Some Special Series

Exercise 13A

Q. 1. Find the sum of the series whose nth term is given by:
$\left(3 n^{2}+2 n\right)$
Answer : It is given in the question that the $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=3 n^{2}+2 n$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(3 n^{2}+2 n\right)$
$=\sum_{n=1}^{n}\left(3 n^{2}\right)+\sum_{n=1}^{n}(2 n)$
$=3 \sum_{n=1}^{n}\left(n^{2}\right)+2 \sum_{n=1}^{n}(n)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=3 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
From the above identities,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=3 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n}) \\
& \mathrm{S}_{\mathrm{n}}=3\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+2\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right) \\
& =\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{2}\right)+\mathrm{n}(\mathrm{n}+1) \\
& =\mathrm{n}(\mathrm{n}+1)\left(\frac{2 \mathrm{n}+1}{2}+1\right) \\
& =\frac{\mathrm{n}}{2}(\mathrm{n}+1)(2 \mathrm{n}+3)
\end{aligned}
$$

Hence, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(\mathrm{n}+1)(2 \mathrm{n}+3)$
Q. 2. Find the sum of the series whose nth term is given by:
$n(n+1)(n+4)$
Answer : It is given in the question that the $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=n(n+1)(n+4)$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}(n(n+1)(n+4))$
$=\sum_{n=1}^{n}\left(n^{3}+5 n^{2}+4 n\right)$
$=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+5 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+4 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{k}=\mathrm{Nk}$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+5 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+4 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
From the above identities,

$$
\begin{aligned}
& S_{n}=\sum_{n=1}^{n}\left(n^{3}\right)+5 \sum_{n=1}^{n}\left(n^{2}\right)+4 \sum_{n=1}^{n}(n) \\
& S_{n}=\left(\frac{n(n+1)}{2}\right)^{2}+5\left(\frac{n(n+1)(2 n+1)}{6}\right)+4\left(\frac{n(n+1)}{2}\right) \\
& S_{n}=\frac{(n(n+1))^{2}}{4}+5\left(\frac{n(n+1)(2 n+1)}{6}\right)+2(n(n+1)) \\
& =n(n+1)\left(\frac{n(n+1)}{4}+5\left(\frac{2 n+1}{6}\right)+2\right) \\
& =\frac{n(n+1)}{24}(6 n(n+1)+20(2 n+1)+48) \\
& =\frac{n(n+1)}{24}\left(6 n^{2}+46 n+68\right) \\
& =\frac{n(n+1)}{12}(63+23 n+34)
\end{aligned}
$$

Hence, the Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{12}(63+23 \mathrm{n}+34)$

Q. 3. Find the sum of the series whose nth term is given by:

$\left(4 n^{3}+6 n^{2}+2 n\right)$
Answer : It is given in the question that the $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=4 n^{3}+6 n^{2}+2 n$
Now, we need to find the sum of this series, S_{n}.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \\
& \mathrm{~S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(4 \mathrm{n}^{3}+6 \mathrm{n}^{2}+2 \mathrm{n}\right) \\
& =\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(4 \mathrm{n}^{3}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(6 \mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(2 \mathrm{n}) \\
& =4 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+6 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})
\end{aligned}
$$

Note:
I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=4 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+6 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
From the above identities,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=4 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+6 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n}) \\
& \mathrm{S}_{\mathrm{n}}=4\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+6\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+2\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right) \\
& =(\mathrm{n}(\mathrm{n}+1))^{2}+\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+\mathrm{n}(\mathrm{n}+1) \\
& =\mathrm{n}(\mathrm{n}+1)[\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+1] \\
& =\mathrm{n}(\mathrm{n}+1)\left[\mathrm{n}^{2}+3 \mathrm{n}+2\right] \\
& =\mathrm{n}(\mathrm{n}+1)^{2}(\mathrm{n}+2)
\end{aligned}
$$

Hence, the Sum of the series, $\mathrm{S}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)^{2}(\mathrm{n}+2)$

Q. 4. Find the sum of the series whose nth term is given by:

$\left(3 n^{2}-3 n+2\right)$
Answer : It is given in the question that the $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=3 n^{2}-3 n+2$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$S_{n}=\sum_{n=1}^{n}\left(3 n^{2}-3 n+2\right)$

$$
\begin{aligned}
& =\sum_{n=1}^{n}\left(3 n^{2}\right)-\sum_{n=1}^{n}(3 n)+\sum_{n=1}^{n}(2) \\
& =3 \sum_{n=1}^{n}\left(n^{2}\right)-3 \sum_{n=1}^{n}(n)+\sum_{n=1}^{n}(2)
\end{aligned}
$$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=3 \sum_{n=1}^{n}\left(n^{2}\right)-3 \sum_{n=1}^{n}(n)+\sum_{n=1}^{n}(2)$
$\mathrm{S}_{\mathrm{n}}=3\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)-3\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)+2 \mathrm{n}$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)-3 \mathrm{n}(\mathrm{n}+1)+4 \mathrm{n}}{2}\right)$
On simplifying,
$S_{n}=n\left(n^{2}+1\right)$
Hence, the sum of the series, $\mathrm{S}_{\mathrm{n}}=\mathrm{n}\left(\mathrm{n}^{2}+1\right)$
Q. 5. Find the sum of the series whose nth term is given by:
$\left(2 n^{2}-3 n+5\right)$
Answer : It is given in the question that the $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=2 n^{2}-3 n+5$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(2 n^{2}-3 n+5\right)$
$=\sum_{n=1}^{n}\left(2 n^{2}\right)-\sum_{n=1}^{n}(3 n)+\sum_{n=1}^{n}(5)$
$=2 \sum_{n=1}^{n}\left(n^{2}\right)-3 \sum_{n=1}^{n}(n)+\sum_{n=1}^{n}(5)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,

$$
\begin{aligned}
& S_{n}=2 \sum_{n=1}^{n}\left(n^{2}\right)-3 \sum_{n=1}^{n}(n)+\sum_{n=1}^{n}(5) \\
& S_{n}=2\left(\frac{n(n+1)(2 n+1)}{6}\right)-3\left(\frac{n(n+1)}{2}\right)+5 n \\
& =\left(\frac{2 n(n+1)(2 n+1)-9 n(n+1)+30 n}{6}\right) \\
& =\left(\frac{4 n^{3}-3 n^{2}+23 n}{6}\right) \\
& =\frac{n}{6}\left(4 n^{2}-3 n+23\right)
\end{aligned}
$$

