RD SHARMA

Solutions

Class 8 Maths

Chapter 9

Ex 9.4

Solution:
Let the number be x .
According to the question,
$\frac{4}{3} x-\frac{3}{4} x=4$
Or $\frac{16 x-15 x}{20}=4$
Or $\mathrm{x}=80 \quad$ [After cross multiplication]
Thus, the required number is 80 .

Q2) The difference between the squares of two consecutive numbers is $\mathbf{3 1}$. Find the numbers.

Solution:

Let the numbers be x and $\mathrm{x}+1$.
According to the question,
$(x+1)^{2}-x^{2}=31$
or $x^{2}+2 x+1-x^{2}=31$
or $2 \mathrm{x}=31-1$
or $x=\frac{30}{2}$
or $\mathrm{x}=15$
Thus, the numbers are 15 and 16 .

Q3) Find a number whose double is $\mathbf{4 5}$ greater than its half.

Solution:

Let the number be x .
According to the question,
$2 \mathrm{x}=\frac{1}{2} \mathrm{x}+45$
Or $2 x-\frac{1}{2} x=45$
Or $\frac{4 x-x}{2}=45$
Or $3 \mathrm{x}=90 \quad$ [After cross multiplication]
Or $\mathrm{x}=\frac{90}{3}$
Or $\mathrm{x}=30$
Thus, the number is 30

Q4) Find a number such that when 5 is subtracted from 5 times the number, the result is 4 more than twice the number.

Solution:

Let the number be x .
According to the question,
$5 \mathrm{x}-5=2 \mathrm{x}+4$
Or $5 \mathrm{x}-2 \mathrm{x}=4+5$
Or $3 \mathrm{x}=9$
Or $\mathrm{x}=\frac{9}{3}$

Or $\mathrm{x}=3$
Thus, the number is 3 .

Q5) A number whose fifth part increased by 5 is equal to its fourth part diminished by 5 . Find the number.

Solution:
Let the number be x .
According to the question,
$\frac{x}{5}+5=\frac{x}{4}-5$
Or $\frac{x}{5}-\frac{x}{4}=-5-5$
Or $\frac{4 x-5 x}{20}=-10$
Or $-\mathrm{x}=-200 \quad$ [After cross multiplication]
Or $\mathrm{x}=200$
Thus, the number is 200 .

Q6) A number consists of two digits whose sum is 9 . If 27 is subtracted from the number, its digits are reversed. Find the number.

Solution:

Let the units digit be x .
Since, Sum of two digits $=9$
\therefore Tens digit $=(9-\mathrm{x})$
\therefore Original number $=10 \times(9-\mathrm{x})+\mathrm{x}$
Reversed number $=10 x+(9-x)$
According to the question,
$10 \times(9-x)+x-27=10 x+(9-x)$
Or $90-10 \mathrm{x}+\mathrm{x}-27=10 \mathrm{x}+9-\mathrm{x}$
Or $9 \mathrm{x}+9 \mathrm{x}=90-27-9$
Or $18 \mathrm{x}=54$
Or $\mathrm{x}=\frac{54}{18}=3$
The number $=10 \times(9-3)+3=63$

Q7) Divide 184 into two parts such that one-third of one part may exceed one-seventh of another part by 8.

Solution:

Let the first part of 184 be x .
Therefore, the other part will be $(184-x)$.
According to the question,
$\frac{1}{3} x-\frac{1}{7}(184-x)=8$
Or $\frac{7 \mathrm{x}-552+3 \mathrm{x}}{21}$
$10 \mathrm{x}-552=168 \quad$ [After cross multiplication]
Or $10 \mathrm{x}=168+552$
Or $10 \mathrm{x}=720$
Or $\mathrm{x}=\frac{720}{10}=72$
Thus, the parts of 184 are 72 and $112(184-72=112)$.

Q8) The numerator of a fraction is 6 less than the denominator. If 3 is added to the numerator, the fraction is equal to $\frac{2}{3}$. What is the original fraction equal to?

