RD SHARMA
Solutions
Class 8 Maths
Chapter 4
Ex 4.2

Q1. Find the cubes of:

$$(i) - 11$$
 $(ii) - 12$ $(iii) - 21$

Answer:

(i) Cube of -11 is given as: $(-11)^3 = -11 \times -11 \times -11 = -1331$

Thus, the cube of 11 is (-1331).

(ii) Cube of -12 is given as: $(-12)^3 = -12 \times -12 \times -12 = -1728$

Thus, the cube of -12 is (-1728).

(iii) Cube of – 21 is given as:

$$(-21)^3 = -21 \times -21 \times -21 = -9261$$

Thus the cube of -21 is (-9261).

Q2. Which of the following numbers are cubes of negative integers?

- (i) 64
- (ii) 1056
- (iii) 2197
- (iv) 2744
- (v) 42875

Answer:

In order to check if a negative number is a perfect cube, first check if the corresponding positive integer is a perfect cube. Also, for any positive integer m, $-m^3$ is the cube of -m.

(i) On factorizing 64 into prime factors, we get:

$$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

On grouping the factors in triples of equal factors, we get:

$$64 = \{2 \times 2 \times 2\} \times \{2 \times 2 \times 2\}$$

It is evident that the prime factors of 64 can be grouped into triples of equal factors and no factor is left over. Therefore, 64 is a perfect cube. This implies that -64 is also a perfect cube.

Now, collect one factor from each triplet and multiply, we get: 2 x 2=4

This implies that 64 is a cube of 4. Thus, -64 is the cube of -4.

(ii) On factorising 1056 into prime factors, we get:

$$1056 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 11$$

On grouping the factors in triples of equal factors, we get:

$$1056 = \{2 \times 2 \times 2\} \times 2 \times 2 \times 3 \times 11$$

It is evident that the prime factors of 1056 cannot be grouped into triples of equal factors such that no factor is left over.

Therefore, 1056 is not a perfect cube. This implies that – 1056 is not a perfect cube as well.

(iii) On factorising 2197 into prime factors, we get:

On grouping the factors in triples of equal factors, we get:

$$2197 = \{13 \times 13 \times 13\}$$

It is evident that the prime factors of 2197 can be grouped into triples of equal factors and no factor is left over. Therefore, 2197 is a perfect cube. This implies that – 2197 is also a perfect cube.

Now, collect one factor from each triplet and multiply, we get 13. This implies that 2197 is a cube of 13. Thus, -2197 is the cube of -13.

(iv) On factorizing 2744 into prime factors, we get:

$$2744 = 2 \times 2 \times 2 \times 7 \times 7 \times 7$$

On grouping the factors in triples of equal factors, we get: $2744 = \{2 \times 2 \times 2\} \times \{7 \times 7 \times 7\}$

It is evident that the prime factors of 2744 can be grouped into triples of equal factors and no factor is left over. Therefore, 2744 is a perfect cube. This implies that – 2744 is also a perfect cube.

Now, collect one factor from each triplet and multiply, we get:

$$2 \times 7 = 14$$

This implies that 2744 is a cube of 14.

Thus, -2744 is the cube of -14.

(v) On factorizing 42875 into prime factors, we get:

$$42875 = 5 \times 5 \times 5 \times 7 \times 7 \times 7$$

On grouping the factors in triples of equal factors, we get:

$$42875 = \{5 \times 5 \times 5\} \times \{7 \times 7 \times 7\}$$

It is evident that the prime factors of 42875 can be grouped into triples of equal factors and no factor is left over. Therefore, 42875 is a perfect cube.

This implies that – 42875 is also a perfect cube.

Now, collect one factor from each triplet and multiply, we get: $5 \times 7 = 35$

This implies that 42875 is a cube of 35. Thus, -42875 is the cube of -35.

Q3. Show that the following integers are cubes of negative integers. Also find the integer whose cube is the given integer.

(i) - 5832 (ii) - 2744000

Answer:

In order to check if a negative number is a perfect cube, first check if the corresponding positive integer is a perfect cube. Also, for any positive integer in, $-m^3$ is the cube of -m.

(i) On factorising 5832 into prime factors, we get:

$$5832 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$$

On grouping the factors in triples of equal factors, we get:

$$5832 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$$

It is evident that the prime factors of 5832 can be grouped into triples of equal factors and no factor is left over. Therefore, 5832 is a perfect cube.

This implies that -5832 is also a perfect cube.

Now, collect one factor from each triplet and multiply, we get:

$$2 \times 3 \times 3 = 18$$

This implies that 5832 is a cube of 18.

Thus, -5832 is the cube of -18.

(ii) On factorising 2744000 into prime factors, we get:

On grouping the factors in triples of equal factors, we get:

$$2744000 = \{2 \times 2 \times 2\} \times \{2 \times 2 \times 2\} \times \{5 \times 5 \times 5\} \times \{7 \times 7 \times 7\}$$

It is evident that the prime factors of 2744000 can be grouped into triples of equal factors and no factor is left over. Therefore, 2744000 is a perfect cube. This implies that – 2744000 is also a perfect cube.

Now, collect one factor from each triplet and multiply, we get: $2 \times 2 \times 5 \times 7 = 140$

This implies that 2744000 is a cube of 140. Thus, -2744000 is the cube of -140.

