Measurement Of Angles

Exercise 14

Q. 1. A. Using a protractor, draw each of the following angles.
60°

Answer :

- Draw a straight line $A B$.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 60° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.
Q. 1. B. Using a protractor, draw each of the following angles.
130°
Answer :

- Draw a straight line $A B$.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 130° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. C. Using a protractor, draw each of the following angles.
300°
Answer:

- Draw a straight line $A B$.
-Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 300° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.

Q.1.D. Using a protractor, draw each of the following angles.

430°

Answer : The given angle is greater than 360°
Adding or subtracting 360° from a particular angle does'nt changes its position.
Therefore, Angle can also be written at as $=430^{\circ}-360^{\circ}=70^{\circ}$

- Draw a straight line $A B$.
-Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 70° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. E. Using a protractor, draw each of the following angles. -40°

Answer : The given angle is negative
Adding or subtracting 360° from a particular angle does'nt changes its position.
Therefore, Angle can also be written as $=-40^{\circ}+360^{\circ}=320^{\circ}$

- Draw a straight line $A B$.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 320° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. F. Using a protractor, draw each of the following angles.

-220°
Answer : Given angle can be completely written in degree as $=-220^{\circ}$

$-220^{\circ}=360^{\circ}-220^{\circ}=140^{\circ}$

Q. 1. G. Using a protractor, draw each of the following angles.
-310°
Answer : The given angle is negative
Adding or subtracting 360° from a particular angle does'nt changes its position.
Therefore, Angle can also be written as $=-310^{\circ}+360^{\circ}=50^{\circ}$

- Draw a straight line AB .
-Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 50° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. H. Using a protractor, draw each of the following angles.
-400°
Answer : The given angle is negative
Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written as $=-400^{\circ}+360^{\circ}=-40^{\circ}$
The angle is still negative, so we will further add 360° to it.
Therefore, Angle can also be written as $=-40^{\circ}+360^{\circ}=320^{\circ}$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 320° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, $B C$, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. Express each of the following angles in radians

36°
Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians $=.36 \times \frac{\pi}{180}=\frac{\pi}{5}$
Q. 2. A. Express each of the following angles in radians
120°
Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
Therefore, Angle in radians $=120 \times \frac{\pi}{180}=\frac{2 \pi}{3}$
Q. 2. C. Express each of the following angles in radians
225°
Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
Therefore, Angle in radians $=225 \times \frac{\pi}{180}=\frac{5 \pi}{4}$
Q. 2. D. Express each of the following angles in radians 330°

Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
Therefore, Angle in radians $=330 \times \frac{\pi}{180}=\frac{11 \pi}{6}$
Q. 2. E. Express each of the following angles in radians
400°
Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians $=400 \times \frac{\pi}{180}=\frac{20 \pi}{9}$
Q. 2. F. Express each of the following angles in radians
$7^{\circ} 30$.
Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
The angle in radians $=\frac{\text { angle in minutes }}{60}$

Therefore, the total angle $=7+\frac{30}{60}=7.5$

Therefore, Angle in radians $=7.5 \times \frac{\pi}{180}=\frac{\pi}{24}$
Q. 2. G. Express each of the following angles in radians -270°

Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
Therefore, Angle in radians $=-270 \times \frac{\pi}{180}=-\frac{3 \pi}{2}$
Q. 2. H. Express each of the following angles in radians $-22^{\circ} 30^{\prime}$

Answer : Formula : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$

The angle in radians $=\frac{\text { angle in minutes }}{60}$

Therefore, the total angle $=-\left(22+\frac{30}{60}\right)=-22.5$

Therefore, Angle in radians $=-22.5 \times \frac{\pi}{180}=-\frac{\pi}{8}$
Q. 3. Express each of the following angles in degrees.
(i) $\frac{5 \pi}{12}$
(ii) $-\frac{18 \pi}{5}$
(iii) $\frac{5}{5}$
(iv) -4

Answer : (i) Formula : Angle in degrees = Angle in degrees $\times \frac{\pi}{180}$
Therefore, Angle in degrees $=\frac{5 \pi}{12} \times \frac{180}{\pi}=75^{\circ}$
(ii) Formula : Angle in degrees $=$ Angle in radians $\times \frac{180}{\pi}$

Therefore, Angle in degrees $=-\frac{18 \pi}{5} \times \frac{180}{\pi}=-648^{\circ}$
(iii) Formula : Angle in degrees $=$ Angle in radians $\times \frac{180}{\pi}$

The angle in minutes $=$ Decimal of angle in radian $\times 60$.'
The angle in seconds = Decimal of angle in minutes x60."
Therefore, Angle in degrees $=\frac{5}{6} \times \frac{180}{\pi}=\frac{150}{22 / 7}=47.7272^{\circ}$
Angle in minutes $=0.7272 \times 60^{\prime}=43.632^{\prime}$

Angle in seconds $=0.632 \times 60^{\prime \prime}=37.92^{\prime \prime}$
Final angle $=47^{\circ} 43^{\prime} 38^{\prime \prime}$
(iv) Formula : Angle in degrees $=$ Angle in radians $\times \frac{180}{\pi}$

