RD SHARMA Solutions

Class 8 Maths

Chapter 7

Ex 7.8

Resolve each of the following quadratic equation trinomials into factors:

Q-1. $2 \mathrm{x}^{2}+5 \mathrm{x}+3$

Solution. The given expression is $2 x^{2}+5 x+3$.
(Co-efficient of $x^{2}=2$, co-efficient of $x=5$ and the constant term $=3$)
We will split the co-efficient of x into two parts such that their sum is 5 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $2 \times 3=6$.

Now,
$2+3=5$
And
$2 \times 3=6$
Replacing the middle term 5 x by $2 \mathrm{x}+3 \mathrm{x}$, we have:
$2 x^{2}+5 x+3=2 x^{2}+2 x+3 x+3$
$=\left(2 \mathrm{x}^{2}+2 \mathrm{x}\right)+(3 \mathrm{x}+3)$
$=2 \mathrm{x}(\mathrm{x}+1)+3(\mathrm{x}+1)$
$=(2 x+3)(x+1)$

Q-2. $2 x^{2}-3 x-2$

Solution.

The given expression is $2 x^{2}-3 x-2$.
(Co-efficient of $x^{2}=2$, co-efficient of $x=-3$ and the constant term $=-2$)
We will split the co-efficient of x into two parts such that their sum is -3 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $2 \times(-2)=-4$

Now,
$(-4)+1=-3$
And
$(-4) \times 1=-4$
Replacing the middle term 3 x by $-4 \mathrm{x}+\mathrm{x}$, we have:
$2 \mathrm{x}^{2}-3 \mathrm{x}-2=2 \mathrm{x}^{2}-4 \mathrm{x}+\mathrm{x}-2$
$=\left(2 \mathrm{x}^{2}-4 \mathrm{x}\right)+(\mathrm{x}-2)$
$=2 \mathrm{x}(\mathrm{x}-2)+1(\mathrm{x}-2)$
$=(x-2)(2 x+1)$

Q-3. $3 \mathrm{x}^{2}+10 \mathrm{x}+3$

Solution.

The given expression is $3 x^{2}+10 x+3$.
(Co-efficient of $x^{2}=3$, co-efficient of $x=10$ and the constant term $=3$)
We will split the co-efficient of x into two parts such that their sum is 10 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $3 \times 3=9$

Now,
$9+1=10$
And
$9 \times 1=9$
Replacing the middle term 10 x by $9 \mathrm{x}+\mathrm{x}$, we have:

$$
\begin{aligned}
& 3 x^{2}+10 x+3=3 x^{2}+9 x+x+3 \\
& =\left(3 x^{2}+9 x\right)+(x+3) \\
& =3 x(x+3)+1(x+3) \\
& =(x+3)(3 x+1)
\end{aligned}
$$

Q-4. 7x-6-2x ${ }^{2}$

Solution.

The given expression is $7 x-6-2 x^{2}$.
(Co-efficient of $x^{2}=-2$, co-efficient of $x=7$ and the constant term $=-6$)
We will split the co-efficient of x into two parts such that their sum is 7 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-2) \times(-6)=12$

Now,
$4+3=7$
And
$4 \times 3=12$
Replacing the middle term 7 x by $4 \mathrm{x}+3 \mathrm{x}$, we have:
$7 \mathrm{x}-6-2 \mathrm{x}^{2}=-2 \mathrm{x}^{2}+4 \mathrm{x}+3 \mathrm{x}-6$
$=\left(-2 x^{2}+4 x\right)+(3 x-6)$
$=2 x(2-x)-3(2-x)$
$=(2 x-3)(2-x)$

Q-5. $7 \mathrm{x}^{2}-19 \mathrm{x}-6$

Solution.

The given expression is $7 \mathrm{x}^{2}-19 \mathrm{x}-6$.
(Co-efficient of $x^{2}=7$, co-efficient of $x=-19$ and the constant term $=-6$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $7 \times(-6)=9$

Now,
$(-21)+2=-19$
And
$(-21) \times 2=-42$
Replacing the middle term -19 x by $-21 \mathrm{x}+2 \mathrm{x}$, we have:
$7 x^{2}-19 x-6=7 x^{2}-21 x+2 x-6$
$=\left(7 x^{2}-21 x\right)+(2 x-6)$
$=7 x(x-3)+2(x-3)$
$=(x-3)(7 x+2)$

Q-6. $28-31 x-5 x^{2}$

Solution.

