RD SHARMA
Solutions
Class 8 Maths
Chapter 7
Ex 7.8

Resolve each of the following quadratic equation trinomials into factors:

O-1. $2x^2 + 5x + 3$

Solution. The given expression is $2x^2 + 5x + 3$.

(Co-efficient of $x^2 = 2$, co-efficient of x = 5 and the constant term = 3)

We will split the co-efficient of x into two parts such that their sum is 5 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $2 \times 3 = 6$.

Now,

$$2 + 3 = 5$$

And

$$2 \times 3 = 6$$

Replacing the middle term 5x by 2x + 3x, we have:

$$2x^2 + 5x + 3 = 2x^2 + 2x + 3x + 3$$

$$=(2x^2+2x)+(3x+3)$$

$$=2x(x+1)+3(x+1)$$

$$= (2x + 3)(x + 1)$$

Q-2. $2x^2 - 3x - 2$

Solution.

The given expression is $2x^2 - 3x - 2$.

(Co-efficient of $x^2 = 2$, co-efficient of x = -3 and the constant term = -2)

We will split the co-efficient of x into two parts such that their sum is -3 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $2 \times (-2) = -4$

Now,

$$(-4) + 1 = -3$$

And

$$(-4) \times 1 = -4$$

Replacing the middle term 3x by -4x + x, we have:

$$2x^2 - 3x - 2 = 2x^2 - 4x + x - 2$$

$$=(2x^2-4x)+(x-2)$$

$$=2x(x-2)+1(x-2)$$

$$=(x-2)(2x+1)$$

Q-3. $3x^2 + 10x + 3$

Solution.

The given expression is $3x^2 + 10x + 3$.

(Co-efficient of $x^2 = 3$, co-efficient of x = 10 and the constant term = 3)

We will split the co-efficient of x into two parts such that their sum is 10 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $3 \times 3 = 9$

Now,

$$9 + 1 = 10$$

And

$$9 \times 1 = 9$$

Replacing the middle term 10x by 9x + x, we have:

$$3x^{2} + 10x + 3 = 3x^{2} + 9x + x + 3$$

$$= (3x^{2} + 9x) + (x + 3)$$

$$= 3x(x + 3) + 1(x + 3)$$

$$= (x + 3)(3x + 1)$$

Q-4. $7x - 6 - 2x^2$

Solution.

The given expression is $7x - 6 - 2x^2$.

(Co-efficient of $x^2 = -2$, co-efficient of x = 7 and the constant term = -6)

We will split the co-efficient of x into two parts such that their sum is 7 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $(-2) \times (-6) = 12$

Now,

4 + 3 = 7

And

 $4 \times 3 = 12$

Replacing the middle term 7x by 4x + 3x, we have:

$$7x-6-2x^2=-2x^2+4x+3x-6$$

$$=(-2x^2+4x)+(3x-6)$$

$$=2x(2-x)-3(2-x)$$

$$=(2x-3)(2-x)$$

Q-5. $7x^2 - 19x - 6$

Solution.

The given expression is $7x^2 - 19x - 6$.

(Co-efficient of $x^2 = 7$, co-efficient of x = -19 and the constant term = -6)

We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $7 \times (-6) = 9$

Now,

$$(-21) + 2 = -19$$

And

$$(-21) \times 2 = -42$$

Replacing the middle term -19x by -21x + 2x, we have:

$$7x^2 - 19x - 6 = 7x^2 - 21x + 2x - 6$$

$$= (7x^2 - 21x) + (2x - 6)$$

$$= 7x(x-3) + 2(x-3)$$

$$= (x-3)(7x+2)$$

Q-6. $28 - 31x - 5x^2$

Solution.

The given expression is $28 - 31x - 5x^2$.