Hence, the sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{6}\left(4 \mathrm{n}^{2}-3 \mathrm{n}+23\right)$
Q. 6. Find the sum of the series whose nth term is given by:
$\left(n^{3}-3^{n}\right)$

Answer: It is given in the question that the $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=n^{3}-3^{n}$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(n^{3}-3^{n}\right)$
$=\sum_{n=1}^{n}\left(n^{3}\right)+\sum_{n=1}^{n}\left(3^{n}\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$

So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(n^{3}\right)+\sum_{n=1}^{n}\left(3^{n}\right)$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(3^{\mathrm{n}}\right) \rightarrow(1)$
The second term in the equation, $\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(3^{\mathrm{n}}\right)=3^{1}+3^{2}+\cdots 3^{\mathrm{n}}$,
Forms a GP, with the common ratio, $r=3$.
Sum of n terms of a GP, $a, a r, a r^{2}, a r^{3} \ldots a r^{n}$.
$\mathrm{s}_{\mathrm{n}}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}$
Here, $a=3, r=3$;
So,
$\mathrm{S}_{\mathrm{n}}=\frac{3\left(3^{\mathrm{n}}-1\right)}{3-1}=\frac{3\left(3^{\mathrm{n}}-1\right)}{2} \rightarrow(2)$
Substitute (2) in (1);
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+\frac{3\left(3^{\mathrm{n}}-1\right)}{2}$
Hence, the sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+\frac{3\left(3^{\mathrm{n}}-1\right)}{2}$

Q. 7. Find the sum of the series:

$\left(2^{2}+4^{2}+6^{2}+8^{2}+\ldots\right.$ to n terms $)$
Answer : In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\ldots 2^{2}+4^{2}+6^{2}+8^{2}+\ldots$ to n terms .

The series can be written as, $\left[(2 \times 1)^{2},(2 \times 2)^{2}\right.$,
$\left.(2 \times 3)^{2} \ldots(2 \times n)^{2}\right]$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$\mathrm{a}_{\mathrm{n}}=(2 \mathrm{n})^{2}=4 \mathrm{n}^{2}$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$S_{n}=\sum_{n=1}^{n}\left(4 n^{2}\right)$
$=4 \sum_{n=1}^{n}\left(n^{2}\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}
$$

III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}
$$

IV. Sum of a constant k, N times,

$$
\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{k}=\mathrm{Nk}
$$

So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=4 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)$
From, the above identities,
$S_{n}=4 \sum_{n=1}^{n}\left(n^{2}\right)$
$\mathrm{S}_{\mathrm{n}}=4\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)$
$=\frac{2}{3}[n(n+1)(2 n+1)]$
$\mathrm{S}_{\mathrm{n}}=\frac{2}{3}[\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{2}{3}[\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)]$

Q. 8. Find the sum of the series:

$\left(2^{3}+4^{3}+6^{3}+8^{3}+\ldots\right.$ to n terms $)$
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\ldots 2^{3}+4^{3}+6^{3}+8^{3}+\ldots$ to n terms.
The series can be written as, $\left[(2 \times 1)^{3},(2 \times 2)^{3}\right.$,
$\left.(2 \times 3)^{3} \ldots(2 \times n)^{3}\right]$.

So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=(2 n)^{3}=8 n^{3}$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(8 n^{3}\right)$
$=8 \sum_{n=1}^{n}\left(n^{3}\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$

So, for the given series, we need to find,
$S_{n}=8 \sum_{n=1}^{n}\left(n^{3}\right)$
From, the above identities,
$S_{n}=8 \sum_{n=1}^{n}\left(n^{3}\right)$
$\mathrm{S}_{\mathrm{n}}=8\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
$=2[\mathrm{n}(\mathrm{n}+1)]^{2}$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=2[\mathrm{n}(\mathrm{n}+1)]^{2}$
Q. 9. Find the sum of the series:
$\left(5^{2}+6^{2}+7^{2}+\ldots+20^{2}\right)$
Answer : In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $5^{2}, 6^{2}, 7^{2} \ldots 20^{2}$.
The series can be written as, $\left[(1+4)^{2},(2+4)^{2},(3+4)^{2} \ldots(16+4)^{2}\right]$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=(n+4)^{2}$
With $\mathrm{n}=16$,
$a_{n}=n^{2}+8 n+16$
Now, we need to find the sum of this series, S_{n}.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \\
& \mathrm{~S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}+8 \mathrm{n}+16\right) \\
& =\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(8 \mathrm{n})+\sum_{\mathrm{n}=1}^{\mathrm{n}}(16)
\end{aligned}
$$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}
$$

IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(n^{2}\right)+\sum_{n=1}^{n}(8 n)+\sum_{n=1}^{n}(16)$

From, the above identities,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(8 \mathrm{n})+\sum_{\mathrm{n}=1}^{\mathrm{n}}(16)$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+8\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)+16 \mathrm{n}$
Here, $\mathrm{n}=16$ (from the question);
$\mathrm{S}_{\mathrm{n}}=\left(\frac{(16)(17)(33)}{6}\right)+\left(\frac{(8)(16)(17)}{2}\right)+16 \times 16$
$S_{n}=2840$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=2840$.
Q. 10. Find the sum of the series:
$(1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $(1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+\ldots$ to n terms.
The series can be written as, $[(1 \times(1+1)),(2 \times(2+1))$,
$(3 \times(3+1)), \ldots(n \times(n+1))]$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$\mathrm{a}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)$
$a_{n}=n^{2}+n$

Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}+\mathrm{n}\right) \\
& =\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})
\end{aligned}
$$

Note:

V. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
VI. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
VII. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
VIII. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(n^{2}\right)+\sum_{n=1}^{n}(n)$
From, the above identities,
$S_{n}=\sum_{n=1}^{n}\left(n^{2}\right)+\sum_{n=1}^{n}(n)$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left(\frac{2 \mathrm{n}+4}{3}\right)$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left(\frac{2 \mathrm{n}+4}{3}\right)$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{3}\right)$
Q. 11. Find the sum of the series:
$(3 \times 8)+(6 \times 11)+(9 \times 14)+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $(3 \times 8)+(6 \times 11)+(9 \times 14)+\ldots$ to n terms.
The series can be written as, $[(3 \times 1) \times(3 \times 1+5)),(3 \times 2) \times(3 \times 2+5)) \ldots(3 n \times(3 n+$ 5))].