Solution:

Let the denominator of the fraction be x .
Therefore, the numerator will be $(x-6)$.
Fraction $=\frac{x-6}{x}$
According to the question,
$\frac{x-6+3}{x}=\frac{2}{3}$
Or $\frac{x-3}{x}=\frac{2}{3}$
Or $3 \mathrm{x}-9=2 \mathrm{x} \quad$ [After cross multiplication]
Or $3 x-2 x=9$
Or $\mathrm{x}=9$
Thus, the original fraction $=\frac{9-6}{9}=\frac{1}{3}$

Q9) A sum of Rs 800 is in the form of denominations of Rs 10 and Rs 20 . If the total number of notes be 50, find the number of notes of each type.

Solution:

Let the number of Rs 10 notes be x .
Therefore, the number of Rs 20 notes will be $(50-x)$.
Value of Rs 10 notes $=10 \mathrm{x}$
Value of Rs 20 notes $=20(50-x)$
According to the question,
$10 x+20(50-x)=800$
Or $10 \mathrm{x}+1000-20 \mathrm{x}=800$
Or $10 \mathrm{x}=1000-800$
Or $\mathrm{x}=\frac{200}{10}=20$
Therefore, Number of Rs 10 notes $=20$
Number of Rs 20 notes $=(50-20)=30$.

Q10) Seeta Devi has Rs 9 in fifty-paise and twenty five-paise coins. She has twice as many twenty-five paise coins as she has fifty-paise coins. How many coins of each kind does she have?

Solution:

Let the number of 50 paise coins be x .
Therefore, the number of 25 paise coins will be 2 x .
Value of 50 paise coins $=$ Rs. 0.5 x
Value of 25 paise coins $=$ Rs. $0.25 \times 2 \mathrm{x}$
According to the question,
$0.5 \mathrm{x}+0.25 \times 2 \mathrm{x}=9$
or $\mathrm{x}=9$
\therefore Number of fifty paise coins $=9$
Number of twenty five paise coins $=2 \times 9=18$
Total number of coins $=9+18=27$.

Solution:
Let the age of Ashima be x years
Therefore, the age of Sunita will be 2 x years.
According to the question,
$4(x-6)=2 x+4$
or $4 \mathrm{x}-24=2 \mathrm{x}+4$
or $4 x-2 x=4+24$
or $2 x=28$
or $\mathrm{x}=14$
\therefore Age of Ashima $=14$ years.
Age of Sunita $=2 \times 14=28$ years .

Q12) The ages of Sonu and Monti are in the ratio $7: 5$. Ten years hence, the ratio of their ages will be 9:7. Find their present ages.

Solution:
It is given that the ratio of the ages of Sonu and Monu is $7: 5$.
Let the present ages of Sonu and Monu be 7x and 5 x years.
After ten years
Age of Sonu $=7 x+10$ years
Age of Monu $=5 x+10$ years
According to the question,
Or $49 \mathrm{x}+70=45 \mathrm{x}+90$
Or $49 x-45 x=90-70$
Or $4 \mathrm{x}=20$
Or $\mathrm{x}=5$
\therefore Present age of Sonu $=7 \times 5=35$ years.
Present age of Monu $=5 \times 5=25$ years.

Q13) Five years ago a man was seven times as old as his son. Five years hence, the father will be three times as old as his son. Find their present ages.

Solution:

Five years ago
Let the age of the son be x years.
Therefore, the age of the father will be 7 x years.
\therefore Present age of the son $=(x+5)$ years
Present age of the father $=(7 x+5)$ years
After five years:
Age of the son $=(x+5+5)=(x+10)$ years
Age of the father $=(7 x+5+5)=(7 x+10)$ years
According to the question, $7 \mathrm{x}+10=3(\mathrm{x}+10)$
or $7 \mathrm{x}-3 \mathrm{x}=30-10$
or $4 \mathrm{x}=20$
or $\mathrm{x}=5$
\therefore Present age of the son $=(5+5)=10$ years.
Present age of the father $=(7 \times 5+5)=40$ years.

