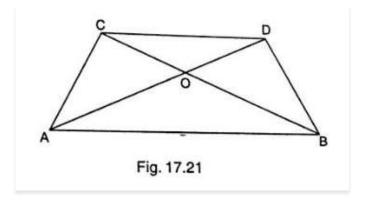
RD SHARMA
Solutions
Class 8 Maths
Chapter 17
Ex 17.1

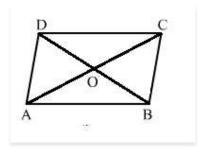
Q 1. Given below is a parallelogram ABCD. Complete each statement along with the definition or property used.

- (i) AD =
- (ii) ∠DCB =
- (iii) OC =
- (iv) $\angle DAB + \angle CDA =$

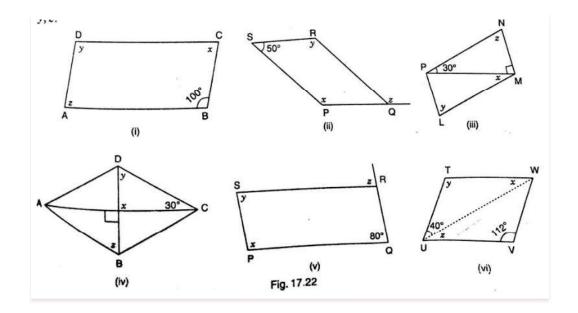


SOLUTION:

The correct figure is



- (i) AD = BC (opposite sides of a parallelogram are equal)
- (ii) $\angle DCB = \angle BAD$ (opposite angles are equal)
- (iii) OC = OA (diagonals of a parallelogram bisect each other)
- (iv) $\angle \text{DAB} + \angle \text{CDA} = 180^{\circ}$ (the sum of two adjacent angles of a parallelogram is 180°)
- Q 2. The following figures are parallelograms. Find the degree values of the unknowns $\boldsymbol{x},\boldsymbol{y}$ and $\boldsymbol{z}.$



(i) Opposite angles of a parallelogram are same.

Therefore, x = z and $y = 100^{\circ}$

Also, $y + z = 180^{\circ}$ (sum of adjacent angle of quadrilateral is 180°)

$$z + 100^{\circ} = 180^{\circ}$$

$$x = 180^{\circ} - 100^{\circ}$$

$$=> x = 80^{\circ}$$

Therfore, $x = 80^{\circ}$, $y = 100^{\circ}$ and $z = 80^{\circ}$

(ii) Opposite angles of a parallelogram are same.

Therefore, x = y and $\angle ROP = 100^{\circ}$

$$\angle PSR + \angle SRQ = 180^{\circ}$$

$$=> y + 50^{\circ} = 180^{\circ}$$

$$x = 180^{\circ} - 50^{\circ}$$

$$=> x = 130^{\circ}$$

Therefore, x=130°, y=130°

Since y and z are alternate angles, $z = 130^{\circ}$.

(iii) Sum of all angles in a triangle is 180°

Therefore,
$$30^{\circ} + 90^{\circ} + z = 180^{\circ}$$

$$=>_{\rm Z} = 60^{\circ}$$

Opposite angles are equal in the parallelogram.

Therefore, $y = z = 60^{\circ}$ and $x=30^{\circ}$ (alternate angles)

(iv) $x = 90^{\circ}$ (vertically opposite angle)

Sum of all angles in a triangle is 180°.

Therefore,
$$y + 90^{\circ} + 30^{\circ} = 180^{\circ}$$

$$=> y = 60^{\circ}$$

$$y=z=60^{\circ}$$
 (alternate angles)

(v)Opposite angles are equal in a parallelogram.