So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=3 n(3 n+5)$
$a_{n}=9 n^{2}+15 n$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$S_{n}=\sum_{n=1}^{n}\left(9 n^{2}+15 n\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=9 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
From, the above identities,
$S_{n}=\sum_{n=1}^{n}\left(9 n^{2}\right)+\sum_{n=1}^{n}(15 n)$
$\mathrm{S}_{\mathrm{n}}=9\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+15\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)(6 \mathrm{n}+18)$
$\mathrm{S}_{\mathrm{n}}=3 \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+3)$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=3 \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+3)$

Q. 12. Find the sum of the series:

$\left(1 \times 2^{2}\right)+\left(2 \times 3^{2}\right)+\left(3 \times 4^{2}\right)+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\left(1 \times 2^{2}\right)+\left(2 \times 3^{2}\right)+\left(3 \times 4^{2}\right)+\ldots$ to n terms.
The series can be written as, $\left[\left(1 \times(1+1)^{2}\right),\left(2 \times(2+1)^{2} \ldots\left(n \times(n+1)^{2}\right]\right.\right.$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$\mathrm{a}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)^{2}$
$\mathrm{an}_{\mathrm{n}}=\mathrm{n}^{3}+2 \mathrm{n}^{2}+\mathrm{n}$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$S_{n}=\sum_{n=1}^{n}\left(n^{3}+2 n^{2}+n\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(n^{3}\right)+2 \sum_{n=1}^{n}\left(n^{2}\right)+\sum_{n=1}^{n}(n)$
From, the above identities,
$S_{n}=\sum_{n=1}^{n}\left(n^{3}\right)+2 \sum_{n=1}^{n}\left(n^{2}\right)+\sum_{n=1}^{n}(n)$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+2\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\frac{2(2 \mathrm{n}+1)}{3}+1\right]$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{3 \mathrm{n}^{2}+11 \mathrm{n}+10}{6}\right]$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{12}\right)\left(3 \mathrm{n}^{2}+11 \mathrm{n}+10\right)$

Q. 13. Find the sum of the series:

$\left(1 \times 2^{2}\right)+\left(3 \times 3^{2}\right)+\left(5 \times 4^{2}\right)+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\left(1 \times 2^{2}\right)+\left(3 \times 3^{2}\right)+\left(5 \times 4^{2}\right)+\ldots$ to n terms.
The series can be written as, $\left[\left(1 \times(1+1)^{2}\right),\left(2 \times(2+1)^{2} \ldots\left(2 n-1 \times(n+1)^{2}\right]\right.\right.$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=(2 n-1)(n+1)^{2}$
$=(2 n-1)\left(n^{2}+2 n+1\right)$
$=2 n^{3}+3 n^{2}-1$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$S_{n}=\sum_{n=1}^{n}\left(2 n^{3}+3 n^{2}-1\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=2 \sum_{n=1}^{n}\left(n^{3}\right)+3 \sum_{n=1}^{n}\left(n^{2}\right)-\sum_{n=1}^{n}(1)$
From, the above identities,
$\mathrm{S}_{\mathrm{n}}=2 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+3 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)-\sum_{\mathrm{n}=1}^{\mathrm{n}}(1)$
$\mathrm{S}_{\mathrm{n}}=2\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+3\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)-\mathrm{n}$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)[\mathrm{n}(\mathrm{n}+1)+(2 \mathrm{n}+1)]-\mathrm{n}$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\mathrm{n}^{2}+3 \mathrm{n}+1\right]-\mathrm{n}$
$S_{n}=\left(\frac{n}{2}\right)\left[(n+1)\left(n^{2}+3 n+1\right)-2\right]$
$S_{n}=\left(\frac{n}{2}\right)\left[n^{3}+4 n^{2}+4 n-1\right]$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}}{2}\right)\left[\mathrm{n}^{3}+4 \mathrm{n}^{2}+4 \mathrm{n}-1\right]$

Q. 14. Find the sum of the series:

$\left(3 \times 1^{2}\right)+\left(5 \times 2^{2}\right)+\left(7 \times 3^{2}\right)+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\left(3 \times 1^{2}\right)+\left(5 \times 2^{2}\right)+\left(7 \times 3^{2}\right)+\ldots$ to n terms.
The series can be written as, $\left[\left(3 \times 1^{2}\right),\left(5 \times 2^{2} \ldots\left((2 n+1) \times n^{2}\right]\right.\right.$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=(2 n+1) n^{2}$
$a_{n}=2 n^{3}+n^{2}$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(2 \mathrm{n}^{3}+\mathrm{n}^{2}\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(2 n^{3}\right)+\sum_{n=1}^{n}\left(n^{2}\right)$
From, the above identities,
$S_{n}=2 \sum_{n=1}^{n}\left(n^{3}\right)+\sum_{n=1}^{n}\left(n^{2}\right)$
$\mathrm{S}_{\mathrm{n}}=2\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\mathrm{n}(\mathrm{n}+1)+\frac{(2 \mathrm{n}+1)}{3}\right]$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{3 \mathrm{n}^{2}+5 \mathrm{n}+1}{3}\right]$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{6}\right)\left(3 \mathrm{n}^{2}+5 \mathrm{n}+1\right)$

Q. 15. Find the sum of the series:

$(1 \times 2 \times 3)+(2 \times 3 \times 4)+(3 \times 4 \times 5)+\ldots$ to n terms
Answer : In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $(1 \times 2 \times 3)+(2 \times 3 \times 4)+(3 \times 4 \times 5)+\ldots$ to n terms.
The series can be written as, $[(1 \times(1+1) \times(1+2)),(2 \times(2+1) \times(2+2) \ldots(n \times(n+1)$ $x(n+2)]$.