Q4. Find the cube of:

- (i) $\frac{7}{9}$
- (ii) $-\frac{8}{11}$
- (iii) $\frac{12}{7}$
- (iv) $-\frac{13}{8}$
- (v) $2\frac{2}{5}$
- (vi) $3\frac{1}{4}$
- (vii) 0.3
- (viii) 1.5
- (ix) 0.08
- (x) 2.1

Answer:

$$(i) \left(\frac{m}{n}\right)^3 = \frac{m^3}{n^3}$$

(i)
$$(\frac{m}{n})^3 = \frac{m^3}{n^3}$$

 $(\frac{7}{9})^3 = \frac{7^3}{9^3} = \frac{7 \times 7 \times 7}{9 \times 9 \times 9} = \frac{343}{729}$

$$(ii) \left(-\frac{m}{n}\right)^3 = \frac{-m^3}{3}$$

$$(ii) \left(-\frac{m}{n}\right)^3 = \frac{-m^3}{n^3}$$

$$\left(-\frac{8}{11}\right)^3 = -\frac{8^3}{11^3} = -\left(\frac{8 \times 8 \times 8}{11 \times 11 \times 11}\right) = -\frac{512}{1331}$$

$$(iii) \left(\frac{m}{n}\right)^3 = \frac{m^3}{n^3}$$

(iii)
$$\left(\frac{m}{n}\right)^3 = \frac{m^3}{n^3}$$

 $\left(\frac{12}{7}\right)^3 = \frac{12^3}{7^3} = \left(\frac{12 \times 12 \times 12}{7 \times 7 \times 7}\right) = \frac{1728}{343}$

$$(iv) \left(-\frac{m}{n}\right)^3 = -\frac{m^3}{n^3}$$

(iv)
$$\left(-\frac{m}{n}\right)^3 = -\frac{m^3}{n^3}$$

 $\left(-\frac{13}{8}\right)^3 = \frac{13^3}{8^3} = -\left(\frac{13 \times 13 \times 13}{8 \times 8 \times 8}\right) = -\frac{2197}{512}$

(v) We have:

$$2\frac{2}{5} = \frac{12}{5}$$

Also,
$$\left(\frac{m}{n}\right)^3 = \frac{m^3}{n^3}$$

Also,
$$(\frac{m}{n})^3 = \frac{m^3}{n^3}$$

 $(\frac{12}{5})^3 = \frac{12^3}{5^3} = \frac{12 \times 12 \times 12}{5 \times 5 \times 5} = \frac{1728}{125}$

(vi) We have:

$$\begin{split} 3\frac{1}{4} &= \frac{13}{4} \\ \text{Also,} \left(\frac{m}{n}\right)^3 &= \frac{m^3}{n^3} \\ \left(\frac{13}{4}\right)^3 &= \frac{13^3}{4^3} &= \frac{13 \times 13 \times 13}{4 \times 4 \times 4} &= \frac{2197}{64} \end{split}$$

(vii) We have:

$$0.3 = \frac{3}{10}$$
Also, $(\frac{m}{n})^3 = \frac{m^3}{n^3}$

$$(\frac{3}{10})^3 = \frac{3^3}{10^3} = \frac{3 \times 3 \times 3}{10 \times 10 \times 10} = \frac{27}{1000} = 0.027$$

(viii) We have:

$$\begin{aligned} 1.5 &= \frac{15}{10} \\ \text{Also,} \left(\frac{m}{n}\right)^3 &= \frac{m^3}{n^3} \\ \left(\frac{15}{10}\right)^3 &= \frac{15^3}{10^3} = \frac{15 \times 15 \times 15}{10 \times 10 \times 10} = \frac{3375}{1000} = 3.375 \end{aligned}$$

(ix) We have:

$$0.08 = \frac{8}{100}$$
Also, $(\frac{m}{n})^3 = \frac{m^3}{n^3}$

$$(\frac{8}{100})^3 = \frac{8^2}{100^3} = \frac{8 \times 8 \times 8}{100 \times 100 \times 100} = \frac{512}{1000000} = 0.000512$$

(x) We have:

$$\begin{aligned} 2.1 &= \frac{21}{10} \\ \text{Also,} \left(\frac{m}{n}\right)^3 &= \frac{m^3}{n^3} \\ \left(\frac{21}{10}\right)^3 &= \frac{21^3}{10^3} = \frac{21 \times 21 \times 21}{10 \times 10 \times 10} = \frac{9261}{1000} = 9.261 \end{aligned}$$

Q5. Find which of the following numbers are cubes of rational numbers?

- (i) $\frac{27}{64}$
- (ii) $\frac{125}{128}$

(iii) 0.001331 (iv) 0.04

Answer:

(i) We have:

$$\frac{27}{64} = \frac{3 \times 3 \times 3}{8 \times 8 \times 8} = \frac{3^3}{8^3} = (\frac{3}{8})^3$$
Therefore, $\frac{27}{64}$ is a cube of $\frac{3}{8}$

$$\frac{125}{128} = \frac{5 \times 5 \times 5}{2 \times 2 \times 2 \times 2 \times 2 \times 2} = \frac{5^3}{2^3 \times 2^3 \times 2}$$

 $\frac{125}{128} = \frac{5 \times 5 \times 5}{2 \times 2 \times 2 \times 2 \times 2 \times 2} = \frac{5^3}{2^3 \times 2^3 \times 2}$ It is evident that 128 cannot be grouped into triples of equal factors; Therefore, $\frac{125}{128}$ is not a cube of a rational number.

(iii) We have:

$$0.001331 = \frac{1331}{1000000} = \frac{11 \times 11 \times 11}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5} = \frac{11^3}{(2 \times 2 \times 5 \times 5)^3}$$

(iv) We have:

$$0.04 = \frac{4}{100} = \frac{2 \times 2}{5 \times 5 \times 5 \times 5}$$

It is evident that 4 and 100 could not be grouped into triples of equal factors; therefore, 0.04 is not a cube of rational number.