^{2}, b^{2}, y^{2} are in AP.

Exercise 12F

Q. 1. Find two positive numbers a and b, whose
(i) $\mathrm{AM}=25$ and $\mathrm{GM}=20$
(ii) $A M=10$ and $G M=8$

Answer : (i) $\mathrm{AM}=25$ and $\mathrm{GM}=20$
To find: Two positive numbers a and b
Given: $\mathrm{AM}=25$ and $\mathrm{GM}=20$
Formula used: (i) Arithmetic mean between a and $b=\frac{a+b}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$

Arithmetic mean of two numbers $=\frac{a+b}{2}$

$$
\begin{align*}
& \frac{a+b}{2}=25 \\
& \Rightarrow a+b=50 \\
& \Rightarrow b=50-a \tag{i}
\end{align*}
$$

Geometric mean of two numbers $=\sqrt{a b}$
$\Rightarrow \sqrt{a b}=20$
$\Rightarrow a b=400$

Substituting value of b from eqn. (i)
$a(50-a)=400$
$\Rightarrow 50 \mathrm{a}-\mathrm{a}^{2}=400$
On rearranging
$\Rightarrow \mathrm{a}^{2}-50 \mathrm{a}+400=0$
$\Rightarrow a^{2}-40 a-10 a+400$
$\Rightarrow \mathrm{a}(\mathrm{a}-40)-10(\mathrm{a}-40)=0$
$\Rightarrow(\mathrm{a}-10)(\mathrm{a}-40)=0$
$\Rightarrow \mathrm{a}=10,40$
Substituting, $\mathrm{a}=10$ Or $\mathrm{a}=40$ in eqn. (i)
$b=40$ Or $b=10$
Therefore two numbers are 10 and 40
(ii) $\mathrm{AM}=10$ and $\mathrm{GM}=8$

To find: Two positive numbers a and b
Given: $A M=10$ and $G M=8$
Formula used: (i) Arithmetic mean between a and $b=\frac{a+b}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$

Arithmetic mean of two numbers $=\frac{a+b}{2}$
$\frac{a+b}{2}=10$
$\Rightarrow a+b=20$
$\Rightarrow a=20-b \ldots$ (i)

Geometric mean of two numbers $=\sqrt{a b}$
$\Rightarrow \sqrt{a b}=8$
$\Rightarrow a b=64$
Substituting value of a from eqn. (i)
b $(20-b)=64$
$\Rightarrow 20 \mathrm{~b}-\mathrm{b}^{2}=64$
On rearranging
$\Rightarrow \mathrm{b}^{2}-20 \mathrm{~b}+64=0$
$\Rightarrow b^{2}-16 b-4 b+64$
$\Rightarrow b(b-16)-4(b-16)=0$
$\Rightarrow(b-16)(b-4)=0$
$\Rightarrow b=16,4$
Substituting, $b=16$ Or $b=4$ in eqn. (i)
$\mathrm{a}=4 \mathrm{Orb}=16$
Therefore two numbers are 16 and 4

Q. 2. Find the GM between the numbers

(i) 5 and 125
(ii) 1 and $\frac{9}{16}$
(iii) 0.15 and 0.0015
(iv) $\mathbf{- 8}$ and -2
(v) -6.3 and -2.8
(vi) $\mathrm{ad} \mathrm{ab}^{3}$

Answer: (i) 5 and 125
To find: Geometric Mean
Given: The numbers are 5 and 125

Formula used: (i) Geometric mean between a and $b=\sqrt{a b}$
Geometric mean of two numbers $=\sqrt{a b}$
$=\sqrt{5 \times 25}$
$=\sqrt{625}$
$=25$
The geometric mean between 5 and 125 is 25
(ii) 1 and $\frac{9}{16}$

To find: Geometric Mean
Given: The numbers are 1 and $\frac{9}{16}$
Formula used: (i) Geometric mean between a and $b=\sqrt{a b}$
Geometric mean of two numbers $=\sqrt{a b}$
$=\sqrt{1 \times \frac{9}{16}}$
$=\sqrt{\frac{9}{16}}$
$=\frac{3}{4}$
The geometric mean between 1 and $\frac{9}{16}$ is $\frac{3}{4}$.
(iii) 0.15 and 0.0015

To find: Geometric Mean

Given: The numbers are 0.15 and 0.0015
Formula used: (i) Geometric mean between a and $b=\sqrt{a b}$
Geometric mean of two numbers $=\sqrt{a b}$
$=\sqrt{0.15 \times 0.0015}$
$=\sqrt{0.000225}$
$=0.015$
The geometric mean between 0.15 and 0.0015 is 0.015 .
(iv) -8 and -2

To find: Geometric Mean
Given: The numbers are -8 and -2
Formula used: (i) Geometric mean between a and $b=\sqrt{a b}$
Geometric mean of two numbers $=\sqrt{a b}$
$=\sqrt{-8 \times-2}$
$=\sqrt{16}$
$= \pm 4$
Mean is a number which has to fall between two numbers.
Therefore we will take -4 as our answer as +4 doesn't lie between -8 and -2
The geometric mean between -8 and -2 is -4 .
(v) -6.3 and -2.8

To find: Geometric Mean

Given: The numbers are -6.3 and -2.8
Formula used: (i) Geometric mean between a and $b=\sqrt{a b}$
Geometric mean of two numbers $=\sqrt{a b}$
$=\sqrt{-6.3 \times-2.8}$
$=\sqrt{17.64}$
$= \pm 4.2$
Mean is a number which has to fall between two numbers.
Therefore we will take -4.2 as our answer as +4.2 doesn't lie between -6.3 and -2.8
The geometric mean between -6.3 and -2.8 is -4.2 .
(vi) $a^{3} b$ and $a b^{3}$

To find: Geometric Mean
Given: The numbers are $a^{3} b$ and $a b^{3}$
Formula used: (i) Geometric mean between a and $b=\sqrt{a b}$
Geometric mean of two numbers $=\sqrt{a b}$

$$
\begin{aligned}
& =\sqrt{a^{3} b \times a b^{3}} \\
& =\sqrt{a^{4} b^{4}} \\
& =a^{2} b^{2}
\end{aligned}
$$

The geometric mean between $a^{3} b$ and $a b^{3}$ is $a^{2} b^{2}$.
Q. 13. Insert two geometric means between 9 and 243.

