RD SHARMA
Solutions
Class 8 Maths
Chapter 2
Ex 2, 1

Question 1. Express each of the following as a rational number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$:.

(i)
$$2^{-3}$$

(ii)
$$(-4)^{-2}$$

(iii)
$$\frac{1}{3^{-2}}$$

(iv)
$$(\frac{1}{2})^{-5}$$

(v)
$$(\frac{2}{3})^{-2}$$

Answer:

(i)
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

(ii)
$$(-4)^{-2} = \frac{1}{(-4)^2} = \frac{1}{16}$$

(iii)
$$\frac{1}{3^{-2}} = 3^2 = 9$$

(iv)
$$\left(\frac{1}{2}\right)^{-5} = 2^5 = 32$$

(v)
$$\left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

Question 2. Find the values of the following:

(i)
$$3^{-1} + 4^{-1}$$

(ii)
$$(3^0 + 4^{-1}) \times 2^2$$

(iii)
$$(3^{-1} + 4^{-1} + 5^{-1})^0$$

(iv)
$$\left(\left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1}\right)^{-1}$$

Answer:

(i) We know from the property of powers that for every natural number a, $a^{-1} = \frac{1}{a}$, Then:

$$3^{-1} + 4^{-1} = \frac{1}{3} + \frac{1}{4}$$
$$= \frac{4+3}{12}$$

$$=\frac{7}{12}$$

(ii) We know from the property of powers that for every natural number a, $a^{-1} = \frac{1}{a}$

Moreover, a^0 is 1 for every natural number a not equal to 0. Then,

$$(3^0 + 4^{-1}) \times 2^2$$

$$=\left(1+\frac{1}{4}\right)\times4$$

$$=\frac{5}{4}\times4$$

(iii) We know from the property of powers that for every natural number a, $a^{-1} = \frac{1}{a}$

Moreover, a^0 is 1 for every natural number a not equal to 0. Then,

$$(3^{-1} + 4^{-1} + 5^{-1})^0 = 1$$
 —> (Ignore the expression inside the bracket and use $a^0 = 1$)

(iv) We know from the property of powers that for every natural number a, $a^{-1}=\frac{1}{a}$

Then

$$\left(\left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1}\right)^{-1} = (3-4)^{-1}$$

$$=(-1)^{-1}$$

Question 3. Find the value of each of the following:

(i)
$$\left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{3}\right)^{-1} + \left(\frac{1}{4}\right)^{-1}$$

(ii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$$

(iii)
$$(2^{-1} \times 4^{-4}) \div 2^{-2}$$

(iv)
$$(5^{-1} \times 2^{-1}) \div 6^{-1}$$

Answer

(i)
$$\left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{3}\right)^{-1} + \left(\frac{1}{4}\right)^{-1}$$

$$= \frac{1}{\frac{1}{2}} + \frac{1}{\frac{1}{3}} + \frac{1}{\frac{1}{4}}$$

$$=2+3+4=12$$

(ii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$$

$$= \frac{1}{\left(\frac{1}{2}\right)^{2}} + \frac{1}{\left(\frac{1}{3}\right)^{2}} + \frac{1}{\left(\frac{1}{4}\right)^{2}}$$

$$= \frac{1}{\frac{1}{4}} + \frac{1}{\frac{1}{9}} + \frac{1}{\frac{1}{16}}$$

$$=4+9+16=29$$

(iii)
$$(2^{-1} \times 4^{-4}) \div 2^{-2}$$

$$=\frac{1}{2}\times\frac{1}{4}\div\frac{1}{2^2}$$

$$= \frac{1}{8} \times 4 = \frac{1}{2}$$

(iv)
$$(5^{-1} \times 2^{-1}) \div 6^{-1}$$

$$= \left(\frac{1}{5} \times \frac{1}{2}\right) \div \frac{1}{6}$$

$$=\frac{1}{10}\times 6=\frac{3}{5}$$

Question 4. Simplify:

(i)
$$(4^{-1} \times 3^{-1})^2$$

(ii)
$$(5^{-1} \div 6^{-1})^3$$

(iii)
$$(2^{-1} + 3^{-1})^{-1}$$

(iv)
$$(3^{-1} + 4^{-1})^{-1} \times 5^{-1}$$

Answer:

