RD SHARMA
Solutions
Class 8 Maths
Chapter 7
Ex 7.2

Factorize the following:

Q.1) 3x - 9

Soln.:

The greatest common factor of the terms 3x and -9 of the expression 3x - 9 is 3.

Now,

3x = 3x

and

-9 = 3(-3)

Hence, the expression 3x - 9 can be factorised as 3(x - 3).

Q.2) $5x - 15x^2$

Soln.:

The greatest common factor of the terms 5x and $15x^2$ of the expression $5x - 15x^2$ is 5x.

Now,

5x = 5x.(1)

and

$$-15x^2 = 5x.(-3x)$$

Hence, the expression $5x - 15x^2$ can be factorised as 5x(1 - 3x)

Q.3) $20a^{12}b^2 - 15a^8b^4$

Soln.:

The greatest common factor of the terms

 $20a^{12}b^2$ and $-15a^8b^4$ of the expression $20a^{12}b^2 - 15a^8b^4$ is $5a^8b^2$.

$$20a^{12}b^2 = 5x4xa^8xa^4xb^2 = 5a^8xb^2x4a^4$$
 and $-15a^8xb^4 = 5x(-3)xa^8xb^2xb^2 = 5a^8b^2x(-3)b^2$

Hence, the expression $20a^{12}b^2 - 15a^8b^4$ can be factorised as $5a^8b^2(4a^4 - 3b^2)$

Q.4)
$$72x^6y^7 - 96x^7y^6$$

Soln.:

The greatest common factor of the terms $72x^6y^7$ and $-96x^7y^6$ of the expression $72x^6y^7 - 96x^7y^{64}$ is $24x^6y^6$

Now,

$$72x^6y^7 = 24x^6y^6 \cdot 3y$$

And,
$$-96x^7y^{64}$$
 is $24x^6y^6 - 4x$

Hence, the expression $72x^6y^7 - 96x^7y^6$ can be factorised as $24x^6y^6$. (3y - 4x).

Q.5) $20x^3 - 40x^2 + 80x$

Soln.:

The greatest common factor of the terms $20x^3$, $-40x^2$ and 80x of the expression $20x^3 - 40x^2 + 80x$ is 20x.

Now,
$$20x^3 = 20x \cdot x^2$$

$$-40x^2 = 20x \cdot -2x$$

And,
$$80x = 20x . 4$$

Hence, the expression $20x^3 - 40x^2 + 80x$ can be factorised as $20x(x^2 - 2x + 4)$

Q.6)
$$2x^3y^2 - 4x^2y^3 + 8xy^4$$

Soln.:

The greatest common factor of the terms $2x^3y^2$, $-4x^2y^3$ and $8xy^4$ of the expression

$$2x^3y^2 - 4x^2y^3 + 8xy^4$$
 is $2xy^2$.

Now,

$$2x^3y^2 = 2xy^2 \cdot x^2$$

$$-4x^2y^3 = 2xy^2 \cdot (-2xy)$$

$$8xy^4 = 2xy^2 \cdot 4y^2$$

Hence, the expression $2x^3y^2 - 4x^2y^3 + 8xy^4$ can be factorised as $2xy^2(x^2 - 2xy + 4y^2)$

Q.7) $10m^3n^2 + 15m^4n - 20m^2n^3$

Soln.:

The greatest common factor of the terms $10^3 n^2$, $15 m^4 n$ and $-20 m^2 n^3$ of the expression

$$10m^3n^2 + 15m^4n - 20m^2n^3$$
 is $5m^2n$.

$$\begin{aligned} &Now,\\ &10m^3n^2=5m^2n\;.\;2mn \end{aligned}$$

$$15m^4n = 5m^2n$$
 . $3m^2$

$$-20m^2n^3 = 5m^2n \cdot -4n^2$$

Hence, $10\text{m}^3\text{n}^2 + 15\text{m}^2\text{n} - 20\text{m}^2\text{n}^3$ can be factorised as $5\text{m}^2\text{n}(2\text{mn} + 3\text{m}^2 - 4\text{n}^2)$

Q.8) $2a^4b^4 - 3a^3b^5 + 4a^2b^5$

Soln.:

The greatest common factor of the terms $2a^4b^4$, $-3a^3b^5$ and $4a^2b^5$ of the expression

$$2a^4b^4 - 3a^3b^5 + 4a^2b^5$$
 is a^2b^5 .

Now.

$$2a^4b^4 = a^2b^5$$
. $2a^2$

$$-3a^3b^5 = a^2b^4$$
. (-3ab)

$$4a^2b^5 = a^2b^4$$
 . 4b

Hence, $2a^4b^4 - 3a^3b^5 + 4a^2b^5$ can be factorised as $a^2b^4(2a^2 - 3ab + 4b)$

Q.9) $28a^2 + 14a^2b^2 - 21a^4$

Soln.:

The greatest common factor of the terms $28a^2$, $14a^2b^2$ and $21a^4$ of the expression

$$28a^2 + 14a^2b^2 - 21a^4$$
 is $7a^2$.