So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=n(n+1)(n+2)$
$a_{n}=n^{3}+3 n^{2}+2 n$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(n^{3}+3 n^{2}+2 n\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(3 \mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(2 \mathrm{n})$
From, the above identities,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+3 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n}) \\
& \mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+3\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+2\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right) \\
& =\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}+(2 \mathrm{n}+1)+2\right] \\
& =\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{\mathrm{n}^{2}+5 \mathrm{n}+6}{2}\right] \\
& =\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{(\mathrm{n}+3)(\mathrm{n}+2)}{2}\right]
\end{aligned}
$$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)}{4}\right)$

Q. 16. Find the sum of the series:

$(1 \times 2 \times 4)+(2 \times 3 \times 7)+(3 \times 4 \times 10)+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $(1 \times 2 \times 4)+(2 \times 3 \times 7)+(3 \times 4 \times 10)+\ldots$ to n terms.
The series can be written as, $[(1 \times(1+1) \times(3 \times 1+1)),(2 \times(2+1) \times(3 \times 2+1)) \ldots(n \times$ $(\mathrm{n}+1) \times(3 \times \mathrm{n}+1)]$.

So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=n(n+1)(3 n+1)$
$a_{n}=3 n^{3}+4 n^{2}+n$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(3 n^{3}+4 n^{2}+n\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
From, the above identities,
$S_{n}=3 \sum_{n=1}^{n}\left(n^{3}\right)+4 \sum_{n=1}^{n}\left(n^{2}\right)+\sum_{n=1}^{n}(n)$
$\mathrm{S}_{\mathrm{n}}=3\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+4\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{3 \mathrm{n}(\mathrm{n}+1)}{2}+\frac{4(2 \mathrm{n}+1)}{3}+1\right]$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{9 \mathrm{n}^{2}+25 \mathrm{n}+14}{6}\right]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{12}\right)\left(9 \mathrm{n}^{2}+25 \mathrm{n}+14\right)$
Q. 17. Find the sum of the series:
$\frac{1}{1 \mathrm{x} 2}+\frac{1}{2 \mathrm{x} 3}+\frac{1}{3 \mathrm{x} 4}+$.
Answer : In the given question we need to find the sum of the series.

For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+.$. ...to n terms.
The series can be written as, $\frac{1}{1 \times 2}, \frac{1}{2 \times 3}, \frac{1}{3 \times 4}, \ldots \frac{1}{n \mathrm{nx}(\mathrm{n}+1)}$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$\mathrm{a}_{\mathrm{n}}=\frac{1}{\mathrm{n}(\mathrm{n}+1)}$
By the method of partial fractions, we can factorize the above term.

$$
\begin{aligned}
& a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \\
& a_{1}=1-\frac{1}{2} \rightarrow(1) \\
& a_{2}=\frac{1}{2}-\frac{1}{3} \rightarrow(2) \\
& a_{n-1}=\frac{1}{n-1}-\frac{1}{n} \rightarrow(n-1)^{\text {th }} \text { equation }
\end{aligned}
$$

$$
a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \rightarrow n^{\text {th }} \text { equation }
$$

Now, we need to find the sum of this series, S_{n}.
This can be found out by adding the equation (1), (2)...up to $\mathrm{n}^{\text {th }}$ term.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$\mathrm{S}_{\mathrm{n}}=1-\frac{1}{\mathrm{n}+1}=\frac{\mathrm{n}}{\mathrm{n}+1}$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}+1}$

Q. 18. Find the sum of the series:

$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \frac{1}{(2 n-1)(2 n+1)}$
Answer : In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4} \ldots$ to n terms.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=\frac{1}{(2 n-1)(2 n+1)}$
By the method of partial fractions, we can factorize the above term.
$a_{n}=\frac{1}{(2 n-1)(2 n+1)}=\frac{A}{2 n-1}+\frac{B}{2 n+1}$
$1=A(2 n-1)+B(2 n+1)$
On equating the like term on RHS and LHS,
$2 \mathrm{~A}+2 \mathrm{~B}=0 \rightarrow(\mathrm{a})$
$A+B=1 \rightarrow(b)$
On solving, we will get; $A=\frac{1}{2} ; B=-\frac{1}{2}$
$a_{n}=\frac{1}{(2 n-1)(2 n+1)}=\frac{\frac{1}{2}}{2 n-1}-\frac{\frac{1}{2}}{2 n+1}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$

$$
\begin{aligned}
& a_{1}=\frac{1}{2}\left(1-\frac{1}{3}\right) \rightarrow(1) \\
& a_{2}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right) \rightarrow(2) \\
& a_{n-1}=\frac{1}{2}\left(\frac{1}{2 n-3}-\frac{1}{2 n-1}\right) \rightarrow(n-1)^{\text {th }} \text { equation } \\
& a_{n}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \rightarrow n^{\text {th }} \text { equation }
\end{aligned}
$$

Now, we need to find the sum of this series, S_{n}.
This can be found out by adding the equation (1), (2)... up to $\mathrm{n}^{\text {th }}$ term.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$S_{n}=\frac{1}{2}\left[1-\frac{1}{2 n+1}\right]=\frac{n}{2 n+1}$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2 \mathrm{n}+1}$

Q. 19. Find the sum of the series:

$\frac{1}{(1 \times 6)}+\frac{1}{(6 \times 11)}+\frac{1}{(11 \times 16)}+\ldots .+\frac{1}{(5 n-4)(5 n+1)}$

Answer : In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\left(1 \times 2^{2}\right)+\left(2 \times 3^{2}\right)+\left(3 \times 4^{2}\right)+\ldots$ to n terms.
The series can be written as, $\left[\left(1 \times(1+1)^{2}\right),\left(2 \times(2+1)^{2} \ldots\left(n \times(n+1)^{2}\right]\right.\right.$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$\mathrm{a}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)^{2}$
$a_{n}=n^{3}+2 n^{2}+n$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(n^{3}+2 n^{2}+n\right)$
Note:
I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{k}=\mathrm{Nk}$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
From, the above identities,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{3}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}+2\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)$
$=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\frac{2(2 \mathrm{n}+1)}{3}+1\right]$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\left[\frac{3 \mathrm{n}^{2}+11 \mathrm{n}+10}{6}\right]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{12}\right)\left(3 \mathrm{n}^{2}+11 \mathrm{n}+10\right)$