Answer : To find: Two geometric Mean

Given: The numbers are 9 and 243

Formula used: (i) $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$, where n is the number of
geometric mean
Let G_{1} and G_{2} be the three geometric mean
Then $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
$\Rightarrow r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
$\Rightarrow r=\left(\frac{243}{9}\right)^{\frac{1}{2+1}}$
$\Rightarrow r=27^{\frac{1}{3}}$
$\Rightarrow r=3$
$\mathrm{G}_{1}=\mathrm{ar}=9 \times 3=27$
$\mathrm{G}_{2}=\mathrm{ar}^{2}=9 \times 3^{2}=9 \times 9=81$
Two geometric mean between 9 and 243 are 27 and 81 .
Q. 4. Insert three geometric means between $\frac{1}{3}$ and 432 .

Answer : To find: Three geometric Mean
Given: The numbers $\frac{\mathbf{1}}{\mathbf{3}}$ and 432
Formula used: (i) $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$, where n is the number of geometric mean

Let G_{1}, G_{2} and G_{3} be the three geometric mean

$$
\text { Then } r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}
$$

$$
\begin{aligned}
& \Rightarrow r=\left(\frac{b}{a}\right)^{\frac{1}{3+1}} \\
& \Rightarrow r=\left(\frac{432}{\left(\frac{1}{3}\right)}\right)^{\frac{1}{2+1}} \\
& \Rightarrow r=\left(\frac{432 \times 3}{1}\right)^{\frac{1}{3+1}} \\
& \Rightarrow r=(1296)^{\frac{1}{4}} \\
& \Rightarrow r=6
\end{aligned}
$$

$$
\mathrm{G}_{1}=\mathrm{ar}=\left(\frac{1}{3}\right)_{\times 6}=2
$$

$$
\mathrm{G}_{2}=\operatorname{ar}^{2}=\left(\frac{1}{3}\right)_{\times 6^{2}}=\left(\frac{1}{3}\right)_{\times 36}=12
$$

$$
\mathrm{G}_{3}=\mathrm{ar}^{3}=\left(\frac{1}{3}\right)_{\times 6^{3}}=\left(\frac{1}{3}\right)_{\times 216}=72
$$

Three geometric mean between ${ }^{\frac{1}{3}}$ and 432 are 2, 12 and 72.

Q. 5. Insert four geometric means between 6 and 192.

Answer : To find: Four geometric Mean
Given: The numbers 6 and 192
Formula used: (i) $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$, where n is the number of geometric mean

Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ and G_{4} be the three geometric mean

Then $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

$$
\begin{aligned}
& \Rightarrow r=\left(\frac{b}{a}\right)^{\frac{1}{4+1}} \\
& \Rightarrow r=\left(\frac{192}{6}\right)^{\frac{1}{4+1}} \\
& \Rightarrow r=(32)^{\frac{1}{5}} \\
& \Rightarrow r=2 \\
& G_{1}=a r=6 \times 2=12 \\
& G_{2}=a r^{2}=6 \times 2^{2}=24 \\
& G_{3}=a r^{3}=6 \times 2^{3}=48 \\
& G_{4}=a r^{4}=6 \times 2^{4}=96
\end{aligned}
$$

Four geometric mean between 6 and 192 are 12, 24, 48 and 96.
Q. 6. The AM between two positive numbers a and $b(a>b)$ is twice their GM. Prove that a:b $=(2+\sqrt{3}):(2-\sqrt{3})$.

Answer : To prove: Prove that $\mathrm{a}: \mathrm{b}=(2+\sqrt{3}):(2-\sqrt{3})$
Given: Arithmetic mean is twice of Geometric mean.
Formula used: (i) Arithmetic mean between a and $b=\frac{a+b}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$
$A M=2(G M)$
$\frac{a+b}{2}=2(\sqrt{a b})$
$\Rightarrow a+b=4(\sqrt{a b})$
Squaring both side
$\Rightarrow(a+b)^{2}=16 a b \ldots$ (i)
We know that $(a-b)^{2}=(a+b)^{2}-4 a b$
From eqn. (i)
$\Rightarrow(a-b)^{2}=16 a b-4 a b$
$\Rightarrow(\mathrm{a}-\mathrm{b})^{2}=12 \mathrm{ab} \ldots$ (ii)
Dividing eqn. (i) and (ii)
$\frac{(a+b)^{2}}{(a-b)^{2}}=\frac{16 a b}{12 a b}$
$\Rightarrow\left(\frac{a+b}{a-b}\right)^{2}=\frac{16}{12}$
Taking square root both side
$\Rightarrow \frac{a+b}{a-b}=\frac{4}{2 \sqrt{3}}$
$\Rightarrow \frac{a+b}{a-b}=\frac{2}{\sqrt{3}}$
Applying componendo and dividend
$\Rightarrow \frac{a+b+a-b}{a+b-a+b}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$
$\Rightarrow \frac{2 \mathrm{a}}{2 \mathrm{~b}}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$
$\Rightarrow \frac{a}{b}=\frac{2+\sqrt{3}}{2-\sqrt{3}}$

Hence Proved

Q. 7. If a, b, c are in AP, x is the GM between a and $b ; y$ is the GM between b and c; then show that b^{2} is the AM between x^{2} and y^{2}.