(Co-efficient of $x^2 = -5$, co-efficient of x = -31 and the constant term = 28)

We will split the co-efficient of x into two parts such that their sum is -31 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $(-5) \times (28) = -140$

Now,

$$(-35) + 4 = -31$$

And

$$(-35) \times 4 = -140$$

Replacing the middle term -31x by -35x + 4x, we have:

$$28 - 31x - 5x^2 = -5x^2 - 35x + 4x + 28$$

$$= (-5x^2 - 35x) + (4x + 28)$$

$$=-5x(x+7)+4(x+7)$$

$$= (4-5x)(x+7)$$

Q-7. $3 + 23y - 8y^2$

Solution.

The given expression is $3 + 23y - 8y^2$.

(Co-efficient of $y^2 = -8$, co-efficient of y = 23 and the constant term = 3)

We will split the co-efficient of x into two parts such that their sum is 23 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $(-8) \times 3 = -24$

Now,

$$(-1) + 24 = 23$$

And

$$(-1) \times 24 = -24$$

Replacing the middle term 23y by -y + 24y, we have:

$$3 + 23y - 8y^2 = -8y^2 - y + 24y + 3$$

$$= (-8y^2 - y) + (24y + 3)$$

$$= -y(8y + 1) + 3(8y + 1)$$

$$=(8y+1)(y+3)$$

Q-8. $11x^2 - 54x + 63$

Solution.

The given expression is $11x^2 - 54x + 63$.

(Co-efficient of $x^2 = 11$, co-efficient of x = -54 and the constant term = 63)

We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $11 \times 63 = 693$

Now,

$$(-33) + (-21) = -54$$

And

$$(-33) \times (-21) = 693$$

Replacing the middle term -54x by -33x - 21x, we have:

$$11x^2 - 54x + 63 = 11x^2 - 33x - 21x + 63$$

$$= (11x^2 - 33x) + (-21x + 63)$$

$$=11x(x-3)-21(x-3)$$

$$=(x-3)(11x-21)$$

Solution.

The given expression is $7x - 6x^2 + 20$.

(Co-efficient of $x^2 = -6$, co-efficient of x = 7 and the constant term = 20)

We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $(-6) \times 20 = -120$

Now.

$$(15) + (-8) = 7$$

And

$$(15) \times (-8) = -120$$

Replacing the middle term 7x by 15x - 8x, we have:

$$7x - 6x^2 + 20 = -6x^2 + 15x - 8x + 20$$

$$= (-6x^2 + 15x) + (-8x + 20)$$

$$=3x(-2x+5)+4(-2x+5)$$

$$=(-2x+5)(3x+4)$$

O-10. $3x^2 + 22x + 35$

Solution.

The given expression is $3x^2 + 22x + 35$.

(Co-efficient of $x^2 = 3$, co-efficient of x = 22 and the constant term = 35)

We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $3 \times 35 = 105$

Now,

$$(15) + (7) = 22$$

And

$$(15) \times (7) = 105$$

Replacing the middle term 22x by 15x + 7x, we have:

$$3x^2 + 22x + 35 = 3x^2 + 15x + 7x + 35$$

$$= (3x^2 + 15x) + (7x + 35)$$

$$=3x(x+5)+7(x+5)$$

$$=(x+5)(3x+7)$$

Q-11. $12x^2 - 17xy + 6y^2$

Solution.

The given expression is $12x^2 - 17xy + 6y^2$.

(Co-efficient of $x^2 = 12$, co-efficient of x = -17y and the constant term = $6y^2$)

We will split the co-efficient of x into two parts such that their sum is -17y and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $12 \times 6y^2 = 72y^2$

Now,

$$(-9y) + (-8y) = -17y$$

And

$$(-9y) \times (-8y) = 72y^2$$

Replacing the middle term -17xy by -9xy - 8xy, we have:

$$12x^2 - 17xy + 6y^2 = 12x^2 - 9xy - 8xy + 6y^2$$

$$=(12x^2-9xy)-(8xy+6y^2)$$

$$= 3x(4x-3y)-2y(4x-3y)$$
$$= (4x-3y)(3x-2y)$$

Q-12. $6x^2 - 5xy - 6y^2$

Solution. The given expression is $6x^2 - 5xy - 6y^2$.