Q. 20. Find the sum of the series:

$$
\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \text { to } \boldsymbol{n} \text { terms }
$$

Answer: In the given question we need to find the sum of the series.
For that, firs, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\cdots$ to n terms
The series can be written as,
$\frac{1^{3}}{1}, \frac{1^{3}+2^{3}}{1+3}, \frac{1^{3}+2^{3}+3^{3}}{1+3+5}, \ldots \frac{1^{3}+2^{3}+3^{3}+\cdots+n^{3}}{1+3+5+\cdots+(2 n-1)}$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=\frac{1^{3}+2^{3}+3^{3}+\cdots n^{3} .}{1+3+5+\cdots+(2 n-1)}$
The denominator of ' an^{\prime} ' forms an AP with first term $\mathrm{a}=1$, last term $=2 \mathrm{n}-1$ and common difference, $\mathrm{d}=2$.

Now, Sum of the AP, $T_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{\mathrm{n}}{2}[2+(\mathrm{n}-1) 2]=\mathrm{n}^{2}$
$a_{n}=\frac{\left(\frac{n(n+1)}{2}\right)^{2}}{n^{2}}=\frac{(n+1)^{2}}{4}$
$\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}^{2}+2 \mathrm{n}+1}{4}$
Now, we need to find the sum of this series, S_{n}.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\frac{\mathrm{n}^{2}+2 \mathrm{n}+1}{4}\right)$
Note:
I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\frac{1}{4}\left[\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})+\sum_{\mathrm{n}=1}^{\mathrm{n}}(1)\right]$
From, the above identities,
$\mathrm{S}_{\mathrm{n}}=\frac{1}{4}\left[\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)+2 \sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})+\sum_{\mathrm{n}=1}^{\mathrm{n}}(1)\right]$
$\mathrm{S}_{\mathrm{n}}=\frac{1}{4}\left[\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)+2\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)+\mathrm{n}\right]$
$=\left(\frac{n}{4}\right)\left[\frac{(n+1)(2 n+1)}{6}+(n+1)+1\right]$
$\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}}{4}\right)\left[\frac{2 \mathrm{n}^{2}+9 \mathrm{n}+13}{6}\right]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}}{24}\right)\left(2 \mathrm{n}^{2}+9 \mathrm{n}+13\right)$

Q. 21. Find the sum of the series:

$3+15+35+63+\ldots$ to n terms
Answer: In the given question we need to find the sum of the series.

For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $3,15,35,63 \ldots$ to n terms.
The series can be written as, $\left[2^{2}-1,4^{2}-1,6^{2}-1 \ldots(2 n)^{2}-1\right]$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=(2 n)^{2}-1$
$a_{n}=4 n^{2}-1$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(4 n^{2}-1\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(4 n^{2}\right)-\sum_{n=1}^{n}(1)$
From, the above identities,
$\mathrm{S}_{\mathrm{n}}=4 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)-\sum_{\mathrm{n}=1}^{\mathrm{n}}(1)$
$\mathrm{S}_{\mathrm{n}}=4\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)-(\mathrm{n})$
$=\left(\frac{\mathrm{n}}{3}\right)[2(\mathrm{n}+1)(2 \mathrm{n}+1)-3]$
$S_{n}=\left(\frac{n}{3}\right)\left[4 n^{2}+6 n-1\right]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{3}\left[4 \mathrm{n}^{2}+6 \mathrm{n}-1\right]$

Q. 22. Find the sum of the series:

$1+5+12+22+35+\ldots$ to n terms
Answer : In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $1+5+12+22+35 \ldots$ to n terms.
This question can be solved by the method of difference.
Note:

Consider a sequence $a_{1}, a_{2}, a_{3} \ldots$ such that the Sequence $a_{2}-a_{1}, a_{3}-a_{2} \ldots$ is either an. A.P. or a G.P.

The $\mathrm{n}^{\text {th }}$ term, of this sequence, is obtained as follows:
$S=a_{1}+a_{2}+a_{3}+\ldots+a_{n-1}+a_{n} \rightarrow(1)$
$S=a_{1}+a_{2}+\ldots+a_{n-2}+a_{n-1}+a_{n} \rightarrow(2)$
Subtracting (2) from (1),
We get, $a_{n}=a_{1}+\left[\left(a_{2}-a_{1}\right)+\left(a_{3}-a_{2}\right)+\ldots\left(a_{n}-a_{n-1}\right)\right]$.
Since the terms within the brackets are either in an A.P. or a G.P, we can find the value of a_{n} the $n^{\text {th }}$ term.

Thus, we can find the sum of the n terms of the sequence as,
$S_{n}=\sum_{k=1}^{n} a_{k}$
So,
By using the method of difference, we can find the $\mathrm{n}^{\text {th }}$ term of the expression.
$S_{n}=1+5+12+22+35+\ldots . .+a_{n} \rightarrow(1)$
$S_{n}=1+5+12+22+35+\ldots+a_{n} \rightarrow(2)$
$(1)-(2) \rightarrow 0=1+4+7+10+\ldots . .-a_{n}$
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=1+4+7+10+\ldots$.
So, the $\mathrm{n}^{\text {th }}$ term form an AP, with the first term, $\mathrm{a}=1$; common difference, $\mathrm{d}=3$.
The required $\mathrm{n}^{\text {th }}$ term of the series is the same as the sum of n terms of AP.
Sum of n terms of an AP, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \times 1+3(\mathrm{n}-1)]$
$=\frac{n}{2}[3 n-1]=\frac{3 n^{2}-n}{2}$
So, $\mathrm{n}^{\text {th }}$ term of the series, $\mathrm{a}_{\mathrm{n}}=\frac{3 \mathrm{n}^{2}-\mathrm{n}}{2}$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n} \frac{3 n^{2}-n}{2}$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots \mathrm{n}$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\frac{1}{2}\left[3 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)-\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})\right]$
From, the above identities,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\frac{1}{2}\left[3 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)-\sum_{\mathrm{n}=1}^{\mathrm{n}}(\mathrm{n})\right] \\
& \mathrm{S}_{\mathrm{n}}=\frac{1}{2}\left[3\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)-\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)\right] \\
& =\left(\frac{\mathrm{n}(\mathrm{n}+1)}{4}\right)[(2 \mathrm{n}+1)-1] \\
& \mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}^{2}(\mathrm{n}+1)}{2}\right)
\end{aligned}
$$

