## Exercise - 4A

1. $D$ and $E$ are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $D E \| B C$.
(i) If $\mathrm{AD}=3.6 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AE}=4.5 \mathrm{~cm}$, find EC and AC .
(ii) If $\mathrm{AB}=13.3 \mathrm{~cm}, \mathrm{AC}=11.9 \mathrm{~cm}$ and $\mathrm{EC}=5.1 \mathrm{~cm}$, find AD .
(iii) If $\frac{A D}{D B}=\frac{4}{7}$ and $\mathrm{AC}=6.6 \mathrm{~cm}$, find AE .
(iv) If $\frac{A D}{A B}=\frac{8}{15}$ and $\mathrm{EC}=3.5 \mathrm{~cm}$, find AE .


## Sol:

(i) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
$\because \mathrm{AD}=3.6 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}, \mathrm{AE}=4.5 \mathrm{~cm}$
$\therefore \mathrm{DB}=10-3.6=6.4 \mathrm{~cm}$
Or, $\frac{3.6}{6.4}=\frac{4.5}{E C}$
Or, $\mathrm{EC}=\frac{6.4 \times 4.5}{3.6}$
Or, $\mathrm{EC}=8 \mathrm{~cm}$
Thus, $\mathrm{AC}=\mathrm{AE}+\mathrm{EC}$

$$
=4.5+8=12.5 \mathrm{~cm}
$$

(ii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' Theorem, we get :
$\frac{A D}{D B}=\frac{A E}{E C}$
Adding 1 to both sides, we get :
$\frac{A D}{D B}+1=\frac{A E}{E C}+1$
$\Rightarrow \frac{A B}{D B}=\frac{A C}{E C}$
$\Rightarrow \frac{13.3}{D B}=\frac{11.9}{5.1}$
$\Rightarrow \mathrm{DB}=\frac{13.3 \times 5.1}{11.9}=5.7 \mathrm{~cm}$
Therefore, $\mathrm{AD}=\mathrm{AB}-\mathrm{DB}=13.5-5.7=7.6 \mathrm{~cm}$
(iii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{4}{7}=\frac{A E}{E C}$
Adding 1 to both the sides, we get :
$\frac{11}{7}=\frac{A C}{E C}$
$\Rightarrow \mathrm{EC}=\frac{6.6 \times 7}{11}=4.2 \mathrm{~cm}$
Therefore,
$\mathrm{AE}=\mathrm{AC}-\mathrm{EC}=6.6-4.2=2.4 \mathrm{~cm}$
(iv) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:

$$
\begin{aligned}
& \frac{A D}{A B}=\frac{A E}{A C} \\
& \Rightarrow \frac{8}{15}=\frac{A E}{A E+E C} \\
& \Rightarrow \frac{8}{15}=\frac{A E}{A E+3.5} \\
& \Rightarrow 8 \mathrm{AE}+28=15 \mathrm{AE} \\
& \Rightarrow 7 \mathrm{AE}=28 \\
& \Rightarrow \mathrm{AE}=4 \mathrm{~cm}
\end{aligned}
$$

2. $D$ and $E$ are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $D E \| B C$. Find the value of $x$, when
(i) $\mathrm{AD}=\mathrm{x} \mathrm{cm}, \mathrm{DB}=(\mathrm{x}-2) \mathrm{cm}, \mathrm{AE}=(\mathrm{x}+2) \mathrm{cm}$ and $\mathrm{EC}=(\mathrm{x}-1) \mathrm{cm}$.
(ii) $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=(\mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{EC}=(3 \mathrm{x}-19) \mathrm{cm}$.
(iii) $\mathrm{AD}=(7 \mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=(5 \mathrm{x}-2) \mathrm{cm}, \mathrm{DB}=(3 \mathrm{x}+4) \mathrm{cm}$ and $\mathrm{EC}=3 \mathrm{xcm}$.