Therefore, $y = 80^{\circ}$

$$y + x = 180^{\circ}$$

$$=> x = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

 $z = y = 80^{\circ}$ (alternate angles)

(vi) $y = 112^{\circ}$ (opposite angles are equal in a parallelogram)

In triangleUTW:

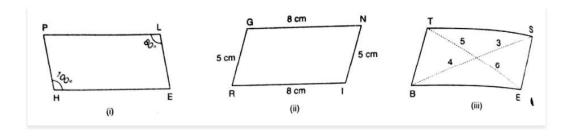
 $x + y + 40^{\circ} = 180^{\circ}$ (angle sum property of a triangle)

$$x = 180^{\circ} - (112^{\circ} - 40^{\circ}) = 28^{\circ}$$

Bottom left vertex = $180^{\circ} - 112^{\circ} = 68^{\circ}$

Therefore, $z = x = 28^{\circ}$ (alternate angles)

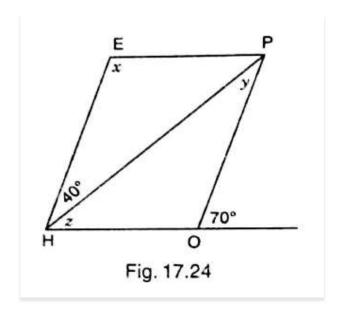
Q 3. Can the following figures be parallelograms? Justify your answers.



SOLUTION:

- (i) No. This is because the opposite angles are not equal.
- (ii) Yes. This is because the opposite sides are equal.
- (iii) No. This is because the diagonals do not bisect each other.

Q 4. In the adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the geometrical truths you use to find them.



SOLUTION:

$$\angle$$
H0P + 70° = 180° (linear pair)

$$\angle \text{HOP} = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

 $x = \angle HOP = 110^{\circ}$ (opposite angles of a parallelogram are equal)

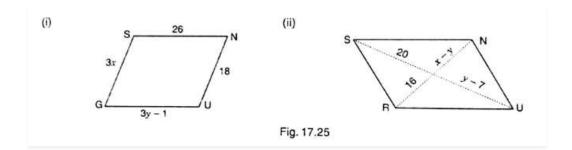
 \angle EHP + \angle HEP = 180° (sum of adjacent angles of a parallelogram is 180°)

$$110^{\circ} + 40^{\circ} + z = 180^{\circ}$$

$$z = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

 $y = 40^{\circ}$ (alternate angles)

Q 5. In the following figures GUNS and RUNS are parallelograms. Find \boldsymbol{x} and $\boldsymbol{y}.$



SOLUTION:

(i) Opposite sides are equal in a parallelogram.

Therefore,
$$3y - 1 = 26$$

$$=> 3y = 27$$

$$y = 9$$
.

Similarly,
$$3x = 18$$

$$x = 6$$
.

(ii) Diagonals bisect each other in a parallelogram.

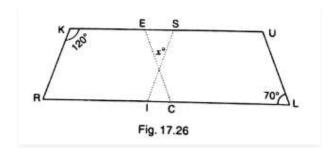
Therefore,
$$y - 7 = 20$$

$$x - y = 16$$

$$x - 27 = 16$$

$$x = 43$$
.

Q 6. In the following figure RISK and CLUE are parallelograms. Find the measure of x.



SOLUTION:

In the parallelogram RISK:

$$\angle$$
ISK + \angle RKS = 180° (sum of adjacent angles of a parallelogram is 180°)

$$\angle$$
ISK = 180° - 120° = 60°

Similarly, in parallelogram CLUE:

$$\angle$$
CEU = \angle CLU = 70° (opposite angles of a parallelogram are equal)

In the triangle:

$$x + \angle ISK + \angle CEU = 180^{\circ}$$

Q 7. Two opposite angles of a parallelogram are $(3x-2)^{\circ}$ and $(50-x)^{\circ}$. Find the measure of each angle of the parallelogram.

SOLUTION:

Oppostie angles of a parallelogram are congurent

Therefore, $3x - 2^{\circ} = 50 - x^{\circ}$

$$3x^{\circ} - 2^{\circ} = 50^{\circ} - x^{\circ}$$

$$3x^{\circ} + x^{\circ} = 50^{\circ} + 2^{\circ}$$

$$4x^{\circ} = 52^{\circ}$$

$$x^{\circ} = 13^{\circ}$$

Putting the value of x in one angle:

$$3x^{\circ} - 2^{\circ} = 39^{\circ} - 2^{\circ} = 37^{\circ}$$

Opposite angles are congruent.

Therefore,
$$50^{\circ} - x^{\circ} = 37^{\circ}$$

Let the remaining two angles be y and z.

Angles y and z are congruent because they are also opposite angles.

