Measurement Of Angles

Exercise 14

Q. 1. A. Using a protractor, draw each of the following angles.

60°

Answer :

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

• Place the centre of the protractor at B and the baseline of the protractor along the arm BA.

- Find 60° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. B. Using a protractor, draw each of the following angles.

130°

Answer :

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

- Find 130° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. C. Using a protractor, draw each of the following angles.

300°

Answer :

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.
- Place the centre of the protractor at B and the baseline of the protractor along the arm BA.
- Find 300° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. D. Using a protractor, draw each of the following angles.

430°

Answer : The given angle is greater than 360°

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written at as = $430^{\circ} - 360^{\circ} = 70^{\circ}$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

- Find 70° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. E. Using a protractor, draw each of the following angles.

-40°

Answer : The given angle is negative

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written as= $-40^{\circ} + 360^{\circ} = 320^{\circ}$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

- Find 320° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. F. Using a protractor, draw each of the following angles.

-220°

Answer : Given angle can be completely written in degree as = -220°

-220° = 360° - 220° = 140°

Q. 1. G. Using a protractor, draw each of the following angles.

-310°

Answer : The given angle is negative

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written as= $-310^{\circ} + 360^{\circ} = 50^{\circ}$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

- Find 50° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

-400°

Answer : The given angle is negative

Adding or subtracting 360° from a particular angle does'nt changes its position.

Therefore, Angle can also be written $as=-400^\circ + 360^\circ = -40^\circ$ The angle is still negative, so we will further add 360° to it. Therefore, Angle can also be written $as=-40^\circ + 360^\circ = 320^\circ$

- Draw a straight line AB.
- Place a dot at B. This dot represents the vertex of the angle.

• Place the centre of the protractor at B and the baseline of the protractor along the arm BA.

- Find 320° on the scale and mark a small dot at the edge of the protractor.
- Join the vertex B to the small dot with a ruler to form the second arm, BC, of the angle.
- Mark the angle with a small arc as shown below.

Q. 1. Express each of the following angles in radians

36°

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians =. $36 \times \frac{\pi}{180} = \frac{\pi}{5}$

Q. 2. A. Express each of the following angles in radians

120°

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $120 \times \frac{\pi}{180} = \frac{2\pi}{3}$

Q. 2. C. Express each of the following angles in radians

225°

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $225 \times \frac{\pi}{180} = \frac{5\pi}{4}$

Q. 2. D. Express each of the following angles in radians

330°

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $330 \times \frac{\pi}{180} = \frac{11\pi}{6}$

Q. 2. E. Express each of the following angles in radians

400°

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $400 \times \frac{\pi}{180} = \frac{20\pi}{9}$

Q. 2. F. Express each of the following angles in radians 7°30.'

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

The angle in radians $=\frac{\text{angle in minutes}}{60}$

Therefore, the total angle = $7 + \frac{30}{60} = 7.5$

Therefore, Angle in radians = $7.5 \times \frac{\pi}{180} = \frac{\pi}{24}$

Q. 2. G. Express each of the following angles in radians -270°

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Therefore, Angle in radians = $-270 \times \frac{\pi}{180} = -\frac{3\pi}{2}$

Q. 2. H. Express each of the following angles in radians

-22°30'

Answer : Formula : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

The angle in radians = $\frac{\text{angle in minutes}}{60}$

Therefore, the total angle =
$$-\left(22 + \frac{30}{60}\right) = -22.5$$

Therefore, Angle in radians = $-22.5 \times \frac{\pi}{180} = -\frac{\pi}{8}$

Q. 3. Express each of the following angles in degrees.

- (i) $\frac{5\pi}{12}$ (ii) $-\frac{18\pi}{5}$
- (iii) <u>5</u>

(iv) -4

Answer : (i) Formula : Angle in degrees = Angle in degrees $\times \frac{\pi}{180}$ Therefore, Angle in degrees = $\frac{5\pi}{12} \times \frac{180}{\pi} = 75^{\circ}$ (ii) Formula : Angle in degrees = $\frac{\text{Angle in radians} \times \frac{180}{\pi}}{\pi}$ Therefore, Angle in degrees = $-\frac{18\pi}{5} \times \frac{180}{\pi} = -648^{\circ}$ (iii) Formula : Angle in degrees = $\frac{\text{Angle in radians} \times \frac{180}{\pi}}{\pi}$ The angle in minutes = Decimal of angle in radian $\times 60$.' The angle in seconds = Decimal of angle in minutes $\times 60$.'' Therefore, Angle in degrees = $\frac{5}{6} \times \frac{180}{\pi} = \frac{150}{22/7} = 47.7272^{\circ}$

Angle in minutes = $0.7272 \times 60' = 43.632'$

Angle in seconds = $0.632 \times 60^{\prime\prime} = 37.92^{\prime\prime}$

Final angle = $47^{\circ} 43' 38''$

(iv) Formula : Angle in degrees = $\frac{\text{Angle in radians} \times \frac{180}{\pi}}{\pi}$

The angle in minutes = Decimal of angle in radian x 60.