The angle in minutes $=$ Decimal of angle in radian $\times 60$.'
The angle in seconds $=$ Decimal of angle in minutes $\times 60$."
Therefore, Angle in degrees $=-4 \times \frac{180}{\pi}=-\frac{720}{22 / 7}=-229.0909^{\circ}$
Angle in minutes $=0.0909 \times 60^{\prime}=5.4545^{\prime}$
Angle in seconds $=0.4545 \times 60^{\prime \prime}=27.27^{\prime \prime}$
Final angle $=-229^{\circ} 5^{\prime} 27^{n}$
Q. 4. The angles of a triangle are in AP, and the greatest angle is double the least. Find all the angles in degrees and radians.

Answer : Let $\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}$ be the three angles of the triangle that form AP. Given that the greatest angle is double the least. Now, $a+d=2(a-d) 2 a-2 d=a+d a$ $=3 d$...... (1)Now by angle sum property, $(a-d)+a+(a+d)=180^{\circ} 3 a=180^{\circ} a=60^{\circ}$
$\ldots .$. (2) From (1) and (2), $3 \mathrm{~d}=60^{\circ} \mathrm{d}=20^{\circ} \mathrm{Now}$, the angles are, $\mathrm{a}-\mathrm{d}=60^{\circ}-20^{\circ}=40^{\circ} \mathrm{a}=$ $60^{\circ} \mathrm{a}+\mathrm{d}=60^{\circ}+20^{\circ}=80^{\circ}$.

Therefore the required angles are $40^{\circ} 60^{\circ} 80^{\circ}$
Q. 5. The difference between the two acute angles of a right triangle is $\left(\frac{\pi}{5}\right)^{c}$.

Answer : The angle in degree $=\frac{\pi}{5} \times \frac{180}{\pi}=36^{\circ}$
$=36^{\circ}$
Let, two acute angles are x and y
So,

ATQ, $x-y=36^{\circ}$
$x+y=90^{\circ}$
Solving 1 \& 2, we get;
$\Rightarrow 2 x=126^{\circ}$
$\Rightarrow x=63^{\circ}$
Putting the value of x in 2 , we get;
$\Rightarrow 63^{\circ}+\mathrm{y}=90^{\circ}$
$\Rightarrow \mathrm{y}=27^{\circ}$
So, Two acute angles are $63^{\circ} \& 27^{\circ}$
Q. 6. Find the radius of a circle in which a central angle of 45° intercepts an arc of length 33 cm . (Take $\pi=22 / 7$)

Answer:

Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
$\theta=\frac{1}{r}$ where θ is central angle, $\mid=$ length of arc, $r=$ radius

Therefore angle $=45 \times \frac{\pi}{180}=\frac{\pi}{4}$

Now,

$$
\begin{aligned}
& r=\frac{1}{\theta} \\
& =\frac{33}{\pi / 4}=\frac{132}{22 / 7}=\frac{924}{22}=42
\end{aligned}
$$

Therefore radius is 42 cm
Q. 7. Find the length of an arc of a circle of radius 14 cm which subtends an angle of 36° at the centre

Answer : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
$\theta=\frac{1}{r}$ where θ is central angle, $\mid=$ length of arc, $r=$ radius

Therefore angle $=36 \times \frac{\pi}{180}=\frac{\pi}{5}$

Now,
$I=r \times \theta$
$=14 \times \frac{\pi}{5}=14 \times \frac{22}{35}=\frac{44}{5}=8.8$
Therefore the length of the arc is 8.8 cm
Q. 8. If the arcs of the same length in two circles subtend angles 75° and 120° at the centre, find the ratio of their radii

Answer : Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
$\theta=\frac{1}{r}$ where θ is central angle, $I=$ length of arc, $r=$ radius

Therefore $\theta_{1}=75 \times \frac{\pi}{180}=\frac{5 \pi}{12}$
$\theta_{2}=120 \times \frac{\pi}{180}=\frac{2 \pi}{3}$
$I=r \times \theta$
Now, as the length is the same
Therefore, $\mathrm{r}_{1} \times \theta_{1}=\mathrm{r}_{2} \times \theta_{2}$
$r_{1} \times \frac{5 \pi}{12}=r_{2} \times \frac{2 \pi}{3}$
$\frac{r_{1}}{r_{2}}=\frac{12}{5 \pi} \times \frac{2 \pi}{3}=\frac{24}{15}=\frac{8}{5}$
Therefore the ratio of their radii is $8: 5$
Q. 9. Find the degree measure of the angle subtended at the centre of a circle of diameter 60 cm by an arc of length 16.5 cm .

