RD SHARMA Solutions
 Class 8 Maths

Chapter 7

Ex 7.1

Q.1) $2 x^{2}$ and $12 x^{2}$

Soln.:

The numerical coefficients of the given monomials are 2 and 12 .
So, the greatest common factor of 2 and 12 is 2
The common literal appearing in the given monomials is x .
The smallest power of x in the two monomials is 2 .
The monomial of the common literals with the smallest powers is x^{2}.
Hence, the greatest common factor is $2 \mathrm{x}^{2}$.

Q.2) $6 x^{3} y$ and $18 x^{2} y^{3}$

Soln.:
The numerical coefficients of the given monomials are 6 and 18 .
The greatest common factor of 6 and 18 is 6 .
The common literals appearing in the two monomials are x and y .
The smallest power of x in the two monomials is 2 .
The smallest power of y in the two monomials is 1 .
The monomial of the common literals with the smallest powers is $x^{2} y$.
Hence, the greatest common factor is $6 x^{2} y$.

Q.3) $7 x, 21 x^{2}$ and $14 x y^{2}$

Soln.:
The numerical coefficients of the given monomials are 7,21 and 14.
The greatest common factor of 7,21 and 14 is 7 .
The common literal appearing in the three monomials is x .
The smallest power of x in the three monomials is 1 .
The monomial of the common literals with the smallest powers is x .
Hence, the greatest common factor is 7 x .

Q.4) $42 x^{2} y z$ and $63 x^{3} y^{2} z^{3}$

Soln.:
The numerical coefficients of the given monomials are 42 and 63 .
The greatest common factor of 42 and 63 is 21 .
The common literals appearing in the two monomials are x, y and z .
The smallest power of x in the two monomials is 2 .
The smallest power of y in the two monomials is 1 .
The smallest power of z in the two monomials is 1 .
The monomial of the common literals with the smallest powers is $\mathrm{x}^{2} \mathrm{yz}$.
Hence, the greatest common factor is $21 x^{2} y z$.

Soln.:

The numerical coefficients of the given monomials are 12, 6 and 2 .
The greatest common factor of 12,6 and 2 is 2 .
The common literals appearing in the three monomials are a and x .
The smallest power of a in the three monomials is 1 .
The smallest power of x in the three monomials is 2 .
The monomial of common literals with the smallest powers is ax^{2}.
Hence, the greatest common factor is $2 \mathrm{ax}^{2}$.

Q.6) $9 x^{2}, 15 x^{2} y^{3}, 6 x y^{2}$ and $21 x^{2} y^{2}$

Soln.:
The numerical coefficients of the given monomials are 9, 15, 6 and 21 .
The greatest common factor of $9,15,6$ and 21 is 3 .
The common literal appearing in the three monomials is x .
The smallest power of x in the four monomials is 1 .
The monomial of common literals with the smallest powers is x .
Hence, the greatest common factor is 3 x .
Q.7) $4 a^{2} b^{3},-12 a^{3} b, 18 a^{4} b^{3}$

Soln.:
The numerical coefficients of the given monomials are 4, -12 and 18 .
The greatest common factor of 4. -12 and 18 is 2 .
The common literals appearing in the three monomials are a and b .
The smallest power of a in the three monomials is 2 .
The smallest power of b in the three monomials is 1 .
The monomial of the common literals with the smallest powers is $\mathrm{a}^{2} \mathrm{~b}$.
Hence, the greatest common factor is $2 a^{2} b$.
Q.8) $6 x^{2} y^{2}, 9 x y^{3}, 3 x^{3} y^{2}$

Soln.:
The numerical coefficients of the given monomials are 6,9 and 3 .
The greatest common factor of 6,9 and 3 is 3 .
The common literals appearing in the three monomials are x and y .
The smallest power of x in the three monomials is 1 .
The smallest power of y in the three monomials is 2 .
The monomial of common literals with the smallest powers is $x y^{2}$.
Hence, the greatest common factor is $3 x^{2}$.

Q.9) $a^{2} b^{3}, a^{3} b^{2}$

Soln.:

The numerical literals in the three monomials are a and b .
The smallest power of x in the three monomials is 2 .
The smallest power of y in the three monomials is 2 .
The monomial of common literals with the smallest powers is $a^{2} b^{2}$.