The angle in seconds = Decimal of angle in minutes x 60."

Therefore, Angle in degrees = $-4 \times \frac{180}{\pi} = -\frac{720}{22/7} = -229.0909^{\circ}$

Angle in minutes = $0.0909 \times 60' = 5.4545'$

Angle in seconds = $0.4545 \times 60^{\prime\prime} = 27.27^{\prime\prime}$

Final angle = $-229^{\circ} 5' 27''$

Q. 4. The angles of a triangle are in AP, and the greatest angle is double the least. Find all the angles in degrees and radians.

Answer : Let a - d, a, a + d be the three angles of the triangle that form AP. Given that the greatest angle is double the least. Now, $a + d = 2(a - d) 2a - 2d = a + da = 3d \dots(1)$ Now by angle sum property, $(a - d) + a + (a + d) = 180^{\circ}3a = 180^{\circ}a = 60^{\circ}$ (2) From (1) and (2), $3d = 60^{\circ}d = 20^{\circ}$ Now, the angles are, $a - d = 60^{\circ} - 20^{\circ} = 40^{\circ}a = 60^{\circ}a + d = 60^{\circ} + 20^{\circ} = 80^{\circ}$.

Therefore the required angles are 40° 60° 80°

Q. 5. The difference between the two acute angles of a right triangle is $\left(\frac{\pi}{5}\right)^c$.

Answer : The angle in degree =
$$\frac{\pi}{5} \times \frac{180}{\pi} = 36^{\circ}$$

= 36°

Let, two acute angles are x and y

So,

ATQ, x - y= 36°(1) x+ y= 90°(2) Solving 1 & 2, we get; $\Rightarrow 2x= 126^{\circ}$ $\Rightarrow x= 63^{\circ}$ Putting the value of x in 2, we get; $\Rightarrow 63^{\circ}$ + y= 90° $\Rightarrow y= 27^{\circ}$

So, Two acute angles are 63° & 27°

Q. 6. Find the radius of a circle in which a central angle of 45° intercepts an arc of length 33 cm. (Take $\pi=22/7$)

Answer :

Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta = \frac{1}{r}$ where θ is central angle, I=length of arc, r=radius

Therefore angle = $45 \times \frac{\pi}{180} = \frac{\pi}{4}$

Now,

 $r = \frac{1}{\theta}$

$$=\frac{33}{\pi/4}=\frac{132}{22/7}=\frac{924}{22}=42$$

Therefore radius is 42 cm

Q. 7. Find the length of an arc of a circle of radius 14 cm which subtends an angle of 36° at the centre

Answer : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta = \frac{1}{r}$ where θ is central angle, I=length of arc, r=radius

Therefore angle = $36 \times \frac{\pi}{180} = \frac{\pi}{5}$

Now,

 $I = r \times \theta$

$$= 14 \times \frac{\pi}{5} = 14 \times \frac{22}{35} = \frac{44}{5} = 8.8$$

Therefore the length of the arc is 8.8 cm

Q. 8. If the arcs of the same length in two circles subtend angles 75° and 120° at the centre, find the ratio of their radii

Answer : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta = \frac{1}{r}$ where θ is central angle, l=length of arc, r=radius

Therefore $\theta_1 = 75 \times \frac{\pi}{180} = \frac{5\pi}{12}$

 $\theta_2 = 120 \times \frac{\pi}{180} = \frac{2\pi}{3}$

 $I = r \times \theta$

Now, as the length is the same

Therefore, $r_1 \times \theta_1 = r_2 \times \theta_2$ $r_1 \times \frac{5\pi}{12} = r_2 \times \frac{2\pi}{3}$ $\frac{r_1}{r_2} = \frac{12}{5\pi} \times \frac{2\pi}{3} = \frac{24}{15} = \frac{8}{5}$

Therefore the ratio of their radii is 8 : 5

Q. 9. Find the degree measure of the angle subtended at the centre of a circle of diameter 60 cm by an arc of length 16.5 cm.