Answer : To prove: b^{2} is the AM between x^{2} and y^{2}.
Given: (i) a, b, c are in AP
(ii) x is the GM between a and b
(iii) y is the GM between b and c

Formula used: (i) Arithmetic mean between a and $\mathrm{b}=\frac{\mathrm{a}+\mathrm{b}}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$

As a, b, c are in A.P.
$\Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \ldots$ (i)
As x is the GM between a and b
$\Rightarrow x=(\sqrt{a b})$
$\Rightarrow x^{2}=a b \ldots$ (ii)
As y is the GM between b and c
$\Rightarrow \mathrm{y}=(\sqrt{\mathrm{bc}})$
$\Rightarrow \mathrm{y}^{2}=\mathrm{bc} .$.
Arithmetic mean of x^{2} and y^{2} is $\left(\frac{\mathrm{x}^{2}+\mathrm{y}^{2}}{2}\right)$
Substituting the value from (ii) and (iii)
$\left(\frac{x^{2}+y^{2}}{2}\right)=\left(\frac{a b+b c}{2}\right)$
$=\frac{b(a+c)}{2}$
Substituting the value from eqn. (i)
$=\frac{\mathrm{b}(2 \mathrm{~b})}{2}$
$=b^{2}$
Hence Proved
Q. 8. Show that the product of n geometric means between a and b is equal to the nth power of the single GM between a and b.

Answer: To prove: Product of n geometric means between a and b is equal to the nth power of the single GM between a and b .

Formula used:(i) Geometric mean between a and $b=\sqrt{a b}$
(ii) Sum of n terms of A.P. $=\frac{(n)(n+1)}{2}$

Let the n geometric means between and b be $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \ldots \mathrm{G}_{\mathrm{n}}$
Hence $a, G_{1}, G_{2}, G_{3}, \ldots G_{n}, b$ are in GP
$\Rightarrow G_{1}=a r, G_{2}=a r^{2}$ and so on \ldots
Now, we have $\mathrm{n}+2$ term
$\Rightarrow \mathrm{b}=\mathrm{ar} \mathrm{r}^{\mathrm{n}+2-1}$
$\Rightarrow \mathrm{b}=\mathrm{ar}^{\mathrm{n}+1}$
$\Rightarrow r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
The product of n geometric means is $G_{1 \times} G_{2 \times} G_{3} \times \ldots G_{n}$
$=a r \times a r^{2} \times a r^{3} \times \ldots a r^{n}$
$=a^{n} \times r^{(1+2+3 \ldots+n)}$
$=a^{n} \times r^{(n)\left(\frac{n+1}{2}\right)}\left[\right.$ Sum of n terms of A.P. $\left.=\frac{(n)(n+1)}{2}\right]$
Substituting the value of r from eqn. (i)

$$
\begin{aligned}
& =a^{n} \times\left(\frac{b}{a}\right)^{\left(\frac{1}{n+1}\right)(n)\left(\frac{n+1}{2}\right)} \\
& =a^{n} \times\left(\frac{b}{a}\right)^{\left(\frac{n}{2}\right)} \\
& =a^{n} \times a^{\frac{b^{\frac{n}{2}}}{\frac{n}{2}}} \\
& =a^{\frac{n}{2}} \times b^{\frac{n}{2}} \\
& =(a b)^{\frac{n}{2}} \\
& =(\sqrt{a b})^{n} \ldots \text { (ii) }
\end{aligned}
$$

Single geometric mean between a and $b=\sqrt{a b}$
$n^{\text {th }}$ power of single geometric mean between a and $b=(\sqrt{a b})^{n}$
Hence Proved
Q. 9. If $A M$ and $G M$ of the roots of a quadratic equation are 10 and 8 respectively then obtain the quadratic equation.

Answer : To find: The quadratic equation.
Given: (i) AM of roots of quadratic equation is 10
(ii) GM of roots of quadratic equation is 8

Formula used: (i) Arithmetic mean between a and $b=\frac{a+b}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$

Let the roots be p and q
Arithmetic mean of roots p and $q=\frac{p+q}{2}=10$
$\Rightarrow \frac{p+q}{2}=10$
$\Rightarrow p+q=20=$ sum of roots \ldots (i)
Geometric mean of roots p and $q=\sqrt{p q}=8$
$\Rightarrow p q=64=$ product of roots
Quadratic equation $=x^{2}-($ sum of roots $) x+($ product of roots $)$
From equation (i) and (ii)
Quadratic equation $=x^{2}-(20) x+(64)$
$=x^{2}-20 x+64$
$x^{2}-20 x+64$

Exercise 12G

Q. 1. Find the sum of each of the following infinite series:
$8+4 \sqrt{2}+4+2 \sqrt{2}+\ldots \ldots \infty$
Answer : It is Infinite Geometric Series.
Here, $a=8$,
$r=\frac{4 \sqrt{2}}{8}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$
The formula used: Sum of an infinite Geometric series $=\frac{a}{1-r}$
\therefore Sum $=\frac{8}{1-\frac{1}{\sqrt{2}}}=\frac{8 \sqrt{2}}{\sqrt{2}-1}$

Sum $=\frac{8 \sqrt{2}}{\sqrt{2}-1}$
Q. 2. Find the sum of each of the following infinite series :
$6+1.2+0.24+\ldots . . \infty$
Answer : It is Infinite Geometric Series.
Here, $a=6$,
$r=\frac{1.2}{6}=\frac{2}{10}=0.2$
The formula used: Sum of an infinite Geometric series $=\frac{a}{1-r}$
\therefore Sum $=\frac{6}{1-0.2}=\frac{6}{0.8}=\frac{15}{2}$