The given expression is $28-31 \mathrm{x}-5 \mathrm{x}^{2}$.
(Co-efficient of $x^{2}=-5$, co-efficient of $x=-31$ and the constant term $=28$)
We will split the co-efficient of x into two parts such that their sum is -31 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-5) \times(28)=-140$

Now,
$(-35)+4=-31$
And
$(-35) \times 4=-140$
Replacing the middle term $-31 x$ by $-35 x+4 x$, we have:
$28-31 x-5 x^{2}=-5 x^{2}-35 x+4 x+28$
$=\left(-5 x^{2}-35 x\right)+(4 x+28)$
$=-5 x(x+7)+4(x+7)$
$=(4-5 x)(x+7)$

Q-7. $3+23 y-8 y^{2}$

Solution.

The given expression is $3+23 y-8 y^{2}$.
$\left(\right.$ Co-efficient of $y^{2}=-8$, co-efficient of $y=23$ and the constant term $\left.=3\right)$
We will split the co-efficient of x into two parts such that their sum is 23 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-8) \times 3=-24$

Now,
$(-1)+24=23$
And
$(-1) \times 24=-24$
Replacing the middle term 23y by $-\mathrm{y}+24 \mathrm{y}$, we have:
$3+23 y-8 y^{2}=-8 y^{2}-y+24 y+3$
$=\left(-8 y^{2}-y\right)+(24 y+3)$
$=-y(8 y+1)+3(8 y+1)$
$=(8 y+1)(y+3)$

Q-8. $11 x^{2}-54 x+63$

Solution.

The given expression is $11 x^{2}-54 x+63$.
(Co-efficient of $x^{2}=11$, co-efficient of $x=-54$ and the constant term $=63$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $11 \times 63=693$

Now,
$(-33)+(-21)=-54$
And
$(-33) \times(-21)=693$
Replacing the middle term -54 x by $-33 \mathrm{x}-21 \mathrm{x}$, we have:
$11 x^{2}-54 x+63=11 x^{2}-33 x-21 x+63$
$=\left(11 x^{2}-33 x\right)+(-21 x+63)$
$=11 x(x-3)-21(x-3)$
$=(\mathrm{x}-3)(11 \mathrm{x}-21)$

Q-9. $7 x-6 x^{2}+20$

Solution.

The given expression is $7 x-6 x^{2}+20$
(Co-efficient of $x^{2}=-6$, co-efficient of $x=7$ and the constant term $=20$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-6) \times 20=-120$

Now,
$(15)+(-8)=7$
And
$(15) \times(-8)=-120$
Replacing the middle term 7 x by $15 \mathrm{x}-8 \mathrm{x}$, we have:
$7 x-6 x^{2}+20=-6 x^{2}+15 x-8 x+20$
$=\left(-6 x^{2}+15 x\right)+(-8 x+20)$
$=3 x(-2 x+5)+4(-2 x+5)$
$=(-2 x+5)(3 x+4)$

Q-10. $3 x^{2}+22 x+35$

Solution.
The given expression is $3 \mathrm{x}^{2}+22 \mathrm{x}+35$
(Co-efficient of $x^{2}=3$, co-efficient of $x=22$ and the constant term $=35$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $3 \times 35=105$

Now,
$(15)+(7)=22$
And
$(15) \times(7)=105$
Replacing the middle term 22 x by $15 \mathrm{x}+7 \mathrm{x}$, we have
$3 x^{2}+22 \mathrm{x}+35=3 \mathrm{x}^{2}+15 \mathrm{x}+7 \mathrm{x}+35$
$=\left(3 x^{2}+15 x\right)+(7 x+35)$
$=3 \mathrm{x}(\mathrm{x}+5)+7(\mathrm{x}+5)$
$=(x+5)(3 x+7)$

Q-11. $12 x^{2}-17 x y+6 y^{2}$

Solution.

The given expression is $12 x^{2}-17 x y+6 y^{2}$.
(Co-efficient of $x^{2}=12$, co-efficient of $x=-17 y$ and the constant term $=6 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-17 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $12 \times 6 \mathrm{y}^{2}=72 \mathrm{y}^{2}$

Now,
$(-9 y)+(-8 y)=-17 y$
And
$(-9 y) \times(-8 y)=72 y^{2}$
Replacing the middle term $-17 x y$ by $-9 x y-8 x y$, we have:
$12 x^{2}-17 x y+6 y^{2}=12 x^{2}-9 x y-8 x y+6 y^{2}$
$=\left(12 x^{2}-9 x y\right)-\left(8 x y+6 y^{2}\right)$

$$
\begin{aligned}
& =3 x(4 x-3 y)-2 y(4 x-3 y) \\
& =(4 x-3 y)(3 x-2 y)
\end{aligned}
$$