Answer : Angle in radians = Angle in degrees $\times \frac{\pi}{180}$

 $\theta = \frac{1}{r}$ where θ is central angle, l=length of arc, r=radius

Now,

$$\theta = \frac{1}{r}$$
 and $r = 0.5 \times diameter$

 $=\frac{16.5}{30}$ radians

 θ in degrees $=\frac{16.5}{30} \times \frac{180}{\pi} = \frac{16.5}{30} \times \frac{180}{22/7} = \frac{16.5}{30} \times \frac{180 \times 7}{22} = \frac{20790}{660} = 31.5^{\circ}$

 θ in minutes = 0.5 x 60 = 30'

Therefore angle subtended at the center is 31° 30'

Q. 10. In a circle of diameter 30 cm, the length of a chord is 15 cm. Find the length of the minor arc of the chord.

Answer : Diameter = 30 cm

Length of chord = 15 cm

Radius = 15 cm [r = 0.5 x diameter]

Since the radius is equal to the length of the chord

Hence the formed triangle in the circle is an equilateral triangle.

 $\theta = 60^{\circ}$

We know that $I = r \times \theta$

 $|=15 \times 60 \times \frac{\pi}{180} = 5 \times \pi = 5 \times 3.14 = 15.7$

Therefore, the length of the minor arc is 15.7 cm

Q. 11. Find the angle in radians as well as in degrees through which a pendulum swings if its length is 45 cm and its tip describes an arc of length 11 cm

Answer : We know that $I = r \times \theta$

Here I = length of arc = 11 cm

R = radius = length of pendulum = 45 cm

We need to find θ

11 = 45 x θ

$$\theta = \frac{11}{45}$$
 radian

 θ in degree = $\frac{11}{45} \times \frac{180}{\pi} = \frac{44}{22/7} = 14^{\circ}$

Q. 12. The large hand of a clock Is 42 cm long. How many centimetres does its extremity move in 20 minutes?

Answer : For 20 minutes = θ = 4 x 30° = 120°

We know that $I = r \times \theta$

$$42 \times 120 \times \frac{\pi}{180} = 28 \times \frac{22}{7} = 88$$

Therefore, the length is equal to 88 cm.

Q. 13. A wheel makes 180 revolutions in 1 minute. Through how many radians does it turn in 1 second?

Answer : Given that Number of revolutions per minute = 180

Then per second, it will be = 180/60 = 3

We know that In one complete revolution, the wheel turns at an angle of 2 π rad.

Then for 3 complete revolutions, it will take $3 \times 2 \pi = 6 \pi$ radians.

Q. 14. A train is moving on a circular curve of radius 1500 m at the rate of 66 km per hour. Through what angle has it turned in 10 seconds?

Answer : Radius = 1500 m.

Train speed at rate of 66km/hr = 18.33 m/s

Therefore, Distance covered in 1 second = 18.33 m

Distance covered in 10 second = $18.33 \times 10 = 183.33$ m

We know that θ = Distance / radius

 $\theta = 183.33 / 1500$

= 0.122 radian

Therefore
$$\theta = 0.122 \times \frac{180}{\pi} = 7^{\circ}$$

Q. 15. A wire of length 121 cm is bent so as to lie along the arc of a circle of radius 180 cm. Find in degrees; the angle subtended at the centre by the arc.

Answer : θ will be in degrees.

Arc-length can be given by the formula : θ / 360° × 2 π r

Hence it is given that 121 cm is the arc length.

$$\Rightarrow 121 = \theta / 360^{\circ} \times 2\pi r$$

= 121 = \theta / 360^{\circ} \times 2 \times 22 / 7 \times 180
= 121 = \theta / 360^{\circ} \times 360 \times 22 / 7
= 121 = \theta \times 22 / 7
$$\Rightarrow \theta = 121 \times 7 / 22$$

= 38.5°

Hence the angle subtended at the middle is 38.5°

Which can also be written as 38° 30.'

Q. 16. The angles of a quadrilateral are in AP, and the greatest angle is double the least. Express the least angle in radians.

Answer : Let the smallest term be x, and the largest term be 2x

Then AP formed= x, ?, ?, 2x

So,

$$S_{n} = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{n} = \frac{n}{2} [a + (a + (n - 1)d)] = \frac{n}{2} [First term + (Last term)]$$

360°= 4/2 [x+ 2x]....[We know that \rightarrow a+(n-1) d= last term= 2x]

 \Rightarrow 180°= 3x

 \Rightarrow x= 60°

Now, 60° is least angle.

$$= 60^{\circ} = \pi/180^{\circ} \times 60^{\circ}$$

 $\Rightarrow 60^{\circ} = \pi/3 \text{ rad}$