Therefore, y = z

The sum of adjacent angles of a parallelogram is equal to 180°

Therefore, $37^{\circ} + y = 180^{\circ}$

$$y = 180^{\circ} - 37^{\circ}$$

$$y = 143^{\circ}$$

So, the anlges measure are: 37°, 37°, 143° and 143°.

Q 8. If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.

SOLUTION:

Two adjacent angles of a parallelogram add up to 180°.

Let x be the angle. Therefore, $x + \frac{2x}{3} = 180^{\circ}$

$$\frac{5x}{3} = 180^{\circ}$$

$$\frac{2x}{3} = \frac{2(72^\circ)}{3} = 108^\circ$$

Thus, two of the angles in the parallelogram are 108° and the other two are 72°.

Q 9. The measure of one angle of a parallelogram is 70°. What are the measures of the remaining angles?

SOLUTION:

Given that one angle of the parallelogram is 70°.

Since opposite angles have same value, if one is 70°, then the one directly opposite will also be 70°

So, let one angle be x° .

 $x^{\circ} + 70^{\circ} = 180^{\circ}$ (the sum of adjacent angles of a parallelogram is 180°)

$$x^{\circ} = 180^{\circ} - 70^{\circ}$$

$$x^{\circ} = 110^{\circ}$$

Thus, the remaining angles are 110°, 110° and 70°.

Q 10. Two adjacent angles of a parallelogram are as 1:2. Find the measures of all the angles of the parallelogram.

Let the angle be A and B.

The angles are in the ratio of 1:2.

Measures of $\angle A$ and $\angle B$ are x° and $2x^{\circ}$.

Then, As we know that the sum of adjacent angles of a parallelogram is 180°.

Therefore, $\angle A + \angle B = 180^{\circ}$

$$=>_{\rm X}^{\circ} + 2_{\rm X}^{\circ} = 180^{\circ}$$

$$=> 3x^{\circ} = 180^{\circ}$$

$$=> x^{\circ} = 60^{\circ}$$

Thus, measure of $\angle A = 60^{\circ}$, $\angle B = 120^{\circ}$, $\angle C = 60^{\circ}$ and $\angle D = 120^{\circ}$.

Q 11. In a parallelogram ABCD, \angle D=135°, determine the measure of \angle A and \angle B.

SOLUTION:

In a parallelogram, opposite angles have the same value.

Therefore, $\angle D = \angle B = 135^{\circ}$

Also,
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$
 and $\angle A + \angle D = 180^{\circ}$.

$$\angle A = 180^{\circ} - 135^{\circ} = 45^{\circ}$$
.

Q 12. ABCD is a parallelogram in which $\angle A = 70^{\circ}$. Compute $\angle B$, $\angle C$ and $\angle D$.

SOLUTION:

Opposite angles of a parallelogram are equal.

Therefore,
$$\angle C = 70^{\circ} = \angle A$$

Also, the sum of the adjacent angles of a parallelogram is 180°

Therefore, $\angle A + \angle B = 180^{\circ}$

Q 13. The sum of two opposite angles of a parallelogram is 130°. Find all the angles of the parallelograms.

SOLUTION:

Let the angles be A, B, C and D.

It is given that the sum of two opposite angles is 130°.

Therefore,
$$\angle A + \angle C = 130^{\circ}$$

$$\angle A + \angle A = 130^{\circ}$$
 (opposite angles of a parallelogram are equal)

$$\angle A = 65^{\circ} \text{ and } \angle C = 65^{\circ}$$

The sum of adjacent angles of a parallelogram is 180°.

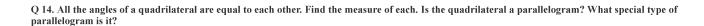
$$\angle A + \angle B = 180^{\circ}$$

$$65^{\circ} + \angle B = 180^{\circ}$$

$$\angle B = 180^{\circ} - 65^{\circ}$$

$$\angle B = 115^{\circ}$$

Therefore, $\angle A = 65^{\circ}$, $\angle B = 115^{\circ}$, $\angle C = 65^{\circ}$ and $\angle D = 115^{\circ}$.



Let the angle be x

All the angles are equal.

Therefore, $x + x + x + x = 360^{\circ}$.

$$4x = 360^{\circ}$$

$$x = 90^{\circ}$$
.