Sum $=\frac{15}{2}$
Q. 3. Find the sum of each of the following infinite series :
$\sqrt{2}-\frac{1}{\sqrt{2}}+\frac{1}{2 \sqrt{2}}-\frac{1}{4 \sqrt{2}}+\ldots$.
Answer: It is Infinite Geometric Series
Here, $a=\sqrt{ } 2$
$r=\frac{\frac{-1}{\sqrt{2}}}{\sqrt{2}}=\frac{-1}{2}$
\therefore Sum $=\frac{a}{1-r}=\frac{\sqrt{2}}{1-\frac{-1}{2}}=\frac{\sqrt{2}}{1+\frac{1}{2}}=\frac{2 \sqrt{2}}{3}$

Sum $=\frac{2 \sqrt{2}}{3}$
Q. 4. Find the sum of each of the following infinite series:
$10-9+8.1-\ldots \ldots \infty$
Answer: It is Infinite Geometric Series
Here, $a=10$

$$
\mathrm{r}=\frac{-9}{10}=-0.9
$$

\therefore Sum $=\frac{\mathrm{a}}{1-\mathrm{r}}=\frac{10}{1-(-0.9)}=\frac{10}{1+0.9}=\frac{10}{1.9}=\frac{100}{19}$

$$
\text { Sum }=\frac{100}{19}
$$

Q. 5. Find the sum of each of the following infinite series :

$$
\frac{2}{5}+\frac{3}{5^{2}}+\frac{2}{5^{3}}+\frac{3}{5^{4}}+\ldots \ldots
$$

Answer : This geometric series is the sum of two geometric series:

$$
\frac{2}{5}+\frac{2}{5^{3}}+\frac{2}{5^{5}}+\cdots \infty \& \frac{3}{5^{2}}+\frac{3}{5^{4}}+\frac{4}{5^{6}}+\cdots \infty
$$

Sum of geometric series: $\frac{2}{5}+\frac{2}{5^{3}}+\frac{2}{5^{5}}+\cdots \infty$ Here, $a=\frac{2}{5}$
$r=\frac{\frac{2}{5^{3}}}{\frac{2}{5}}=\frac{1}{5^{2}}=\frac{1}{25}$
\therefore Sum $=\frac{a}{1-r}=\frac{\frac{2}{5}}{1-\frac{1}{25}}=\frac{\frac{2}{5}}{\frac{25-1}{25}}=\frac{2 \times 25}{24 \times 5}=\frac{5}{12}$
Sum of geometric series: $\frac{3}{5^{2}}+\frac{3}{5^{4}}+\frac{4}{5^{6}}+\cdots \infty$
Here, $a=\frac{3}{5^{2}}$
$r=\frac{\frac{3}{5^{4}}}{\frac{3}{5^{2}}}=\frac{1}{5^{2}}=\frac{1}{25}$
$\therefore \operatorname{Sum}=\frac{a}{1-r}=\frac{\frac{3}{5^{2}}}{1-\frac{1}{25}}=\frac{\frac{3}{5^{2}}}{\frac{25-1}{25}}=\frac{3 \times 25}{25 \times 24}=\frac{1}{8}$
\therefore Sum of the given infinite series=sum of both the series $=\frac{5}{12}+\frac{1}{8}=\frac{(5 \times 2)+(1 \times 3)}{24}$
$=\frac{10+3}{24}=\frac{13}{24}$
Sum $=\frac{13}{24}$
Q. 6. Prove that $9^{1 / 3} \times 9^{1 / 9} \times 9^{1 / 27} \times \ldots . . \infty=3$

Answer : L.H.S=9 $9^{1 / 3} \times 9^{1 / 9} \times 9^{1 / 27} \times \ldots . . \infty$
$=9^{(1 / 3)+(1 / 9)+(1 / 27)+\ldots \infty}$
The series in the exponent is an infinite geometric series
Whose, $\mathrm{a}=\frac{1}{3}$
$\mathrm{r}=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1 \times 3}{1 \times 9}=\frac{1}{3}$
\therefore Sum of the series in the exponent $=\frac{a}{1-r}=\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1 \times 3}{3 \times 2}=\frac{1}{2}$
\therefore L.H.S $=9^{1 / 2}$
$=3=$ R.H.S
Hence, Proved that $9^{1 / 3} \times 9^{1 / 9} \times 9^{1 / 27} \times$ \qquad $\infty=3$
Q. 7. Find the rational number whose decimal expansion is given below :
(i) $0 . \overline{3}$ (ii) $0 . \overline{231}$
(iii) $3 . \overline{52}$