So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\left(\frac{\mathrm{n}^{2}(\mathrm{n}+1)}{2}\right)$
Q. 23. Find the sum of the series:
$5+7+13+31+85+\ldots$. To n terms
Answer: In the given question we need to find the sum of the series.
For that, first, we need to find the $\mathrm{n}^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.

The series given is $5+7+13+31+85+\ldots . n$ terms.
This question can be solved by the method of difference.

Note:

Consider a sequence $a_{1}, a_{2}, a_{3} \ldots$ such that the Sequence $a_{2}-a_{1}, a_{3}-a_{2} \ldots$ is either an. A.P. or a G.P.

The $\mathrm{n}^{\text {th }}$ term, of this sequence, is obtained as follows:
$S=a_{1}+a_{2}+a_{3}+\ldots+a_{n-1}+a_{n} \rightarrow(1)$
$S=a_{1}+a_{2}+\ldots+a_{n-2}+a_{n-1}+a_{n} \rightarrow(2)$
Subtracting (2) from (1),
We get, $a_{n}=a_{1}+\left[\left(a_{2}-a_{1}\right)+\left(a_{3}-a_{2}\right)+\ldots\left(a_{n}-a_{n-1}\right)\right]$.
Since the terms within the brackets are either in an A.P. or a G.P, we can find the value of a_{n}, the $\mathrm{n}^{\text {th }}$ term.

Thus, we can find the sum of the n terms of the sequence as,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}$
So,
By using the method of difference, we can find the $\mathrm{n}^{\text {th }}$ term of the expression.
$S_{n}=5+7+13+31+85+\ldots . .+a_{n} \rightarrow(1)$
$S_{n}=5+7+13+31+85+\ldots+a_{n} \rightarrow(2)$
$(1)-(2) \rightarrow 0=5+2+6+18+54+\ldots .+\left(a_{n}-a_{n-1}\right)-a_{n}$
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=5+2+6+18+54+\ldots$.
In the resulting series obtained, starting from $2,6,18 \ldots$ forms a GP.
So, the $\mathrm{n}^{\text {th }}$ term forms a GP, with the first term, $\mathrm{a}=2$; common ratio, $\mathrm{r}=3$.
The required $\mathrm{n}^{\text {th }}$ term of the series is the same as the sum of n terms of GP and 5 .
The GP is $2+6+18+54+\ldots(n-1)$ terms.
Sum of n terms of a GP, $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
Sum of (n-1) terms of a GP, $S_{n}=\frac{a\left(r^{n-1}-1\right)}{r-1}$
$S_{n}=\frac{2\left(3^{n-1}-1\right)}{2}$
$=3^{\mathrm{n}-1}-1$
$=\frac{3^{n}}{3}-1$
So, $\mathrm{n}^{\text {th }}$ term of the series, $\mathrm{a}_{\mathrm{n}}=\frac{3^{\mathrm{n}}}{3}-1+5=\frac{3^{\mathrm{n}}}{3}+4$
Now, we need to find the sum of this series, S_{n}.
$S_{n}=\sum_{n=1}^{n} a_{n}$
$S_{n}=\sum_{n=1}^{n}\left(\frac{3^{n}}{3}+4\right)$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}
$$

IV. Sum of a constant k, N times,
$\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{k}=\mathrm{Nk}$

So, for the given series, we need to find,
$S_{n}=\sum_{n=1}^{n}\left(\frac{3^{n}}{3}+4\right)$
From, the above identities,
$\mathrm{S}_{\mathrm{n}}=\frac{1}{3} \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(3^{\mathrm{n}}\right)+\sum_{\mathrm{n}=1}^{\mathrm{n}} 4 \rightarrow(\mathrm{a})$
The first term in (a) is a GP, with the first term, $a=3$ and common ratio, $r=3$.
Sum of n terms of GP, $S_{n}^{1}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\mathrm{S}_{\mathrm{n}}^{1}=\frac{3\left(3^{\mathrm{n}}-1\right)}{3-1}=\frac{3\left(3^{\mathrm{n}}-1\right)}{2}$
$S_{n}=\frac{1}{3}\left(\frac{3\left(3^{n}-1\right)}{2}\right)+4 n$
$=\left(\frac{\left(3^{n}-1\right)}{2}\right)+4 n$
$S_{n}=\left[\frac{8 \mathrm{n}+3^{\mathrm{n}}-1}{2}\right]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}\left[8 \mathrm{n}+3^{\mathrm{n}}-1\right]$
Q. 24. If $\mathrm{S}_{\mathrm{k}}=\frac{(1+2+3+\ldots \mathrm{k})}{\mathrm{k}}$, prove that, $\left(\mathrm{S}_{1}^{2}+\mathrm{S}_{2}^{2}+\cdots \mathrm{S}_{\mathrm{n}}^{2}\right)=\frac{\mathrm{n}}{24}\left(2 \mathrm{n}^{2}+9 \mathrm{n}+13\right)$.