So, each angle is 90° and quadrilateral is a parallelogram. It is a rectangle.

Q 15. Two adjacent sides of a parallelogram are 4 cm and 3 cm respectively. Find its perimeter.

SOLUTION:

We know that the opposite sides of a parallelogram are equal.

Two sides are given, i.e. 4 cm and 3 cm. Therefore, the rest of the sides will also be 4 cm and 3 cm.

Therefore, Perimeter = Sum of all the sides of a parallelogram = 4 + 3 + 4 + 3 = 14 cm

Q 16. The perimeter of a parallelogram is 150 cm. One of its sides is greater than the other by 25 cm. Find the length of the sides of the parallelogram.

SOLUTION:

Opposite sides of a parallelogram are same.

Let two sides of the parallelogram be x and y.

Given:
$$x = y + 25$$

Also, x + y + x + y = 150 (Perimeter= Sum of all the sides of a parallelogram)

$$y + 25 + y + y + 25 + y = 150$$

$$4y = 150 - 50$$

$$4y = 100$$

$$y = 100/4 = 25$$

therefore,
$$x = y + 25 = 25 + 25 = 50$$

Thus, the lengths of the sides of the parallelogram are 50 cm and 25 cm.

Q 17. The shorter side of a parallelogram is 4.8 cm and the longer side is half as much again as the shorter side. Find the perimeter of the parallelogram.

SOLUTION:

Given:

Shorter side =
$$4.8$$
 cm, Longer side = $\frac{4.8}{2} + 4.8 = 7.2$ cm

Perimeter = Sum of all sides = 4.8 + 4.8 + 7.2 + 7.2 = 24 cm

Q 18. Two adjacent angles of a parallelogram are $(3x-4)^{\circ}$ and $(3x+10)^{\circ}$. Find the angles of the parallelogram.

SOLUTION:

We know that the adjacent angles of a parallelogram are supplementary.

Hence, $3x + 10^{\circ}$ and $3x - 4^{\circ}$ are supplementry.

$$3x + 10^{\circ} + 3x - 4^{\circ} = 180^{\circ}$$

$$6x^{\circ} + 6^{\circ} = 180^{\circ}$$

$$6x^{\circ} = 174^{\circ}$$

 $x = 29^{\circ}$

First angle = $3x+10^{\circ} = 3(29^{\circ}) + 10^{\circ} = 97^{\circ}$

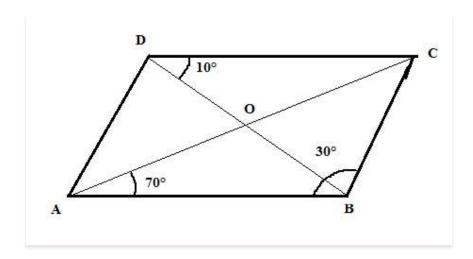
Second angle = $3x - 4^{\circ} = 83^{\circ}$

Thus, the angles of the parallelogram are 97°, 83°, 97° and 83°.

Q 19. In a parallelogram ABCD, the diagonals bisect each other at O. If \angle ABC = 30°, \angle BDC = 10° and \angle CAB = 70°. Find:

 $\angle DAB, \angle ADC, \angle BCD, \angle AOD, \angle DOC, \angle BOC, \angle AOB, \angle ACD, \angle CAB, \angle ADB, \angle ACB, \angle DBC \text{ and } \angle DBA.$

SOLUTION:



∠ABC=30°

Therefore, $\angle ADC = 30^{\circ}$ (opposite angle of the parallelogram) and $\angle BDA = \angle ADC - \angle BDC = 30^{\circ} - 10^{\circ} = 20^{\circ}$

 $\angle BAC = \angle ACD = 70^{\circ}$ (alternate angle)

In triangle ABC: \angle CAB + \angle ABC + \angle BCA = 180°

 $70^{\circ} + 30^{\circ} + \angle BCA = 180^{\circ}$

Therefore, $\angle BCA = 80^{\circ}$

 \angle DAB = \angle DAC + \angle CAB = 70° + 80° = 150°

 $\angle BCD = 150^{\circ}$ (opposite angle of the parallelogram)