Answer : (i) Let, $x=0.3333 \ldots$
$\Rightarrow \mathrm{x}=0.3+0.03+0.003+\ldots$
$\Rightarrow x=3(0.1+0.01+0.001+0.0001+\ldots \infty)$
$\Rightarrow x=3\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\cdots \infty\right)$
This is an infinite geometric series.
Here, $a=1 / 10$ and $r=1 / 10$
$\therefore \operatorname{Sum}=\frac{a}{1-r}=\frac{\frac{1}{10}}{1-\frac{1}{10}}=\frac{1 \times 10}{9 \times 10}=\frac{1}{9}$
$\therefore \mathrm{x}=3 \times \frac{1}{9}=\frac{1}{3}$
$0 . \overline{3}=-$
(ii) Let, $x=0.231231231 \ldots$
$\Rightarrow \mathrm{x}=0.231+0.000231+0.000000231+\ldots \infty$
$\Rightarrow \mathrm{x}=231(0.001+0.000001+0.000000001+\ldots \infty)$
$\Rightarrow x=231\left(\frac{1}{\left(10^{3}\right.}+\frac{1}{10^{6}}+\frac{1}{10^{9}}+\frac{1}{10^{12}}+\ldots \infty\right)$
This is an infinite geometric series.
Here, $\mathrm{a}^{=\frac{1}{10^{3}} \text { and } \mathrm{r}=\frac{1}{10^{3}}}$
$\therefore \operatorname{Sum}=\frac{\mathrm{a}}{1-\mathrm{r}}=\frac{\frac{1}{10^{3}}}{1-\frac{1}{10^{3}}}=\frac{1 \times 1000}{999 \times 1000}=\frac{1}{999}$
$\Rightarrow X=231 \times \frac{1}{999}=\frac{231}{999}$
$0 . \overline{231}{ }^{-} \frac{2399}{999}$
(iii) Let, $x=3.525252552 \ldots$
$\Rightarrow \mathrm{x}=3+0.52+0.0052+0.000052+\ldots \infty$
$\Rightarrow x=3+52(0.01+0.0001+\ldots \infty)$
$\Rightarrow x=3+52\left(\frac{1}{\left(10^{2}\right.}+\frac{1}{10^{4}}+\frac{1}{10^{6}}+\frac{1}{10^{6}}+\ldots \infty\right)$
Here, $\mathrm{a}^{=\frac{1}{10^{2}} \text { and } \mathrm{r}=\frac{1}{10^{2}}}$
\therefore Sum $=\frac{a}{1-r}=\frac{\frac{1}{10^{2}}}{1-\frac{1}{10^{2}}}=\frac{1 \times 100}{99 \times 100}=\frac{1}{99}$
$\Rightarrow \mathrm{X}=3+\left(52 \times \frac{1}{99}\right)=\frac{297+52}{999}=\frac{349}{999}$
$3 . \overline{52}=\frac{349}{999}$
Q. 8. Express the recurring decimal $0.125125125 \ldots=0.125$ as a rational number.

Answer : Let, $x=0.125125125$
Multiplying this equation by 1000 on both the sides so that repetitive terms cancel out and we get:
$1000 x=125.125125125$
Equation (ii)-(i),
$\Rightarrow 1000 x-x=125.125125125-0.125125125=125$
$\Rightarrow 999 x=125$
$\Rightarrow \mathrm{X}=\frac{125}{999}$
$0 . \overline{125}=\frac{125}{999}$
Q. 9. Write the value of $0 . \overline{423}$ in the form of a simple fraction.

Answer : Let, $\mathrm{x}=0.423423423$
Multiplying this equation by 1000 on both the sides so that repetitive terms cancel out and we get:
$1000 x=423.423423423 \ldots \ldots$ (ii)
Equation (ii)-(i),
$\Rightarrow 1000 x-x=423.423423423-0.423423423=423$
$\Rightarrow 999 x=423$
$\Rightarrow X=\frac{423}{999}=\frac{47}{111}$
$0 . \overline{423}=\frac{47}{111}$
Q. 10. Write the value of $2 . \overline{134}$ in the form of a simple fraction.

Answer : Let, $x=2.134134134 \ldots$....(i)
Multiplying this equation by 1000 on both the sides so that repetitive terms cancel out and we get:
$1000 x=2134.134134134 \ldots$...(ii)
Equation (ii)-(i),
$\Rightarrow 1000 x-x=2134.134134134-2.134134134=2132$
$\Rightarrow 999 x=2132$
$\Rightarrow \mathrm{X}=\frac{2132}{999}$
$2 . \overline{134}=\frac{2132}{999}$
Q. 11. The sum of an infinite geometric series is 6 . If its first term is 2 , find its common ratio.

Answer :

Given: $\frac{a}{1-\mathrm{r}}=6, a=2$

$$
\begin{aligned}
& \text { To find:r=? } \\
& \therefore \frac{2}{1-r}=6 \\
& \Rightarrow 1-r=\frac{2}{6}=\frac{1}{3} \\
& \Rightarrow 3(1-r)=1 \\
& \Rightarrow 3-3 r=1 \\
& \Rightarrow 3 r=3-1 \\
& \Rightarrow r=\frac{2}{3}
\end{aligned}
$$

Q. 12. The sum of an infinite geometric series is 20 , and the sum of the squares of these terms is 100 . Find the series.

Answer :

Given: $\frac{a}{1-\mathrm{r}}=20 \& \frac{\mathrm{a}^{2}}{1-\mathrm{r}^{2}}=100$
(Because on squaring both first term a and common ratio r will be squared.)
To find: the series
$a=20(1-r) \ldots$ (i)

$$
\begin{aligned}
& \Rightarrow \frac{a^{2}}{1-r^{2}}=100=\frac{(20 \times(1-r))^{2}}{(1-r)(1+r)} \ldots(\text { from }(i)) \\
& \Rightarrow 100=400 \times \frac{1-r}{1+r} \\
& \Rightarrow 100(1+r)=400(1-r) \\
& \Rightarrow 100+100 r=400-400 r \\
& \Rightarrow 100 r+400 r=400-100 \\
& \Rightarrow 500 r=300 \\
& \Rightarrow 5 r=3 \\
& \Rightarrow r=\frac{3}{5}
\end{aligned}
$$

Put this value of r in equation (i) we get
$a=20\left(1-\frac{3}{5}\right)=\frac{20 \times 2}{5}=8$
\therefore The infinite geometric series is: $8, \frac{24}{5}, \frac{72}{25}, \frac{216}{125}, \frac{648}{625}, \ldots \infty$
Q. 13. The sum of an infinite GP is 57 , and the sum of their cubes is 9747 . Find the GP.