Answer : Given, $\mathrm{S}_{\mathrm{k}}=\frac{(1+2+3+\cdots \mathrm{k})}{\mathrm{k}}$

To prove: $\left(\mathrm{S}_{1}{ }^{2}+\mathrm{S}_{2}{ }^{2}+\cdots \mathrm{S}_{\mathrm{n}}{ }^{2}\right)=\frac{\mathrm{n}}{24}\left(2 \mathrm{n}^{2}+9 \mathrm{n}+13\right)$
$\left(\mathrm{s}_{\mathrm{k}}\right)=\frac{1+2+3+\cdots \mathrm{k}}{\mathrm{k}}$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So,
$\left(\mathrm{S}_{\mathrm{k}}\right)=\frac{\mathrm{k}(\mathrm{k}+1)}{2 \mathrm{k}}=\frac{\mathrm{k}+1}{2}$
Now, the Left hand side of the condition given in the question can be written as,
$\left(\mathrm{S}_{1}{ }^{2}+\mathrm{S}_{2}{ }^{2}+\cdots \mathrm{S}_{\mathrm{n}}{ }^{2}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}{ }^{2}$
The required LHS, $S_{n}=\sum_{k=1}^{n} S_{k}{ }^{2}$

$$
\begin{aligned}
& \sum_{k=1}^{n} S_{k}^{2}=\sum_{k=1}^{n}\left(\frac{k+1}{2}\right)^{2} \\
& =\sum_{k=1}^{n} \frac{k^{2}+2 k+1}{4} \\
& =\frac{1}{4}\left(\sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1\right) \\
& S_{n}=\frac{1}{4}\left[\left(\frac{n(n+1)(2 n+1)}{6}\right)+2\left(\frac{n(n+1)}{2}\right)+n\right] \\
& =\frac{1}{4}\left[n(n+1)\left(\left(\frac{(2 n+1)}{6}\right)+1\right)+n\right] \\
& =\frac{n}{4}\left[\left(\left(\frac{(n+1)(2 n+7)+6}{6}\right)\right)\right] \\
& S_{n}=\frac{n}{24}\left[2 n^{2}+9 n+13\right]
\end{aligned}
$$

So,
$\left(S_{1}{ }^{2}+S_{2}{ }^{2}+\cdots S_{n}^{2}\right)=\sum_{k=1}^{n} S_{k}^{2}=S_{n}=\frac{n}{24}\left[2 n^{2}+9 n+13\right]$
$\left(S_{1}{ }^{2}+S_{2}{ }^{2}+\cdots S_{n}{ }^{2}\right)=\frac{n}{24}\left[2 n^{2}+9 n+13\right]$
With $S_{k}=\frac{(1+2+3+\cdots k)}{k}$,
Q. 25. If $\mathrm{S}_{\boldsymbol{n}}$ denotes the sum of the cubes of the first \mathbf{n} natural numbers and $\mathbf{S}_{\boldsymbol{n}}$ denotes the sum of the first n natural numbers then find the value of $\sum_{k=1}^{n} \frac{S_{k}}{s_{k}}$.

Answer: Given in the question, S_{n} denotes the sum of the cubes of the first n natural numbers.
S_{n} denotes the sum of the first n natural numbers.

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots \mathrm{n}$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
III. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{k=1}^{N} k=N k$
So,
S_{n} denotes the sum of the cubes of the first n natural numbers. (Given data in the question).
$S_{n}=\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
S_{n} denotes the sum of the first n natural numbers.

$$
\begin{aligned}
& s_{n}=\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \\
& \frac{S_{k}}{s_{k}}=\frac{\left(\frac{k(k+1)}{2}\right)^{2}}{\frac{k(k+1)}{2}}=\frac{k(k+1)}{2}
\end{aligned}
$$

To determine the given ratio in the question,

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{S_{k}}{s_{k}}=\sum_{k=1}^{n} \frac{k(k+1)}{2} \\
& =\frac{1}{2}\left[\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} k\right] \\
& =\frac{1}{2}\left[\left(\frac{n(n+1)(2 n+1)}{6}\right)+\left(\frac{n(n+1)}{2}\right)\right] \\
& =\frac{n(n+1)}{4}\left[\left(\frac{(2 n+1)}{3}\right)+1\right] \\
& =\frac{n(n+1)}{4}\left[\left(\frac{(2 n+4)}{3}\right)\right] \\
& =\frac{n(n+1)(n+2)}{6}
\end{aligned}
$$

So, the value of $\sum_{k=1}^{n} \frac{s_{k}}{s_{k}}=\frac{n(n+1)(n+2)}{6}$

Exercise 13B

Q. 1. Find the sum ($2+4+6+8+\ldots+100)$.

Answer : It is required to find the sum of $(2+4+6+8+\ldots 100)$.

Now, consider the series $(2+4+6+8+\ldots 100)$.
If we take a common factor of 2 from all the terms, then,
the series becomes,
$2(1+2+3+4+\ldots 50)$.
So, we need to find the sum of first 50 natural numbers.
Note:
Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
From the above identities,
So, Sum of first 50 natural numbers $=\frac{n(n+1)}{2}$
$=\frac{50(51)}{2}$
$=1275$
$(2+4+6+8+\ldots 100)=2(1+2+3+4+\ldots 50)$
$=2 \times 1275=2550$
Q. 2. Find the sum $(41+42+43+\ldots+100)$.

Answer : It is required to find the sum $(41+42+43+\ldots+100)$.
$(41+42+43+\ldots+100)=$ Sum of integers starting from 1 to $100-$ Sum of integers starting from 1 to 40 .

Note:

Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
From the above identities,
So, Sum of integers starting from 1 to $100=\frac{n(n+1)}{2}$
$=\frac{100(101)}{2}$
$=5050$
So, Sum of integers starting from 1 to $40=\frac{n(n+1)}{2}$
$=\frac{40(41)}{2}$
$=820$
$(41+42+43+\ldots .+100)=$ Sum of integers starting from 1 to $100-$ Sum of integers starting from 1 to 40 .
$(41+42+43+\ldots .+100)=5050-820=4230$
Q. 3. Find the sum $11^{2}+12^{2}+13^{2}+\ldots 20^{2}$

Answer: It is required to find the sum $11^{2}+12^{2}+13^{2}+\ldots 20^{2}$
$11^{2}+12^{2}+13^{2}+\ldots 20^{2}=$ Sum of squares of natural numbers starting from 1 to $20-$ Sum of squares of natural numbers starting from 1 to 10.