 $\angle DCA = \angle CAB = 70^{\circ}$

In triangle DOC: \angle ODC + \angle DOC + \angle OCD = 180°

 $10^{\circ} + 70^{\circ} + \angle DOC = 180^{\circ}$

Therefore, ∠DOC=100°

 $\angle DOC + \angle BOC = 180^{\circ}$

 $\angle BOC = 180^{\circ} - 100^{\circ}$

 $\angle BOC = 80^{\circ}$

 $\angle AOD = \angle BOC = 80^{\circ}$ (vertically opposite angles)

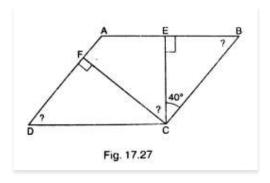
 $\angle AOB = \angle DOC = 100^{\circ}$ (vertically opposite angles)

∠CAB = 70°

Given $\angle ADB = 20^{\circ}$

 $\angle DBA = \angle BDC = 10^{\circ}$ (alternate angles)

 $\angle ADB = \angle DBC = 20^{\circ}$ (alternate angle).



In triangleCEB: \angle ECB + \angle CBE + \angle BEC = 180° (angle sum property of a triangle)

$$40^{\circ} + 90^{\circ} + \angle EBC = 180^{\circ}$$

Therefore, $\angle EBC = 50^{\circ}$

Also, $\angle EBC = \angle ADC = 50^{\circ}$ (opposite angle of a parallelogram)

In triangleFDC: \angle FDC + \angle DCF + \angle DCF = 180°

$$50^{\circ} + 90^{\circ} + \angle DCF = 180^{\circ}$$

Therefore, $\angle DCF = 40^{\circ}$

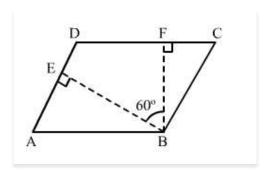
Now, \angle BCE + \angle ECF + \angle FCD + \angle FDC = 180° (in a parallelogram, the sum of alternate angle is 180°

$$50^{\circ} + 40^{\circ} + \angle ECF + 40^{\circ} = 180^{\circ}$$

$$\angle ECF = 180^{\circ} - 50^{\circ} + 40^{\circ} - 40^{\circ} = 50^{\circ}$$

Q 21. The angle between the altitudes of a parallelogram, through the same vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.

SOLUTION:



Draw a parallelogram ABCD.

Drop a perpendicular from B to the side AD, at the point E.

Drop a perpendicular from B to the side CD, at the point F.

In the quadrilateral BEDF: \angle EBF = 60°, \angle BED = 90°, \angle BFD=90°

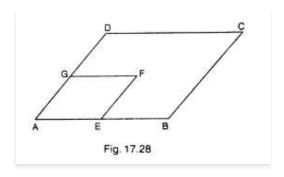
$$\angle EDF = 360^{\circ} - (60^{\circ} + 90^{\circ} + 90^{\circ}) = 120^{\circ}$$

In a parallelogram, opposite angles are congruent and adjacent angles are supplementary.

In the parallelogram ABCD: $\angle B = \angle D = 120^{\circ}$

$$\angle A = \angle C = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Q 22. In Fig. 17.28, ABCD and AEFG are parallelograms. If $\angle C$ = 55°, what is the measure of $\angle F$?

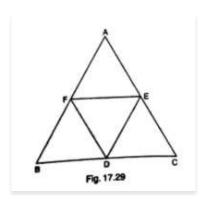


Both the parallelograms ABCD and AEFG are similar.

Therefore, $\angle C = \angle A = 55^{\circ}$ (opposite angles of a parallelogram are equal)

Therefore, $\angle A = \angle F = 55^{\circ}$ (opposite angles of a parallelogram are equal).

Q 23. In Fig. 17.29, BDEF and DCEF are each a parallelogram. Is it true that BD = DC? Why or why not?



SOLUTION:

In parallelogram BDEF

Therefore, BD = EF(i) (opposite sides of a parallelogram are equal)

In parallelogram DCEF

CD = EF(ii) (opposite sides of a parallelogram are equal)

From equations (i) and (ii)

BD=CD

Q 24. In Fig. 17.29, suppose it is known that DE = DF. Then, is triangle ABC isosceles? Why why not?