Answer : Let the first term Of G.P. be a, and common ratio be r.
$\frac{a}{\therefore 1-r}=57$
On cubing each term will become,
$a^{3,} a^{3} r^{3}, \ldots$
\therefore This sum $=\frac{a^{a}}{1-r^{3}}=9747 \ldots$
$a=57(1-r)$ put this in equation 2 we get

$$
\begin{aligned}
& \frac{(57 \times(1-r))^{3}}{1-r^{3}}=9747 \\
& \Rightarrow \frac{57^{3} \times(1-r)^{3}}{1-r^{3}}=9747 \\
& \Rightarrow \frac{(1-r) \times(1-r)^{2}}{(1-r)\left(1+r+r^{2}\right)}=\frac{9747}{57 \times 57 \times 57}=\frac{1}{19} \\
& \Rightarrow 19\left(1-2 r+r^{2}\right)=1+r+r^{2} \\
& \Rightarrow 19 r^{2}-r^{2}-38 r-r+19-1=0 \\
& \Rightarrow 18 r^{2}-39 r+18=0 \\
& \Rightarrow 6 r^{2}-13 r+6=0 \\
& \Rightarrow(2 r-3)(3 r-2)=0 \\
& \Rightarrow r=2 / 3,3 / 2
\end{aligned}
$$

But $-1<r<1$
$\Rightarrow r=2 / 3$
Substitute this value of r in equation 1 we get
$a=57 \times\left(1-\frac{2}{3}\right)=19$
Thus the first term of G.P. is 19 , and the common ratio is $2 / 3$
$\therefore G . P=19, \frac{38}{3}, \frac{76}{9}, \ldots$.
$19, \frac{38}{3}, \frac{76}{9}, \ldots$.

Exercise 12H

Q. 1. If the $5^{\text {th }}$ term of a GP is 2 , find the product of its first nine terms.

Answer : Given: $5^{\text {th }}$ term of a GP is 2.
To find: the product of its first nine terms.
First term is denoted by a, the common ratio is denote by r .
$\therefore a r^{4}=2$
We have to find the value of: $a \times a r^{1} \times a r^{2} \times a r^{3} \times \ldots \times a r^{8}$
$=\mathrm{a}^{9} \mathrm{r}^{1+2+3+4+\ldots+8}$
$=a^{9} r^{36}$
$=\left(a r^{4}\right)^{9}$
$=(2)^{9}$
$=512$
Ans: 512.
Q. 2. If the $(p+q)$ th and $(p-q)$ th terms of a GP are m and n respectively, find its pth term.

Answer : Let,
$t_{p+q}=m=A r^{p+q-1}=A r^{p-1} r^{q}$
And
$t_{p-q}=n=A r^{p-q-1}=A r^{p-1} r^{-q}$
We know that $p^{\text {th }}$ term $=A r^{p-1}$
$\therefore \mathrm{m} \times \mathrm{n}=\mathrm{A}^{2} \mathrm{r}^{2 \mathrm{p}-2}$
$\Rightarrow \mathrm{Ar}^{\mathrm{p}-1}=(\mathrm{mn})^{1 / 2}$
$\Rightarrow \mathrm{p}^{\text {th }}$ term $=(\mathrm{mn})^{1 / 2}$
Ans: $\mathrm{p}^{\text {th }}$ term $=(\mathrm{mn})^{1 / 2}$
Q. 3. If $2^{\text {nd }}, 3^{\text {rd }}$ and $6^{\text {th }}$ terms of an AP are the three consecutive terms of a GP then find the common ratio of the GP.

Answer: We have been given that $2^{\text {nd }}, 3^{\text {rd }}$ and $6^{\text {th }}$ terms of an AP are the three consecutive terms of a GP.

Let the three consecutive terms of the G.P. be a,ar,ar².

Where a is the first consecutive term and r is the common ratio.
$2^{\text {nd }}, 3^{\text {rd }}$ terms of the A.P. are a and ar respectively as per the question.
\therefore The common difference of the A.P. $=\mathrm{ar}-\mathrm{a}$
And the sixth term of the A.P. $=a r^{2}$

Since the second term is a and the sixth term is $a^{2}(\ln A . P$.
We use the formula:t $=a+(n-1) d$
$\therefore \mathrm{ar}^{2}=\mathrm{a}+4(\mathrm{ar}-\mathrm{a}) \ldots$ (the difference between $2^{\text {nd }}$ and $6^{\text {th }}$ term is $4(\mathrm{ar}-\mathrm{a})$)
$\Rightarrow a r^{2}=a+4 a r-4 a$
$\Rightarrow a r^{2}+3 a-4 a r=0$
$\Rightarrow \mathrm{a}\left(\mathrm{r}^{2}-4 \mathrm{r}+3\right)=0$
$\Rightarrow \mathrm{a}(\mathrm{r}-1)(\mathrm{r}-3)=0$
Here, we have 3 possible options:

1) $\mathrm{a}=0$ which is not expected because all the terms of A.P. and G.P. will be 0 .
2) $r=1$, which is also not expected because all th terms would be equal to first term.
$3) r=3$,which is the required answer.
Ans: Common ratio = 3
Q. 4. Write the quadratic equation, the arithmetic and geometric means of whose roots are A and G respectively.