Solution:
Let the age of my son be x years.
Therefore, my age will be 5 x years.
After 6 years:
Age of my son $=(x+6)$ years
My age $=(5 x+6)$ years
According to the question,
$5 x+6=3(x+6)$
or $5 \mathrm{x}-3 \mathrm{x}=18-6$
or $2 x=12$
or $x=6$
\therefore Age of my son $=6$ years
My age $=5 \times 6=30$ years

Q15) I have Rs 1000 in ten and five rupee notes. If the number of ten rupee notes that I have is ten more than the number of five rupee notes, how many notes do I have in each denomination?

Solution:

Let the number of five - rupee notes be x .
Therefore, the number of ten- rupee notes will be $(x+10)$
Now,
Value of five - rupee notes $=$ Rs. 5 x
Value of ten - rupee notes $=$ Rs. $10(x+10)$
According to the question,
$5 x+10(x+10)=1000$
or $15 \mathrm{x}=1000-100$
or $x=\frac{900}{15}=60$
\therefore Number of five - rupee notes $=60$
Number of ten - rupee notes $=60+10=70$.

Q16) At a party, colas, squash and fruit juice were offered to guests. A fourth of the guests drank colas, a third drank squash, two-fifths drank fruit juice and just three did not drink anything. How many guests were in all?

Solution:

Let the total number of guests be x .
Therefore, the number of guests, who drank colas, would be $\frac{1}{4} \mathrm{x}$.
The number of guests, who drank squash, would be $\frac{1}{3} \mathrm{x}$
The number of guests, who drank fruit juice, would be $\frac{2}{5} x$.
The number of guests, who did not drink, would be 3
According to the question,
$x-\left(\frac{x}{4}+\frac{x}{3}+\frac{2 x}{5}\right)=3$
or $\frac{60 x-15 x-20 x-24 x}{60}=3$
or $\mathrm{x}=180$
Thus, total number of guests $=180$.

Q17) There are 180 multiple choice questions in a test. If a candidate gets $\mathbf{4}$ marks for every correct answer and for every unattempted or wrongly answered question one mark is deducted from the total score of correct answers. If a candidate scored 450 marks in the test, how many questions did he answer correctly?

Solution:

Let the number of correctly answered questions be x .
Therefore, the number of unattempted or wrongly answered questions will be ($180-\mathrm{x}$)
According to the question,
$4 \mathrm{x}-1(180-1)=450$
or $5 x=450+180$
or $\mathrm{x}=\frac{630}{5}=126$
Thus, number of correctly answered questions $=126$.
Number of unattempted or wrongly answered questions $=180-126=54$.

Q18) A labourer is engaged for 20 days on the condition that he will receive Rs 60 for each day, he works and he will be fined Rs 5 for each day, he is absent. If he receives Rs 745 in all, for how many days he remained absent?

Solution:

Let the number of days for which the labourer is absent be x .
Therefore, the number of days for which he is present will be $(20-\mathrm{x})$
Earnings $=$ Rs. $60(20-x)$
Fine $=$ Rs. 5 x
According to the question,
$60(20-x)-5 x=745$
or $1200-60 x-5 x=745$
or $65 x=1200-745$
or $x=\frac{455}{65}=7$
Thus, the labourer was absent for 7 days.

Q19) Ravish has three boxes whose total weight is $60 \frac{1}{2} \mathrm{~kg}$. Box B weighs $3 \frac{1}{2} \mathrm{~kg}$ more than box A and box C weighs $5 \frac{1}{2} \mathrm{~kg}$ more than box B. Find the weight of box A.

Solution:

Let the weight of box A be xkg .
Therefore, the weights of box B and box C will be $\left(\mathrm{x}+3 \frac{1}{2}\right)$ and $\left(\mathrm{x}+3 \frac{1}{2}+5 \frac{1}{3}\right) \mathrm{kg}$, respectively.
According to the question,
$\mathrm{x}+\left(\mathrm{x}+3 \frac{1}{2}\right)+\left(\mathrm{x}+3 \frac{1}{2}+5 \frac{1}{3}\right)$
or $3 x=\frac{121}{2}-\frac{7}{2}-\frac{7}{2}-\frac{16}{3}$
or $3 x=\frac{363-21-21-32}{6}$
or $3 x=\frac{289}{6}$
or $3 \mathrm{X}=\frac{289}{18}$
Thus, weight of box $\mathrm{A}=\frac{289}{18} \mathrm{~kg}$.