SOLUTION:

In \triangle FDE: DE = DF

 \angle FED = \angle DFE(i) (angles opposite to equal sides)

In the ||gm BDEF: ∠FBD = ∠FED (ii) (opposite angles of a parallelogram are equal)

In the \parallel gm DCEF: \angle DCE = \angle DFE(iii) (opposite angles of a parallelogram are equal)

From equations (i), (ii) and (iii): \angle FBD = \angle DCE

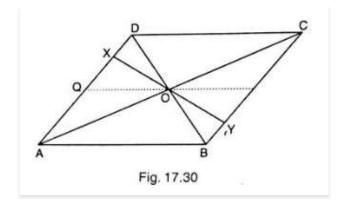
In triangle ABC: if \angle FBD = \angle DCE, then AB = AC(sides opposite to the equal angles.)

Hence, triangle ABC is isosceles.

Q 25. Diagonals of parallelogram ABCD intersect at O as shown in Fig. 17.30. XY contain, O, and X, Y are points on opposite sides of the parallelogram. Give reasons for each of the following:

- (i) OB = OD
- (ii) $\angle OBY = \angle ODX$
- (iii) $\angle BOY = \angle DOX$
- (iv) $\triangle BOY \cong \triangle DOX$

Now, state if XY is bisected at O.



SOLUTION:

- (i) Diagonals of a parallelogram bisect each other.
- (ii) Alternate angles
- (iii) vertically opposite angles
- (iv) ΔBOY and ΔDOX : OB=OD (diagonals of a parallelogram bisect each other)

 \angle OBY = \angle ODX (alternate angles)

 $\angle BOY = \angle DOX$ (verticalty opposite angles)

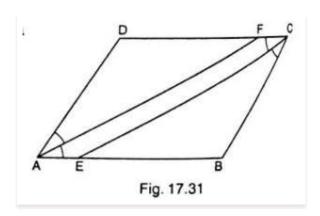
ASA congruence:

XO = YO (c.p.c.t)

So, XY is bisected at O.

Q 26.In fig. 17.31,ABCD is a parallelogram, CE bisects \angle C and AF bisects \angle A. In each of the following, if the statement is true, give a reason for the same:

- (i) $\angle A = \angle C$
- (ii) $\angle FAB = 1/2 \angle A$
- (iii) $\angle DCE = 1/2 \angle C$
- (iv) $\angle CEB = \angle FAB$
- (v) CE||AF



- (i) True, since opposite angles of a parallelogram are equal.
- (ii) True, as AF is the bisector of LA.
- (iii) True, as CE is the bisector of zC.
- (iv) True

 $\angle CEB = \angle DCE \dots (i)$ (alternate angles)

∠DCE = ∠FAB(ii) (opposite angles of a parallelogram are equal)

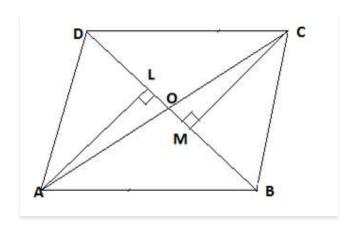
From equations (i) and (ii):

 $\angle CEB = \angle FAB$

(v) True, as corresponding angles are equal ($\angle CEB = \angle FAB$).

Q 27. Diagonals of a parallelogram ABCD intersect at O. AL and CM are drawn perpendiculars to BD such that L and M lie on BD. Is AL = CM? Why or why not?

SOLUTION:



In \triangle AOL and \triangle CMO:

 $\angle AOL = \angle COM($ vertically opposite angle).....(i)

$$\angle$$
 ALO = \angle CM0 = 90° (each right angle).....(ii)

Using angle sum property: $\angle AOL + \angle ALO + \angle LAO = 180^{\circ}$ (iii)

$$\angle$$
COM + \angle CMO + \angle OCM = 180°....(iv)

From equations (iii) and (iv):

$$\angle AOL + \angle ALO + \angle LAO = \angle COM + \angle CMO + \angle OCM$$

 $\angle LAO = \angle OCM$ (from equation (i) and (ii))

In ΔAOL and ΔCMO :