RD Sharma Solutions

 Class 8 Maths Chapter 27 Ex 27.2Q 1. The following table shows the number of patients discharged from a hospital with HIV diagnosis in different years:

Years:	2002	2003	2004	2005	2006
Number of patients:	150	170	195	225	230

Represent this information by a graph.

SOLUTION:
Here, year is an independent variable and the number of patients is a dependent variable. So, we take years on the x-axis and the number of patients on the y axis.

Let us choose the following scale:
On x-axis: $2 \mathrm{~cm}=1$ year
On y-axis: $1 \mathrm{~cm}=10$ patients
Also, let us assume that on the x-axis, origin (O) represents 2001 and on the y-axis, origin (O) represents 120 , i.e. $O(2001,120)$.
Now, let us plot $(2002,150),(2003,170),(2004,195),(2005,225),(2006,230)$. These points are joined to get the graph representing the given information shown in the figure below.

Q 2. The following table shows the amount of rice grown by a farmer in different years:

Years:	2000	2001	2002	2003	2004	2005	2006
Rice grown (in quintals):	200	180	240	260	250	200	270

Plot a graph to illustrate this information.

SOLUTION:

Here, the year is an independent variable and quantity of rice grown is a dependent variable. So, we take years on the x-axis and quantity of rice grown on th y -axis.

Let us choose the following scale:
On x-axis: $2 \mathrm{~cm}=1$ year
On y-axis: $1 \mathrm{~cm}=20$ quintals
Let us assume that the origin O represents the coordinates $(1999,160)$.
Now, let us plot $(2000,200),(2001,180),(2002,240),(2003,260),(2004,250),(2005,200),(2006,270)$.
These points are joined to get the graph representing the given information as shown in the figure below.

$$
.
$$

Q 3. The following table gives the information regarding the number of persons employed to a piece of work and time taken to complete the work:

Number of persons:	2	4	6	8
Time taken (in days):	12	6	4	3

Plot a graph of this information.

SOLUTION:

Here, the number of persons is an independent variable and time taken is a dependent variable. So, we take the number of persons on the x-axis and time tak on the y-axis.

Let us choose the following scale:
On x-axis: $2 \mathrm{~cm}=2$ persons
On y-axis: $2 \mathrm{~cm}=2$ days
Now, let us plot $(2,12),(4,6),(6,4),(8,3)$. These points are joined to get the graph representing the given information as shown in the figure below.

Q 4. The following table gives the information regarding the length of a side of a square and its area:

Length of a side (in cm):	1	2	3	4	5
Area of square (in cm^{2}):	1	4	9	16	25

Draw a graph to illustrate this information.

SOLUTION:

Here, length of a side is an independent variable and area of the square is a dependent variable. So, we take the length of a side on the x -axis and area of the square on the y-axis.

Let us choose the following scale:
On x-axis: $2 \mathrm{~cm}=1 \mathrm{~cm}$
On y-axis: $1 \mathrm{~cm}=2 \mathrm{~cm}^{2}$
Now we plot $(1,1),(2,4),(3,9),(4,16),(5,25)$. These points are joined to get the graph representing the given information as shown in the figure below.

Q 5. The following table shows the sales of a commodity during its years 2000 to 2006 .

Years:	2000	2001	2002	2003	2004	2005	2006
Sales (in lakhs of Rs):	1.5	1.8	2.4	3.2	5.4	7.8	8.6

Draw a graph of this information.

SOLUTION:

Here, year is an independent variable and sales is a dependent variable. So, we take year on the x-axis and sales on the y-axis.
Let us choose the following scale:
On x-axis: $2 \mathrm{~cm}=1$ year
On y-axis: $2 \mathrm{~cm}=1$ lakh rupees
Assume that on x -axis, origin (O) represents 1991.
So, the coordinates of O are $(1991,0)$
Now, let us plot $(2000,1.5),(2001,1.8),(2002,2.4),(2003,3.2),(2004,5.4),(2005,7.8)$ and $(2006,8.6)$. These points are joined to get the graph representi the given information as shown in the figure below