Note:

Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
From the above identities,

Sum of squares of natural numbers starting from 1 to 20
$=\frac{20(21)(41)}{6}=2870$

Sum of squares of natural numbers starting from 1 to 10
$=\frac{10(11)(21)}{6}=385$
$11^{2}+12^{2}+13^{2}+\ldots 20^{2}=$ Sum of squares of natural numbers starting from 1 to $20-$ Sum of squares of natural numbers starting from 1 to 10 .
$11^{2}+12^{2}+13^{2}+\ldots 20^{2}=2870-385=2485$
Q. 4. Find the sum $6^{3}+7^{3}+8^{3}+9^{3}+10^{3}$.

Answer: It is required to find the sum $6^{3}+7^{3}+8^{3}+9^{3}+10^{3}$.
$6^{3}+7^{3}+8^{3}+9^{3}+10^{3}=$ Sum of cubes of natural numbers starting from 1 to $10-$ Sum of cubes of natural numbers starting from 1 to 5 .

Note:

Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

From the above identities,
Sum of cubes of natural numbers starting from 1 to 10
$=\left(\frac{10(11)}{2}\right)^{2}=3025$
Sum of cubes of natural numbers starting from 1 to 5
$=\left(\frac{5(6)}{2}\right)^{2}=225$
$6^{3}+7^{3}+8^{3}+9^{3}+10^{3}=$ Sum of cubes of natural numbers starting from 1 to $10-$ Sum of cubes of natural numbers starting from 1 to 5 .
$6^{3}+7^{3}+8^{3}+9^{3}+10^{3}=3025-225=2800$
Q. 5.

If $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=210$, find the value of $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}$.

Answer :

It is given that, $\sum_{k=1}^{n} k=210$

Note:

I. Sum of first n natural numbers, $1+2+3+\ldots \mathrm{n}$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

From the above identities,

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=210
$$

$$
n^{2}+n=420
$$

$$
n^{2}+n-420=0
$$

$$
(n-20)(n+21)=0
$$

$$
\mathrm{n}=20 \text { or }-21
$$

Since, n is the number of integers, $\mathrm{n}=20$
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
So, $\sum_{k=1}^{n} k^{2}=\frac{20(21)(41)}{6}=2870$
Q. 6. $\sum_{k=1}^{n} k=45$, find the value of $\sum_{k=1}^{n} k^{3}$.

It is given that, $\sum_{k=1}^{n} k=45$
Answer :
Note:
I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
II. Sum of cubes of first n natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,

$$
\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

From the above identities,

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=45
$$

We need to find,
$\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=45^{2}=2025$

Q. 7. Find the sum of the series $\left\{2^{2}+4^{2}+6^{2}+\ldots .+(2 n)^{2}\right\}$

Answer: We need to find the sum of the series $\left\{2^{2}+4^{2}+6^{2}+\ldots .+(2 n)^{2}\right\}$.

So, we can find it by using summation of the $\mathrm{n}^{\text {th }}$ term of the given series.
The $\mathrm{n}^{\text {th }}$ term of the series is $(2 \mathrm{n})^{2}=4 n^{2}$
(Given data)
$a_{n}=4 n^{2}$
Now, sum of the series, $S_{n}=\sum_{k=1}^{n} a_{k}$
$S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} 4 n^{2}=4 \sum_{k=1}^{n} n^{2}$

Note:

I. Sum of squares of first n natural numbers, $1^{2}+2^{2}+3^{2}+\ldots n^{2}$,
$\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
$S_{n}=4 \sum_{k=1}^{n} n^{2}=4 \frac{n(n+1)(2 n+1)}{6}$
$S_{n}=\left\{22+42+62+\ldots .+(2 n)^{2}\right\}$
$=4 \frac{n(n+1)(2 n+1)}{6}$
$S_{n}=\frac{2}{3} n(n+1)(2 n+1)$
Q. 8. Find the sum of $\mathbf{1 0}$ terms of the geometric series $\sqrt{2}+\sqrt{6}+\sqrt{18}+\ldots$.

Answer: We need to find the sum of 10 terms of GP.
Sum of n terms of GP, with first term, a, common ratio, r,
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
So, the sum of given GP up to 10 terms, with $\mathrm{a}=\sqrt{ } 2$,
$r=\sqrt{ } 3, n=10$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{\sqrt{2}\left((\sqrt{3})^{10}-1\right)}{\sqrt{3}-1}$
The requires sum, $S_{n}=\frac{\sqrt{2}\left((3)^{5}-1\right)}{\sqrt{3}-1}=467.5$

Q. 9. Find the sum of n terms of the series whose $r^{\text {th }}$ term is $\left(r+2^{r}\right)$.

Answer : We need to find the sum of n terms of series whose $r^{\text {th }}$ term is $r+2^{r}$.
$a_{r}=r+2^{r}$
So, $\mathrm{n}^{\text {th }}$ term, $\mathrm{an}_{\mathrm{n}}=\mathrm{n}+2^{\mathrm{n}}$
So, we can find the sum of the series by using summation of the $\mathrm{n}^{\text {th }}$ term of the given series.
$S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k+2^{k}$
$S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k+\sum_{k=1}^{n} 2^{k} \rightarrow(1)$
Note:
I. Sum of first n natural numbers, $1+2+3+\ldots n$,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
Second term in (2) is a GP, with first term $\mathrm{a}=2$, common ratio $\mathrm{r}=2$.
Sum of n terms of GP, with the first term, a, common ratio, r,

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

So, the sum of given GP, with $a=2, r=2$
$S_{n}{ }^{1}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{2\left(2^{n}-1\right)}{2-1}=2\left(2^{n}-1\right)$
$S_{n}=\sum_{k=1}^{n} k+\sum_{k=1}^{n} 2^{k}$
The required sum,
$S_{n}=\frac{n(n+1)}{2}+2\left(2^{n}-1\right)$
$S_{n}=\frac{n^{2}+n+4\left(2^{n}\right)-4}{2}=\frac{n^{2}+n-4+\left(2^{n+2}\right)}{2}$
The sum of n terms of the series whose $r^{\text {th }}$ term is $\left(r+2^{r}\right)$,
$S_{n}=\frac{n^{2}+n-4+\left(2^{n+2}\right)}{2}$