Also, we can write $28a^2 = 7a^2$. 4, $14a^2b^2 = 7a^2$. $2b^2$ and $21a^4 = 7a^2$. $3a^2$.

Therefore,
$$28a^2 + 14a^2b^2 - 21a^4 = 7a^2$$
. $4 + 7a^2$. $2b^2 - 7a^2$. $3a^2$

$$=7a^2(4+2b^2-3a^2)$$

Q.10) $a^4b - 3a^2b^2 - 6ab^3$

Soln.:

The greatest common factor of the terms a⁴b, 3a²b² and 6ab³ of the expression

$$a^4b - 3a^2b^2 - 6ab^3$$
 is ab.

Also, we can write $a^4b = ab \cdot a^3$, $3a^2b^2 = ab \cdot 3ab$ and $6ab^3 = ab \cdot 6b^2$.

Therefore, $a^4b - 3a^2b^2 - 6ab^3 = ab \cdot a^3 - ab \cdot 3ab - ab \cdot 6b^2$. = $ab \cdot (a^3 - 3ab - 6b^2)$

Q.11) $2L^2mn - 3Lm^2n + 4Lmn^2$

Soln.:

The greatest common factor of the terms $2L^2mn$, $3Lm^2n$ and $4Lmn^2$ of the expression $2L^2mn - 3Lm^2n + 4Lmn^2$ is Lmn.

Also, we can write $2L^2mn = Lmn \cdot 2L$, $3Lm^2n = Lmn \cdot 3m$ and $4Lmn^2 = Lmn \cdot 4n$ Therefore, $2L^2mn - 3Lm^2n + 4Lmn^2 = (Lmn \cdot 2L) - (Lmn \cdot 3m) + (Lmn \cdot 4n)$

= Lmn(2L - 3m + 4n)

Q.12) $x^4y^2 - x^2y^4 - x^4y^4$

Soln.:

The greatest common factor of the terms $x^4y^2,\,x^2y^4\,$ and $x^4y^4\,$ of the expressinon

$$x^4y^2 - x^2y^4 - x^4y^4$$
 is x^2y^2

Also, we can write $x^4y^2 = (x^2y^2 \cdot x^2)$, $x^2y^4 = (x^2y^2 \cdot y^2)$ and $x^4y^4 = (x^2y^2 \cdot x^2y^2)$

Therefore,
$$x^4y^2 - x^2y^4 - x^4y^4 = (x^2y^2 \cdot x^2) - (x^2y^2 \cdot y^2) - (x^2y^2 \cdot x^2y^2)$$

$$= x^2y^2 (x^2 - y^2 - x^2y^2)$$

Q.13) $9x^2y + 3axy$

Soln.:

The greatest common factor of the terms $9x^2y$ and 3axy of the expression $9x^2y + 3axy$ is 3xy.

Also, we can write $9x^2y = 3xy \cdot 3x$ and $3axy = 3xy \cdot a$

Therefore,
$$9x^2y + 3axy = (3xy . 3x) + (3xy . a)$$

=3xy(3x+a)

Q.14) $16m - 4m^2$

Soln.:

The greatest common factor of the terms 16m and $4m^2$ of the expression $16m - 4m^2$ is 4m.

Also, we can write $16m = 4m \cdot 4$ and $4m^2 = 4m \cdot m$

Therefore,
$$16m - 4m^2 = (4m \cdot 4) - (4m \cdot m)$$

=4m(4-m)

Q.15) $-4a^2 + 4ab - 4ca$

Soln.:

The greatest common factor of the terms -4a², 4ab and -4ca of the expression

$$-4a^2 + 4ab - 4ca$$
 is $-4a$.

Also, we can write $-4a^2 = (-4a \cdot a)$, $4ab = -4a \cdot (-b)$, and $4ca = (-4a \cdot c)$

Therefore,
$$-4a^2 + 4ab - 4ca = (-4a \cdot a) + (-4a \cdot (-b)) - (4a \cdot c)$$

$$= -4a (a - b + c)$$

Soln.:

The greatest common factor of the terms x^2yz , xy^2z and xyz^2 of the expression $x^2yz + xy^2z + xyz^2$ is xyz. Also, we can write $x^2yz = (xyz \cdot x)$, $(xy^2z = xyz \cdot y)$, $xyz^2 = (xyz \cdot z)$ Therefore, $x^2yz + xy^2z + xyz^2 = (xyz \cdot x) + (xyz \cdot y) + (xyz \cdot z)$ = xyz(x + y + z)

Q.17)
$$ax^2y + bxy^2 + cxyz$$

= xy (ax + by + cz)

Soln.:

The greatest common factor of the terms ax^2y , bxy^2 and cxyz of the expression $ax^2y + bxy^2 + cxyz$ is xy. Also, we can write $ax^2y = (xy \cdot ax)$, $bxy^2 = (xy \cdot by)$, $cxyz = (xy \cdot cz)$ Therefore, $ax^2y + bxy^2 + cxyz = (xy \cdot ax) + (xy \cdot by) + (xy \cdot cz)$