RD SHARMA
Solutions
Class 8 Maths
Chapter 8
Ex 8.1

Question 1: Write the degree of each of the following polynomials:

Soln:

(i) 
$$2x^3+5x^2-7$$

It is 
$$2x^3+5x^2-7$$
 instead of  $2x^2+5x^2-7$ 

The degree of the polynomial  $2x^3+5x^2-7$  is 3

(ii) 
$$5x^2-35x+2$$

The degree of the polynomial  $5x^2-35x+2$  is 2

(iii) 
$$2x+x^2-8$$

The degree of the polynomial  $2x+x^2-8$  is 2

(iv) 
$$\frac{1}{2}$$
y<sup>7</sup> - 12y<sup>6</sup> + 48y<sup>5</sup> - 10

The degree of the polynomial  $\frac{1}{2}y^7 - 12y^6 + 48y^5 - 10$  is 7

(v) 
$$3x^3+1$$

The degree of the polynomial  $3x^3+1$  is 3

#### (vi) 5

5 is a constant polynomial and its degree is 0.

(vii) 
$$20x^3+12x^2y^2-10y^2+20$$

The degree of the polynomial  $20x^3+12x^2y^2-10y^2+20$  is 4

# Question 2

Which of the following expressions are not polynomials:

### Soln:

(i) 
$$x^2+2x^{-2}$$

 $x^2+2x^{-2}$  is not a polynomial because -2 is the power of variable x is not a non negative integer.

(ii) 
$$\sqrt{ax} + x^2 - x^3$$

 $\sqrt{ax} + x^2 - x^3$  is not a polynomial because  $\frac{1}{2}$  is the power of variable x is not a non negative integer.

(iii) 
$$3y^3 - \sqrt{5}y + 9$$

 $3y^3 - \sqrt{5}y + 9$  is a polynomial because the powers of variable y are non negative integers.

(iv) 
$$ax^{\frac{1}{2}} + ax + 9x^2 + 4$$

 $ax^{\frac{1}{2}} + ax + 9x^2 + 4$  is not a polynomial because  $\frac{1}{2}$  is the power of variable x is not a non negative integer.

(v) 
$$3x^{-2}+2x^{-1}+4x+5$$

 $3x^{-2}+2x^{-1}+4x+5$  is not a polynomial because -2 and -1 are the powers of variable x are not non negative integers.

# Question 3

Write each of the following polynomials in the standard form. Also, write their degree

### Soln:

(i)  $(x^2+3+6x+5x^4)$ 

The standard form of the given polynomial can be expressed as:

$$(5x^4+x^2+6x+3)$$
 or  $(3+6x+x^2+5x^4)$ 

The degree of the polynomial is 4

(ii) 
$$a^2+4+5a^6$$

The standard form of the given polynomial can be expressed as:

$$(5a^6+a^2+4)$$
 or  $(4+a^2+5a^6)$ 

The degree of the polynomial is 6

(iii) 
$$(x^3-1)(x^3-4)$$

$$(x^3-1)(x^3-4) = x^6-5x^3+4$$

The standard form of the given polynomial can be expressed as:

$$(x^6-5x^3+4)$$
 or  $(4-5x^3+x^6)$ 

The degree of the polynomial is 6

(iv) 
$$(y^3-2)(y^3+11)$$

$$(y^3-2)(y^3+11) = y^6+9y^3-22$$

The standard form of the given polynomial can be expressed as:

$$(y^6+9y^3-22)$$
 or  $(-22+9y^3+y^6)$ 

The degree of the polynomial is 6

(v) 
$$(a^3 - \frac{3}{8})(a^3 + \frac{16}{17})(a^3 - \frac{3}{8})(a^3 + \frac{16}{17}) = a^3 + \frac{77}{136}a^3 - \frac{6}{17}$$

Standard form of the given polynomial can be expressed as:

$$(a^3 + \frac{77}{136}a^3 - \frac{6}{17})$$
 or  $(-\frac{6}{17} + \frac{77}{136}a^3 + a^3)$ 

The degree of the polynomial is 6.

(vi) 
$$\left(a + \frac{3}{4}\right)\left(a + \frac{4}{3}\right)\left(a + \frac{3}{4}\right)\left(a + \frac{4}{3}\right) = a^2 + \frac{25}{12}a + 1$$

Standard form of the given polynomial can be expressed as:

$$(a^2 + \frac{25}{12}a + 1)$$
 or  $(1 + \frac{25}{12}a + a^2)$ 

The degree of the polynomial is 2