Answer: Angle in radians $=$ Angle in degrees $\times \frac{\pi}{180}$
$\theta=\frac{1}{r}$ where θ is central angle, $I=$ length of arc, $r=$ radius

Now,
$\theta=\frac{1}{\mathrm{r}}$ and $\mathrm{r}=0.5 \times$ diameter
$=\frac{16.5}{30}$ radians
θ in degrees $=\frac{16.5}{30} \times \frac{180}{\pi}=\frac{16.5}{30} \times \frac{180}{22 / 7}=\frac{16.5}{30} \times \frac{180 \times 7}{22}=\frac{20790}{660}=31.5^{\circ}$
θ in minutes $=0.5 \times 60=30^{\prime}$
Therefore angle subtended at the center is $31^{\circ} 30^{\prime}$
Q. 10. In a circle of diameter 30 cm , the length of a chord is 15 cm . Find the length of the minor arc of the chord.

Answer : Diameter $=30 \mathrm{~cm}$
Length of chord $=15 \mathrm{~cm}$
Radius $=15 \mathrm{~cm}[r=0.5 x$ diameter $]$
Since the radius is equal to the length of the chord
Hence the formed triangle in the circle is an equilateral triangle.
$\theta=60^{\circ}$
We know that $\mathrm{I}=\mathrm{r} \times \theta$

$$
I=15 \times 60 \times \frac{\pi}{180}=5 \times \pi=5 \times 3.14=15.7
$$

Therefore, the length of the minor arc is 15.7 cm
Q. 11. Find the angle in radians as well as in degrees through which a pendulum swings if its length is 45 cm and its tip describes an arc of length 11 cm

Answer : We know that $\mathrm{I}=\mathrm{r} \times \theta$
Here $I=$ length of $\operatorname{arc}=11 \mathrm{~cm}$
$R=$ radius $=$ length of pendulum $=45 \mathrm{~cm}$
We need to find θ
$11=45 \times \theta$
$\theta=\frac{11}{45}$ radian
θ in degree $=\frac{11}{45} \times \frac{180}{\pi}=\frac{44}{22 / 7}=14^{\circ}$
Q. 12. The large hand of a clock Is 42 cm long. How many centimetres does its extremity move in 20 minutes?

Answer: For 20 minutes $=\theta=4 \times 30^{\circ}=120^{\circ}$
We know that $\mathrm{I}=\mathrm{r} \times \theta$
$\mathrm{I}=42 \times 120 \times \frac{\pi}{180}=28 \times \frac{22}{7}=88$
Therefore, the length is equal to 88 cm .
Q. 13. A wheel makes 180 revolutions in 1 minute. Through how many radians does it turn in 1 second?

Answer : Given that Number of revolutions per minute $=180$
Then per second, it will be $=180 / 60=3$

We know that In one complete revolution, the wheel turns at an angle of $2 \pi_{\mathrm{rad}}$.
Then for 3 complete revolutions, it will take $3 \times 2 \pi=6 \pi$ radians.
Q. 14. A train is moving on a circular curve of radius 1500 m at the rate of 66 km per hour. Through what angle has it turned in 10 seconds?

Answer : Radius $=1500 \mathrm{~m}$.
Train speed at rate of $66 \mathrm{~km} / \mathrm{hr}=18.33 \mathrm{~m} / \mathrm{s}$
Therefore, Distance covered in 1 second $=18.33 \mathrm{~m}$
Distance covered in 10 second $=18.33 \times 10=183.33 \mathrm{~m}$
We know that $\theta=$ Distance $/$ radius
$\theta=183.33 / 1500$
$=0.122$ radian
Therefore $\theta=0.122 \times \frac{180}{\pi}=7^{\circ}$
Q. 15. A wire of length 121 cm is bent so as to lie along the arc of a circle of radius 180 cm . Find in degrees; the angle subtended at the centre by the arc.

Answer : θ will be in degrees.
Arc-length can be given by the formula : $\theta / 360^{\circ} \times 2 \pi r$
Hence it is given that 121 cm is the arc length.
$\Rightarrow 121=\theta / 360^{\circ} \times 2 \pi r$
$=121=\theta / 360^{\circ} \times 2 \times 22 / 7 \times 180$
$=121=\theta / 360^{\circ} \times 360 \times 22 / 7$
$=121=\theta \times 22 / 7$
$\Rightarrow \theta=121 \times 7 / 22$
$=38.5^{\circ}$
Hence the angle subtended at the middle is 38.5°
Which can also be written as $38^{\circ} 30 .{ }^{\prime}$
Q. 16. The angles of a quadrilateral are in AP, and the greatest angle is double the least. Express the least angle in radians.

Answer : Let the smallest term be x, and the largest term be 2 x
Then AP formed=x, ?, ?, $2 x$
So,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\mathrm{a}+(\mathrm{a}+(\mathrm{n}-1) \mathrm{d})]=\frac{\mathrm{n}}{2}[$ First term $+($ Last term $)]$
$360^{\circ}=4 / 2[x+2 x] \ldots[$ We know that $\rightarrow a+(n-1) d=$ last term $=2 x]$
$\Rightarrow 180^{\circ}=3 x$
$\Rightarrow x=60^{\circ}$
Now, 60° is least angle.
$=60^{\circ}=\pi / 180^{\circ} \times 60^{\circ}$
$\Rightarrow 60^{\circ}=\pi / 3 \mathrm{rad}$