Q.10) $36 a^{2} b^{2} c^{4}, 54 a^{5} c^{2}, 90 a^{4} b^{2} c^{2}$

Soln.:
The numerical coeff. of the given monomials are 36,54 , and 90 .
The greatest common factors of 36,54 , and 90 is 18 .
The common literals appearing in the three monomials are a and c .
The smallest power of a in the three monomials is 2 .
The smallest power of c in the three monomials is 2 .
The monomial of common literals with the smallest powers is $\mathrm{a}^{2} \mathrm{c}^{2}$.
Hence, the greatest common factor is $18 \mathrm{a}^{2} \mathrm{c}^{2}$
Q.11) $\mathrm{x}^{3},-\mathbf{y x}{ }^{2}$

Soln.:
The common literal appearing in the two monomials is X
The smallest power of X in both the monomials is 2 .
Hence, the greatest common factor is x^{2}.
Q.12) $15 a^{3},-45 a^{2},-150 a$

Soln.:
The numerical coeff. of the given monomials are $-15,-45$ and -150
The greatest common factor of $15,-45$ and -150 is 15
The common literal appearing in the three monomials is a.
The smallest power of a in the three monomials is 1 .
Hence, the greatest common factor is 15 a .
Q.13) $2 x^{3} y^{2}, 10 x^{2} y^{3}, 14 x y$

Soln.:
The numerical coeff. of the given monomials are 2, 10 and 14.
The greatest common factor of 2,10 and 14 is 2 .
The common literals appearing in the three monomials are x and y .
The smallest power of X in the three monomials is 1 .
The smallest power of y in the three monomials is 1 .
The monomials of common literals with the smallest power is xy .
Hence, the greatest common factor is $2 x y$

Q.14) $14 x^{3} y^{5}, 10 x^{5} y^{3}, 2 x^{2} y^{2}$

Soln.:
The numerical coeff. of the given monomials are 14,10 and 2.
The greatest common factor of 14,10 and 2 is 2 .
The common literals appearing in the three monomials are x and y .
The smallest power of X in the three monomials is 2 .
The smallest power of Y in the three monomials is 2 .
The monomials of common literals with the smallest powers is $x^{2} y^{2}$.

Hence, the greatest common factor is $2 x^{2} y^{2}$.

Find the greatest common factor of the terms in each of the following expressions :
Q.15) $5 \mathrm{a}^{4}+10 \mathrm{a}^{3}-15 \mathrm{a}^{2}$

Soln.:
The numerical coeff. of the given monomials are $5 a^{4}, 10 a^{3}$, and $15 a^{2}$.
The greatest common factor of $5 a^{4}, 10 a^{3}$, and $15 a^{2}$ is 5 .
The common literal appearing in the three monomials is a.
The smallest power of a in the three monomials is 2 .
The monomials of common literals with the smallest powers is a^{2}.
Hence, the greatest common factor is $5 a^{2}$.
Q.16) $2 x y z+3 x^{2} y+4 y^{2}$

Soln.:
The numerical coeff. of the given monomials are $2 x y z, 3 x^{2} y$ and $4 y^{2}$.
The greatest factor of $2 x y z, 3 x^{2} y$ and $4 y^{2}$ is 1 .
The common literal appearing in the three monomials is y.
The smallest power of y in the three monomials is 1 .
The monomials of common literals with the smallest power is y.
Hence, the greatest common factor is y .
Q.17) $3 a^{2} b^{2}+4 b^{2} c^{2}+12 a^{2} b^{2} c^{2}$.

Soln.:
The numerical coeff. of the given monomials are $3 a^{2} b^{2}, 4 b^{2} c^{2}$ and $12 a^{2} b^{2} c^{2}$.
The greatest common factor of $3 a^{2} b^{2}, 4 b^{2} c^{2}$ and $12 a^{2} b^{2} c^{2}$ is 1 .
The common literal appearing in the three monomials is b.
The smallest power of b in the three monomials is 2 .
The monomials of common literals with the smallest powers is b^{2}.
Hence, the greatest common factor is b^{2}.