Q-12. $6 x^{2}-5 x y-6 y^{2}$

Solution. The given expression is $6 x^{2}-5 x y-6 y^{2}$.
(Co-efficient of $x^{2}=6$, co-efficient of $x=-5 y$ and the constant term $=-6 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-17 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $6 \times\left(-6 y^{2}\right)=-36 y^{2}$

Now,
$(-9 y)+(4 y)=-5 y$
And
$(-9 y) \times(4 y)=-36 y^{2}$
Replacing the middle term $-5 x y$ by $-9 x y+4 x y$, we have:
$6 x^{2}-5 x y-6 y^{2}=6 x^{2}-9 x y+4 x y-6 y^{2}$
$=\left(6 x^{2}-9 x y\right)+\left(4 x y-6 y^{2}\right)$
$=3 \mathrm{x}(2 \mathrm{x}-3 \mathrm{y})+2 \mathrm{y}(2 \mathrm{x}-3 \mathrm{y})$
$=(2 x-3 y)(3 x+2 y)$

Q-13. $6 x^{2}-13 x y+2 y^{2}$

Solution.

The given expression is $6 x^{2}-13 x y+2 y^{2}$.
(Co-efficient of $x^{2}=6$, co-efficient of $x=-13 y$ and the constant term $=2 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-13 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $6 \times\left(2 y^{2}\right)=12 y^{2}$

Now,
$(-12 y)+(-y)=-13 y$
And
$(-12 y) \times(-y)=12 y^{2}$
Replacing the middle term $-13 x y$ by $-12 x y-x y$, we have:
$6 x^{2}-13 x y+2 y^{2}=6 x^{2}-12 x y-x y+2 y^{2}$
$=\left(6 x^{2}-12 x y\right)-\left(x y-2 y^{2}\right)$
$=6 \mathrm{x}(\mathrm{x}-2 \mathrm{y})-\mathrm{y}(\mathrm{x}-2 \mathrm{y})$
$=(x-2 y)(6 x-y)$

$Q-14.14 x^{2}+11 x y-15 y^{2}$

Solution.

The given expression is $14 x^{2}+11 x y-15 y^{2}$.
(Co-efficient of $x^{2}=14$, co-efficient of $x=11 y$ and the constant term $=-15 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $11 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $14 \times\left(-15 y^{2}\right)=-210 y^{2}$

Now,
$(21 y)+(-10 y)=11 y$
And
$(21 y) \times(-10 y)=-210 y^{2}$
Replacing the middle term $-11 x y$ by $-10 x y+21 x y$, we have:
$14 x^{2}+11 x y-15 y^{2}=14 x^{2}-10 x y+21 x y-15 y^{2}$
$=\left(14 x^{2}-10 x y\right)+\left(21 x y-15 y^{2}\right)$
$=2 x(7 x-5 y)+3 y(7 x-5 y)$
$=(7 x-5 y)(2 x+3 y)$

$Q-15.6 a^{2}+17 a b-3 b^{2}$

Solution.

The given expression is $6 a^{2}+17 a b-3 b^{2}$
(Co-efficient of $\mathrm{a}^{2}=6$, co-efficient of $\mathrm{a}=17 \mathrm{~b}$ and the constant term $=-3 \mathrm{~b}^{2}$)
We will split the co-efficient of x into two parts such that their sum is 17 b and their product equals to the product of the co-efficient of a^{2} and the constant term, i.e., $6 \times\left(-3 b^{2}\right)=-18 b^{2}$

Now,
$(18 b)+(-b)=17 b$
And
$(18 b) \times(-b)=-18 b^{2}$
Replacing the middle term $17 a b$ by $-a b+18 a b$, we have:
$6 a^{2}+17 a b-3 b^{2}=6 a^{2}-a b+18 a b-3 b^{2}$

$$
=\left(6 a^{2}-a b\right)+\left(18 a b-3 b^{2}\right)
$$

$=a(6 a-b)+3 b(6 a-b)$
$=(a+3 b)(6 a-b)$

$Q-16.36 a^{2}+12 a b c-15 b^{2} c^{2}$

Solution.