(Co-efficient of $x^2 = 6$, co-efficient of x = -5y and the constant term = $-6y^2$)

We will split the co-efficient of x into two parts such that their sum is -17y and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $6 \times (-6y^2) = -36y^2$

Now,

$$(-9y) + (4y) = -5y$$

Δnc

$$(-9y) \times (4y) = -36y^2$$

Replacing the middle term -5xy by -9xy + 4xy, we have:

$$6x^2 - 5xy - 6y^2 = 6x^2 - 9xy + 4xy - 6y^2$$

$$=(6x^2-9xy)+(4xy-6y^2)$$

$$= 3x(2x-3y) + 2y(2x-3y)$$

$$=(2x-3y)(3x+2y)$$

Q-13. $6x^2 - 13xy + 2y^2$

Solution.

The given expression is $6x^2 - 13xy + 2y^2$.

(Co-efficient of $x^2 = 6$, co-efficient of x = -13y and the constant term $= 2y^2$)

We will split the co-efficient of x into two parts such that their sum is -13y and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $6 \times (2y^2) = 12y^2$

Now,

$$(-12y) + (-y) = -13y$$

And

$$(-12y) \times (-y) = 12y^2$$

Replacing the middle term -13xy by -12xy - xy, we have

$$6x^2 - 13xy + 2y^2 = 6x^2 - 12xy - xy + 2y^2$$

$$=(6x^2-12xy)-(xy-2y^2)$$

$$=6x(x-2y)-y(x-2y)$$

$$= (x-2y)(6x-y)$$

Q-14. $14x^2 + 11xy - 15y^2$

Solution.

The given expression is $14x^2 + 11xy - 15y^2$.

(Co-efficient of $x^2 = 14$, co-efficient of x = 11y and the constant term = $-15y^2$)

We will split the co-efficient of x into two parts such that their sum is 11y and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $14 \times (-15y^2) = -210y^2$

Now,

$$(21y) + (-10y) = 11y$$

And

$$(21y) \times (-10y) = -210y^2$$

Replacing the middle term -11xy by -10xy + 21xy, we have:

$$14x^2 + 11xy - 15y^2 = 14x^2 - 10xy + 21xy - 15y^2$$
$$= (14x^2 - 10xy) + (21xy - 15y^2)$$

$$= 2x(7x - 5y) + 3y(7x - 5y)$$

$$= 2x(7x - 5y) + 3y(7x - 5y)$$

$$= (7x - 5y)(2x + 3y)$$

$Q-15.6a^2+17ab-3b^2$

Solution.

The given expression is $6a^2 + 17ab - 3b^2$.

(Co-efficient of $a^2 = 6$, co-efficient of a = 17b and the constant term = $-3b^2$)

We will split the co-efficient of x into two parts such that their sum is 17b and their product equals to the product of the co-efficient of a² and the constant term, i.e., $6 \times (-3b^2) = -18b^2$

Now,

$$(18b) + (-b) = 17b$$

And

$$(18b) \times (-b) = -18b^2$$

Replacing the middle term 17ab by -ab + 18ab, we have:

$$6a^2 + 17ab - 3b^2 = 6a^2 - ab + 18ab - 3b^2$$

$$=(6a^2-ab)+(18ab-3b^2)$$

$$= a(6a-b) + 3b(6a-b)$$

$$= (a + 3b)(6a - b)$$

O-16, $36a^2 + 12abc - 15b^2c^2$

Solution.

The given expression is $36a^2 + 12abc - 15b^2c^2$.