Answer : Let the roots of the required quadratic equation be a and b .
The arithmetic and geometric means of roots are A and G respectively.
$\Rightarrow A=(a+b) / 2 \ldots(i)$

And $G=\sqrt{a b}$
We know that the equation whose roots are given is =
$\mathrm{x}^{2}-(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{ab}=0$
From (i) and (ii) we get:
$\mathrm{x}^{2}-2 \mathrm{~A}+\mathrm{G}^{2}=0$
Thus, $\mathrm{X}^{2}-2 \mathrm{~A}+\mathrm{G}^{2}=0$ is the required quadratic equation.
Ans: $\mathrm{X}^{2}-2 \mathrm{~A}+\mathrm{G}^{2}=0$ is the required quadratic equation.
Q. 5. If a, b, c are in GP and $a^{1 / x}=b^{1 / y}=c^{1 / z}$ then prove that x, y, z are in AP.

Answer : It is given that:
$a^{1 / x}=b^{1 / y}=c^{1 / 2}$
Let $a^{1 / x}=b^{1 / y}=c^{1 / 2}=k$
$\Rightarrow \mathrm{a}^{1 / x}=\mathrm{k}$
$\Rightarrow\left(\mathrm{a}^{1 \times x}\right)^{\mathrm{x}}=\mathrm{k}^{\mathrm{x}} . . .($ Taking power of x on both sides.)
$\Rightarrow \mathrm{a}^{1 / \times \times \mathrm{x}}=\mathrm{k}^{\mathrm{x}}$
$\Rightarrow a=k^{x}$
Similarly $b=k^{y}$
And $\mathrm{c}=\mathrm{k}^{2}$
It is given that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
$\Rightarrow b^{2}=a c$
Substituting values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ calculated above, we get:
$\Rightarrow\left(k^{y}\right)^{2}=k^{x} k^{2}$
$\Rightarrow \mathrm{k}^{2 \mathrm{y}}=\mathrm{k}^{\mathrm{x}+\mathrm{z}}$

Comparing the powers we get,
$2 y=x+z$
Which is the required condition for x, y, z to be in A.P.
Hence, proved that x, y, z, are in A.P.
Q. 6. If a, b, c are in AP and x, y, z are in GP then prove that the value of $x^{b-c} . y^{c-a}$. z^{a-b} is 1 .

Answer: To prove: $x^{b-c} \cdot y^{c-a} \cdot z^{a-b}=1 \ldots$ (i)
It is given that a, b, c are in A.P.
$\Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} .$.
And x, y, z, are in G.P.
$\Rightarrow y^{2}=x z$
$\Rightarrow x=y^{2} / \mathrm{z}$
Substitute this value of x in equation (i), we get
L.H.S =
$\Rightarrow\left(\frac{y^{2}}{z}\right)^{b-c} \times y^{c-a} \times z^{a-b}$
$\Rightarrow \mathrm{y}^{2(\mathrm{~b}-\mathrm{c})+\mathrm{c}-\mathrm{a}} \cdot \mathrm{z}^{\mathrm{a}-\mathrm{b}-(\mathrm{b}-\mathrm{c})}$
$\Rightarrow y^{2 b-2 c+c-a} \cdot z^{a+c-b-b}$
$\Rightarrow y^{2 b-c-a} \cdot z^{a+c-2 b}$
$\Rightarrow y^{0} \cdot z^{0} \ldots$ (Using equation (i))
$=1$ = R.H.S
Hence, proved that. If a, b, c are in AP and x, y, z are in GP then $x^{b-c} \cdot y^{c-a} \cdot z^{a-b}=1$
Q. 7. Prove that $\left(1-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+\frac{1}{3^{4}} \ldots \infty\right)=\frac{3}{4}$

Answer : It is Infinite Geometric Series.
Here, $a=1$,
$r=\frac{\frac{-1}{3}}{1}=\frac{-1}{3}$
Formula used: Sum of an infinite Geometric series $=\frac{a}{1-r}$

$$
\therefore \text { Sum }=\frac{1}{1-\frac{-1}{3}}=\frac{1 \times 3}{3+1}=\frac{3}{4}=\text { R.H.S. }
$$

Hence, Proved that $\left(1-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+\frac{1}{3^{4}} \ldots \infty\right)=\frac{3}{4}$

Q. 8. Express $0 . \overline{123}$ as a rational number.

Answer : Let, $x=0.123123123 \ldots$
$\Rightarrow x=0.123+0.000123+0.000000123+\ldots \infty$
$\Rightarrow x=123(0.001+0.000001+0.000000001+\ldots \infty)$
$\Rightarrow x=123\left(\frac{1}{10^{3}}+\frac{1}{10^{6}}+\frac{1}{10^{9}}+\frac{1}{10^{12}}+\ldots \infty\right)$
This is an infinite geometric series.
Here, $\mathrm{a}=\frac{1}{10^{3}}$ and $\mathrm{r}=\frac{1}{10^{3}}$
$\therefore \operatorname{Sum}=\frac{a}{1-r}=\frac{\frac{1}{10^{3}}}{1-\frac{1}{10^{3}}}=\frac{1 \times 1000}{999 \times 1000}=\frac{1}{999}$
$\Rightarrow \mathrm{X}=123 \times \frac{1}{999}=\frac{123}{999}$
Ans: $0 . \overline{123}=\frac{123}{999}$
Q. 9. Express $0 . \overline{6}$ as a rational number.

Answer : Let, $\mathrm{x}=0.6666 \ldots$
$\Rightarrow \mathrm{x}=0.6+0.06+0.006+\ldots$
$\Rightarrow x=6(0.1+0.01+0.001+0.0001+\ldots \infty)$
$\Rightarrow x=6\left(\frac{1}{(10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\ldots \infty\right)$
This is an infinite geometric series.
Here, $a=1 / 10$ and $r=1 / 10$
\therefore Sum $=\frac{a}{1-r}=\frac{\frac{1}{10}}{1-\frac{1}{10}}=\frac{1 \times 10}{9 \times 10}=\frac{1}{9}$
$\therefore \mathrm{x}=6 \times \frac{1}{9}=\frac{6}{9}=\frac{2}{3}$

Ans: $0 . \overline{6}=\underline{2}$
Q. 10. Express $0 . \overline{68}$ as a rational number.