Q20) The numerator of a rational number is 3 less than the denominator. If the denominator is increased by 5 and the numerator by 2 , we get the rational number $\frac{1}{2}$. Find the rational number.

Solution:
Let the denominator of the rational number be x .
\therefore The numerator of the rational number will be $\mathrm{x}-3$.
\therefore The rational number $=\frac{\mathrm{x}-3}{\mathrm{x}}$
According to the question,
$\frac{x-3+2}{x+5}=\frac{1}{2}$
or $\frac{x-1}{x+5}=\frac{1}{2}$
or $2 \mathrm{x}-2=\mathrm{x}+5$
or $2 \mathrm{x}-\mathrm{x}=5+2$
or $x=7$
\therefore The rational number $=\frac{7-3}{7}=\frac{4}{7}$

Q21) In a rational number, twice the numerator is 2 more than the denominator. If $\mathbf{3}$ is added to each, the numerator and the denominator, the new fraction is $\frac{2}{3}$. Find the original number.

Solution:

Let the denominator be x .
\therefore The numerator $=\frac{\mathrm{x}+2}{2}$
\therefore The rational number $=\frac{\mathrm{x}+2}{2 \mathrm{x}}$
According to the question,
$\frac{\frac{x+2}{2}+3}{x+3}=\frac{2}{3}$
or $\frac{x+2+6}{2(x+3)}=\frac{2}{3}$
or $\frac{x+8}{2 x+6}=\frac{2}{3}$
or $3 x+24=4 x+12$
or $\mathrm{x}=24-12$
or $\mathrm{x}=12$
\therefore The rational number $=(12+2) / 2(12)=14 / 24$, therefore the answer will be: $7 / 12$

Q22. The distance between two stations is 340 km . Two trains start simultaneously from these stations on parallel tracks to cross each other. The speed of one of them is greater than that of the other by $5 \mathrm{~km} / \mathrm{hr}$. If the distance between the two trains after 2 hours of their start is 30 km , find the speed of each train.

Solution:

Let, the speed of the first train be $\times \mathrm{km} / \mathrm{h}$.
Then, the speed of the other train will be $(x+5) \mathrm{km} / \mathrm{h}$.
2 hours after they started:
Distance of the first train from the starting point $=2 \mathrm{xkm}$
Distance of the other train from the starting point $=2(x+5) \mathrm{km}$
Now, $2(x+5)+2 x+30=340$
or $4 \mathrm{x}+10+30=340$
or $4 x=340-40$
or $x=\frac{300}{4}=75$
\therefore Speed of the first train $=75 \mathrm{~km} / \mathrm{h}$
Speed of the other train $=(75+5)=80 \mathrm{~km} / \mathrm{h}$

Q23) A steamer goes downstream from one point to another in 9 hours. It covers the same distance upstream in 10 hours. If the speed of the stream be $1 \mathrm{~km} / \mathrm{hr}$, find the speed of the steamer in still water and the distance between the ports.

Solution:
It is given that the speed of the stream is $1 \mathrm{~km} / \mathrm{h}$.
Let the speed of the steamer in still water be $\mathrm{x} \mathrm{km} / \mathrm{h}$
\therefore Downstream speed $=(x+1) \mathrm{km} / \mathrm{h}$
Upstream speed $=(x-1) \mathrm{km} / \mathrm{h}$
The downstream and upstream distances are same; therefore, we have:
$9(x+1)=10(x-1)$
or $9 x+9=10 x-10$
or $x=19$
\therefore Speed of the steamer in still water $=19 \mathrm{~km} / \mathrm{h}$.
Distance between the ports $=9(19+1)=180 \mathrm{~km}$.