(i)
$$(4^{-1} \times 3^{-1})^2$$

$$= \left(\frac{1}{4} \times \frac{1}{3}\right)^2$$

$$=\left(\frac{1}{12}\right)^2$$

$$=\left(\frac{1^2}{12^2}\right)=\left(\frac{1}{24}\right)$$

(ii)
$$(5^{-1} \div 6^{-1})^3$$

$$= \left(\frac{1}{5} \div \frac{1}{6}\right)^3$$

$$= \left(\frac{1}{5} \times 6\right)^3$$

$$= \left(\frac{6}{5}\right)^3 = \frac{216}{125}$$

(iii)
$$(2^{-1} + 3^{-1})^{-1}$$

$$=\left(\frac{1}{2}+\frac{1}{3}\right)^{-1}$$

$$= \left(\frac{5}{6}\right)^{-1}$$

$$=\left(\frac{1}{\frac{5}{6}}\right)=\frac{6}{5}$$

(iv)
$$(3^{-1} + 4^{-1})^{-1} \times 5^{-1}$$

$$= \left(\frac{1}{3} \times \frac{1}{4}\right)^{-1} \times \frac{1}{5}$$

$$=\left(\frac{1}{12}\right)^{-1}\times\frac{1}{5}=\frac{12}{5}$$

Question 5. Simplify:

(i)
$$(3^2 + 2^2) \times (\frac{1}{2})^3$$

(ii)
$$(3^2-2^2) \times (\frac{2}{3})^{-3}$$

(iii)
$$\left(\left(\frac{1}{3}^{-3}\right) - \left(\frac{1}{2}\right)^{-3}\right) \div \left(\frac{1}{4}\right)^{-3}$$

(iv)
$$(2^2 + 3^2 - 4^2) \div (\frac{3}{2})^2$$

(i)
$$(3^2 + 2^2) \times (\frac{1}{2})^3$$

$$=(9+4)\times\frac{1}{8}=\frac{13}{8}$$

(ii)
$$(3^2-2^2) \times (\frac{2}{3})^{-3}$$

$$=(9-4)\times\frac{1}{(2/3)^3}$$

$$= 5 \times \frac{1}{(8/27)} = \frac{135}{8}$$

(iii)
$$\left(\left(\frac{1}{3}^{-3}\right) - \left(\frac{1}{2}\right)^{-3}\right) \div \left(\frac{1}{4}\right)^{-3}$$

$$=(3^3-2^3)\div 4^3$$

$$=(27-8) \div 64$$

$$=19 \times \frac{1}{64} = \frac{19}{64}$$

(iv)
$$(2^2 + 3^2 - 4^2) \div (\frac{3}{2})^2$$

$$=(4+9-16)\div(\frac{9}{4})$$

$$=-3\times\frac{4}{9}=-\frac{4}{3}$$

Question 6. By what number should 5^{-1} be multiplies so that the product may be equal to -7^{-1} ?

Using the property $a^{-1} = \frac{1}{a}$ for every natural number a, we have $5^{-1} = \frac{1}{5}$ and $(-7)^{-1} = -\frac{1}{7}$. We have to find a number x such that

$$\frac{1}{5} \times X = \frac{-1}{7}$$

 $\frac{1}{5} \times X = \frac{-1}{7}$ Multiply bith sides by 5, we get

$$X = \frac{-5}{7}$$

Question 7. By what number should $(\frac{1}{2})^{-1}$ be multiplies so that the product may be equal to $(-\frac{4}{7})^{-1}$?

Answer:

Using the property $a^{-1} = \frac{1}{a}$ for every natural number a, we have $\left(\frac{1}{2}\right)^{-1} = 2$ and $\left(\frac{-4}{7}\right)^{-1} = \frac{-7}{4}$. We have to find the number x such that

$$2x = \frac{-7}{4}$$

 $2x = \frac{-7}{4}$ Dividing both sides by 2, we get

$$X = \frac{-7}{8}$$

Hence, the required number is $\frac{-7}{8}$

Question 8. By what number should $(-15)^{-1}$ be multiplies so that the product may be equal to $(-5)^{-1}$

Using the property $a^{-1} = \frac{1}{a}$ for every natural number a, we have $(-15)^{-1} = -\frac{1}{15}$ and $(-5)^{-1} = -\frac{1}{5}$. We have to find a number x such that

$$\frac{-\frac{1}{15}}{\frac{x}{1}} = \frac{-1}{5}$$
Or $\frac{1}{15} \times \frac{1}{x} = -\frac{-1}{5}$

Or
$$X = \frac{1}{3}$$

Hence, $(-15)^{-1}$ should be divided by $\frac{1}{3}$ to obtain $(-5)^{-1}$.