Answer : Let, $\mathrm{x}=0.68686868 \ldots$
$\Rightarrow \mathrm{x}=0.68+0.0068+0.000068+\ldots \infty$
$\Rightarrow x=68(0.01+0.0001+\ldots \infty)$
$\Rightarrow \mathrm{x}=68\left(\frac{1}{\left(10^{2}\right.}+\frac{1}{10^{4}}+\frac{1}{10^{6}}+\frac{1}{10^{8}}+\ldots \infty\right)$
Here, $\mathrm{a}=\frac{1}{10^{2}}$ and $\mathrm{r}=\frac{1}{10^{2}}$
\therefore Sum $=\frac{a}{1-r}=\frac{\frac{1}{10^{2}}}{1-\frac{1}{10^{2}}}=\frac{1 \times 100}{99 \times 100}=\frac{1}{99}$
$\Rightarrow \mathrm{X}=\left(68 \times \frac{1}{99}\right)=\frac{68}{999}=\frac{68}{999}$
Ans: $0 . \overline{68}=\frac{68}{999}$
Q. 11. The second term of a GP is 24 and its fifth term is 81 . Find the sum of its first five terms.

Answer : Given: second term of a GP is 24 and its fifth term is 81 .
To find: sum of first five terms of the G.P.
$a r=24 \& a r^{4}=81$
dividing these two terms we get:
$\Rightarrow \frac{\mathrm{ar}^{4}}{\mathrm{ar}}=\frac{81}{24}$
$\Rightarrow r^{3}=\frac{27}{8}$
Taking cube root on both the sides we get,

$$
\Rightarrow r=\frac{3}{2}
$$

Substituting this value of r in ar = 24 we get

$$
a=24 /(3 / 2)=(24 \times 2) / 3=16
$$

\therefore Sum of first Five terms of a G.P. $=a\left(r^{n}-1\right) /(r-1)$

$$
\begin{aligned}
& 16 \times \frac{\left(\frac{3}{2}\right)^{5}-1}{\frac{3}{2}-1}=16 \times \frac{\frac{243}{32}-1}{\frac{3}{2}-1} \\
= & 16 \times \frac{242 \times 2}{32 \times 1}=242
\end{aligned}
$$

Ans: 242
Q. 12. The ratio of the sum of first three terms is to that of first six terms of a GP is $125: 152$. Find the common ratio.

Answer : The first three terms of a G.P. are:a,ar,ar ${ }^{2}$
The first six terms of a G.P. are:a, $a r, a r^{2}, \mathrm{ar}^{3}, \mathrm{ar}^{4}, \mathrm{ar}^{5}$
It is given that the ratio of the sum of first three terms is to that of first six terms of a GP is $125: 152$.

$$
\begin{aligned}
& \Rightarrow a+a r+a r^{2}=125 x \& a+a r+a r^{2}+a r^{3}+a r^{4}+a r^{5}=152 x \\
& \Rightarrow a+a r+a r^{2}+r^{3}\left(a+a r+a r^{2}\right)=152 x \\
& \Rightarrow 125 x+r^{3}(125 x)=152 x \\
& \Rightarrow r^{3}(125 x)=152 x-125 x=27 x \\
& \Rightarrow r^{3}=\frac{27}{125}=\left(\frac{3}{5}\right)^{3} \\
& \Rightarrow r=3 / 5
\end{aligned}
$$

Ans: common ratio $=\frac{3}{5}$
Q. 13. The sum of first three terms of a GP is $\frac{39}{10}$ and their product is 1 . Find the common ratio and these three terms.

Answer : Let the first three terms of G.P. be $\frac{\frac{a}{r}}{} \quad \mathrm{a}, \mathrm{ar}$
It is given that $\frac{a}{r} \times a \times a r=1$
$\Rightarrow a^{3}=1$
$\Rightarrow \mathrm{a}=1$
And

$$
\begin{aligned}
& \frac{a}{r}+a+a r=\frac{39}{10} \\
& \Rightarrow a\left(\frac{1}{r}+1+r\right)=\frac{39}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{1}{r}+1+r\right)=\frac{39}{10} \ldots(a=1) \\
& \Rightarrow\left(\frac{1}{r}+r\right)=\frac{39}{10}-1=\frac{29}{10} \\
& \Rightarrow 10\left(1+r^{2}\right)=29 r \\
& \Rightarrow 10 r^{2}-29 r+10=0 \\
& \Rightarrow 10 r^{2}-25 r-4 r+10=0 \\
& \Rightarrow 5 r(2 r-5)-2(2 r-5)=0 \\
& \Rightarrow(2 r-5)(5 r-2)=0 \\
& \Rightarrow r=\frac{5}{2}, \frac{2}{5}
\end{aligned}
$$

Therefore the first three terms are:
i) If $r=\frac{5}{2}$ then
$\frac{2}{5}, 1, \frac{5}{2}$
ii) If $r=\frac{2}{5}$ then
$\frac{5}{2}, 1, \frac{2}{5}$
Ans: Common ratio $r=\frac{5}{2}, \frac{2}{5}$ and the first three terms are:
i) if $r=\frac{5}{2}$ then
$\frac{2}{5}, 1, \frac{5}{2}$
ii) If $r=\frac{2}{5}$ then
$\frac{5}{2}, 1, \frac{2}{5}$