Q24) Bhagwanti inherited Rs $\mathbf{1 2 0 0 0 . 0 0}$. She invested part of it at $\mathbf{1 0 \%}$ and the rest at $\mathbf{1 2 \%}$. Her annual income from these investments is Rs $\mathbf{1 2 8 0 . 0 0}$. How much did she invest at each rate?

Solution:

At the rate of 10%, let the investment by Bhagwanti be Rs. x .
Therefore, at the rate of 12%, the investment will be Rs. ($12000-\mathrm{x}$).
At the rate of 10%, her annual income $=x \times 10 \%$
At the rate of 12%, her annual income $=(12000-x) \times 12 \%$
So,
$x \times 0.1+0.12(12000-x)=1280$
or $0.1 \mathrm{x}-0.12 \mathrm{x}=1280-1440$
or $0.02 \mathrm{x}=160$
or $\mathrm{x}=8000$
Thus, at the rate of 10%, she invested Rs. 8000 and at the rate of 12%, she invested Rs. $4000(12000-8000)$.

Q25) The length of a rectangle exceeds its breadth by 9 cm . If length and breadth are each increased by $\mathbf{3} \mathbf{~ c m}$, the area of the new rectangle will be 84 $\mathbf{c m}^{2}$ more than that of the given rectangle. Find the length and breadth of the given rectangle.

Solution:

Let the breadth of the rectangle be xcm .
Therefore, the length of the rectangle will be $(x+9) \mathrm{cm}$.
Area of the rectangle $=x(x+9) \mathrm{cm}^{2}$.
If the length and breadth are increased by 3 cm each,
area $=(x+3)(x+9+3) \mathrm{cm}^{2}$.
Now,
$(x+3)(x+12)-x(x+9)=84$
or $x^{2}+15 x+36-x^{2}-9 x=84$
or $6 x=84-36$
or $x=\frac{48}{6}=8$.
Thus, breadth of the rectangle $=8 \mathrm{~cm}$.
Length of the rectangle $=(8+9)=17 \mathrm{~cm}$.

Solution:
'Let Anup's age be x years.
Therefore, his father's age will be $(100-x)$ years.
When Anup is as old as his father after $(100-2 x)$ years,
Anuj's age $=\left(\frac{100-\mathrm{x}}{5}+100-2 \mathrm{x}\right)$ years $=\frac{600-11 \mathrm{x}}{5}$ years.
Again, when Anup is as old as his father,
Anuj's age $=x+8$.
Now,
$\frac{600-11 x}{5}=x+8$
or $600-11 x=5 x+40$
or $16 x=560$
or $x=35$.
Thus, Anuj's age $=35$ years
Anuj's father's age $=100-x=100-35=65$ years
Anuj's age $=x+8=35+8=43$ years

Q27) A lady went shopping and spent half of what she had on buying hankies and gave a rupee to a begger waiting outside the shop. She spent half of what was left of a lunch and followed that up with a two rupee tip. She spent half of the remaining amount on a book and three rupees on bus fare. When she reached home, she found that she had exactly one rupee left. How much money did she start with?

Solution:

Suppose, the lady started with x rupees
Money spent on shopping $=\frac{x}{2}$ rupees
Remaining amount $=x-\frac{x}{2}=\frac{x}{2}$ rupees
Money spent on lunch $=\frac{1}{2}\left(\frac{x}{2}-1\right)$ rupees
After giving a two - rupee tip she had $=\frac{1}{2}\left(\frac{x}{2}-1\right)-2=\frac{x-2-8}{4}=\frac{x-10}{4}$ rupees
Money spent on a book $=\frac{1}{2}\left(\frac{\mathrm{x}-10}{4}\right)$ rupees
After spending three rupees on bus fare she had $=\frac{1}{2}\left(\frac{x-10}{4}\right)-3=\frac{x-10-24}{8}=\frac{x-34}{8}$ rupees
Now,
$\frac{\mathrm{x}-34}{8}=1$
or $\mathrm{x}-34=8$
or $x=42$
Therefore, she started with 42 rupees.