(Co-efficient of $a^2 = 36$, co-efficient of a = 12bc and the constant term = $-15b^2 c^2$)

We will split the co-efficient of x into two parts such that their sum is 17b and their product equals to the product of the co-efficient of a² and the constant term, i.e., $36 \times (-15b^2 c^2) = -540b^2 c^2$

Now,

$$(-18bc) + 30bc = 12bc$$

And

$$(-18bc) \times (30bc) = -540b^2 c^2$$

Replacing the middle term 12abc by -18abc + 30abc, we have:

$$36a^2 + 12abc - 15b^2c^2 = 36a^2 - 18abc + 30abc - 15b^2c^2$$

$$= (36a^2 - 18abc) + (30abc - 15b^2c^2)$$

$$= 18a(2a - bc) + 15bc(2a - bc)$$

$$= 3(6a + 5bc)(2a - bc)$$

Q-17. $15x^2 - 16xyz - 15y^2z^2$

The given expression is $15x^2 - 16xyz - 15y^2z^2$.

(Co-efficient of $x^2 = 15$, co-efficient of x = -16yz and the constant term $= -15y^2z^2$)

We will split the co-efficient of x into two parts such that their sum is -16yz and their product equals to the product of the co-efficient of x^2 and the constant term, i.e., $15 \times (-15y^2 z^2) = -225y^2z^2$

Now,

$$(-25yz) + 9yz = -16yx$$

And

$$(-25yz) \times (9yz) = -225y^2z^2$$

Replacing the middle term -16xyz by -25xyz + 9xyz, we have:

$$15x^2 - 16xyz - 15y^2z^2 = 15x^2 - 25xyz + 9xyz - 15y^2z^2$$

$$= (15x^2-25xyz) + (9xyz-15y^2z^2)$$

$$= 5x(3x - 5yz) + 3yz(3x - 5yz)$$

$$= (3x - 5yz)(5x + 3yz)$$

Q-18. $(x-2y)^2-5(x-2y)+6$

Solution.

The given expression is $a^2 - 5a + 6$.

Assuming a = x - 2y, we have:

$$(x-2y)^2-5(x-2y)+6=a^2-5a+6$$

(Co-efficient of $a^2 = 1$, co-efficient of a = -5 and the constant term = 6)

Now, we will split the co-efficient of a into two parts such that their sum is -5 and their product equals to the product of the co-efficient of a^2 and the constant term, i.e., $1 \times 6 = 6$.

Clearly,

$$(-2)+(-3)=-5$$

And,

$$(-2) \times (-3) = 6$$

Replacing the middle term -5a by -2a - 3a, we have:

$$a^2 - 5a + 6 = a^2 - 2a - 3a + 6$$

$$=(a^2-2a)-(3a-6)$$

$$= a(a-2)-3(a-2)$$

$$= (a-2)(a-3)$$

Replacing a by (x-2y), we get:

$$(a-3)(a-2)=(x-2y-3)(x-2y-2)$$

Q-19. $(2a-b)^2 + 2(2a-b) - 8$

Solution.

Assuming x = 2a - b, we have:

$$(2a-b)^2 + 2(2a-b) - 8 = x^2 + 2x - 8$$

The given expression becomes $x^2 + 2x - 8$

(Co-efficient of $x^2 = 1$ and that of x = 2; constant term = -8)

Now, we will split the co-efficient of x into two parts such that their sum is 2 and their product equals the product of the co-efficient of x^2 and the constant term, i.e., $1 \times (-8) = -8$

Clearly,

$$(-2) + 4 = 2$$

And,

$$(-2) \times 4 = -8$$

Replacing the middle term 2x by -2x + 4x, we get:

$$x^2 + 2x - 8 = x^2 - 2x + 4x - 8$$

$$=(x^2-2x)+(4x-8)$$

$$= x(x-2) + 4(x-2)$$

$$=(x-2)(x+4)$$

Replacing x by 2a - b, we get:

$$(x+4)(x-2) = (2a-b+4)(2a-b-2)$$