The given expression is $36 a^{2}+12 a b c-15 b^{2} c^{2}$.
(Co-efficient of $\mathrm{a}^{2}=36$, co-efficient of $\mathrm{a}=12 \mathrm{bc}$ and the constant term $=-15 b^{2} c^{2}$)
We will split the co-efficient of x into two parts such that their sum is 17 b and their product equals to the product of the co-efficient of a^{2} and the constant term, i.e., $36 \times\left(-15 b^{2} c^{2}\right)=-540 b^{2} c^{2}$

Now,
$(-18 b c)+30 b c=12 b c$
And
$(-18 b c) \times(30 b c)=-540 b^{2} c^{2}$
Replacing the middle term 12 abc by $-18 \mathrm{abc}+30 \mathrm{abc}$, we have:
$36 a^{2}+12 a b c-15 b^{2} c^{2}=36 a^{2}-18 a b c+30 a b c-15 b^{2} c^{2}$
$=\left(36 a^{2}-18 a b c\right)+\left(30 a b c-15 b^{2} c^{2}\right)$
$=18 \mathrm{a}(2 \mathrm{a}-\mathrm{bc})+15 \mathrm{bc}(2 \mathrm{a}-\mathrm{bc})$
$=3(6 a+5 b c)(2 a-b c)$
$Q-17.15 x^{2}-16 x y z-15 y^{2} z^{2}$

Solution.

The given expression is $15 x^{2}-16 x y z-15 y^{2} z^{2}$.
(Co-efficient of $x^{2}=15$, co-efficient of $x=-16 y z$ and the constant term $=-15 y^{2} z^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-16 y z$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $15 \times\left(-15 y^{2} z^{2}\right)=-225 y^{2} z^{2}$

Now,
$(-25 y z)+9 y z=-16 y x$
And
$(-25 y z) \times(9 y z)=-225 y^{2} z^{2}$
Replacing the middle term $-16 x y z$ by $-25 x y z+9 x y z$, we have:
$15 x^{2}-16 x y z-15 y^{2} z^{2}=15 x^{2}-25 x y z+9 x y z-15 y^{2} z^{2}$
$=\left(15 x^{2}-25 x y z\right)+\left(9 x y z-15 y^{2} z^{2}\right)$
$=5 \mathrm{x}(3 \mathrm{x}-5 \mathrm{yz})+3 \mathrm{yz}(3 \mathrm{x}-5 \mathrm{yz})$
$=(3 x-5 y z)(5 x+3 y z)$

Q-18. $(x-2 y)^{2}-5(x-2 y)+6$

Solution.

The given expression is $\mathrm{a}^{2}-5 a+6$.
Assuming $a=x-2 y$, we have:
$(x-2 y)^{2}-5(x-2 y)+6=a^{2}-5 a+6$
(Co-efficient of $\mathrm{a}^{2}=1$, co-efficient of $\mathrm{a}=-5$ and the constant term $=6$)
Now, we will split the co-efficient of a into two parts such that their sum is -5 and their product equals to the product of the co-efficient of a^{2} and the constant term, i.e., $1 \times 6=6$.

Clearly,
$(-2)+(-3)=-5$
And,
$(-2) \times(-3)=6$
Replacing the middle term $-5 a$ by $-2 a-3 a$, we have:
$a^{2}-5 a+6=a^{2}-2 a-3 a+6$
$=\left(a^{2}-2 a\right)-(3 a-6)$
$=\mathrm{a}(\mathrm{a}-2)-3(\mathrm{a}-2)$
$=(a-2)(a-3)$
Replacing a by $(x-2 y)$, we get:
$(a-3)(a-2)=(x-2 y-3)(x-2 y-2)$

Q-19. $(2 a-b)^{2}+2(2 a-b)-8$

Solution.

Assuming $\mathrm{x}=2 \mathrm{a}-\mathrm{b}$, we have:
$(2 a-b)^{2}+2(2 a-b)-8=x^{2}+2 x-8$
The given expression becomes $x^{2}+2 x-8$
(Co-efficient of $x^{2}=1$ and that of $x=2$; constant term $=-8$)
Now, we will split the co-efficient of x into two parts such that their sum is 2 and their product equals the product of the co-efficient of x^{2} and the constant term, i.e., $1 \times(-8)=-8$

Clearly,
$(-2)+4=2$
And,
$(-2) \times 4=-8$

Replacing the middle term 2 x by $-2 \mathrm{x}+4 \mathrm{x}$, we get:
$x^{2}+2 x-8=x^{2}-2 x+4 x-8$
$=\left(x^{2}-2 x\right)+(4 x-8)$
$=x(x-2)+4(x-2)$
$=(x-2)(x+4)$
Replacing x by $2 a-b$, we get:
$(x+4)(x-2)=(2 a-b+4)(2 a-b-2)$