## Sol:

(i) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :

$$
\begin{aligned}
& \frac{A D}{D B}=\frac{A E}{E C} \\
& \Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1} \\
& \Rightarrow \mathrm{X}(\mathrm{x}-1)=(\mathrm{x}-2)(\mathrm{x}+2) \\
& \Rightarrow x^{2}-\mathrm{x}=x^{2}-4 \\
& \Rightarrow \mathrm{x}=4 \mathrm{~cm}
\end{aligned}
$$

(ii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{4}{x-4}=\frac{8}{3 x-19}$
$\Rightarrow 4(3 \mathrm{x}-19)=8(\mathrm{x}-4)$
$\Rightarrow 12 \mathrm{x}-76=8 \mathrm{x}-32$
$\Rightarrow 4 \mathrm{x}=44$
$\Rightarrow \mathrm{x}=11 \mathrm{~cm}$
(iii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{7 x-4}{3 x+4}=\frac{5 x-2}{3 x}$
$\Rightarrow 3 \mathrm{x}(7 \mathrm{x}-4)=(5 \mathrm{x}-2)(3 \mathrm{x}+4)$

$$
\begin{aligned}
& \Rightarrow 21 x^{2}-12 \mathrm{x}=15 x^{2}+14 \mathrm{x}-8 \\
& \Rightarrow 6 x^{2}-26 \mathrm{x}+8=0 \\
& \Rightarrow(\mathrm{x}-4)(6 \mathrm{x}-2)=0 \\
& \Rightarrow \mathrm{x}=4, \frac{1}{3} \\
& \because \mathrm{x} \neq \frac{1}{3} \text { (as if } \mathrm{x}=\frac{1}{3} \text { then } A E \text { will become negative) } \\
& \therefore \mathrm{x}=4 \mathrm{~cm}
\end{aligned}
$$

3. $D$ and $E$ are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$. In each of the following cases, determine whether $\mathrm{DE} \| \mathrm{BC}$ or not.
(i) $\mathrm{AD}=5.7 \mathrm{~cm}, \mathrm{DB}=9.5 \mathrm{~cm}, \mathrm{AE}=4.8 \mathrm{~cm}$ and $\mathrm{EC}=8 \mathrm{~cm}$.
(ii) $\mathrm{AB}=11.7 \mathrm{~cm}, \mathrm{AC}=11.2 \mathrm{~cm}, \mathrm{BD}=6.5 \mathrm{~cm}$ and $\mathrm{AE}=4.2 \mathrm{~cm}$.
(iii) $\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{AD}=6.3 \mathrm{~cm}, \mathrm{AC}=9.6 \mathrm{~cm}$ and $\mathrm{EC}=4 \mathrm{~cm}$.
(iv) $\mathrm{AD}=7.2 \mathrm{~cm}, \mathrm{AE}=6.4 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$.


## Sol:

(i) We have:
$\frac{A D}{D E}=\frac{5.7}{9.5}=0.6 \mathrm{~cm}$
$\frac{A E}{E C}=\frac{4.8}{8}=0.6 \mathrm{~cm}$
Hence, $\frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE \|BC.
(ii) We have:
$\mathrm{AB}=11.7 \mathrm{~cm}, \mathrm{DB}=6.5 \mathrm{~cm}$
Therefore,
$\mathrm{AD}=11.7-6.5=5.2 \mathrm{~cm}$
Similarly,
$\mathrm{AC}=11.2 \mathrm{~cm}, \mathrm{AE}=4.2 \mathrm{~cm}$
Therefore,
$\mathrm{EC}=11.2-4.2=7 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{5.2}{6.5}=\frac{4}{5}$
$\frac{A E}{E C}=\frac{4.2}{7}$
Thus, $\frac{A D}{D B} \neq \frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE is not parallel to BC .
(iii) We have:
$\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{AD}=6.3 \mathrm{~cm}$
Therefore,
$\mathrm{DB}=10.8-6.3=4.5 \mathrm{~cm}$
Similarly,
$\mathrm{AC}=9.6 \mathrm{~cm}, \mathrm{EC}=4 \mathrm{~cm}$
Therefore,
$\mathrm{AE}=9.6-4=5.6 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{6.3}{4.5}=\frac{7}{5}$
$\frac{A E}{E C}=\frac{5.6}{4}=\frac{7}{5}$
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE || BC.
(iv) We have :
$\mathrm{AD}=7.2 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$
Therefore,
$\mathrm{DB}=12-7.2=4.8 \mathrm{~cm}$
Similarly,
$\mathrm{AE}=6.4 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$
Therefore,
$\mathrm{EC}=10-6.4=3.6 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{7.2}{4.8}=\frac{3}{2}$
$\frac{A E}{E C}=\frac{6.4}{3.6}=\frac{16}{9}$
This, $\frac{A D}{D B} \neq \frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE is not parallel to BC.
4. In a $\triangle A B C, A D$ is the bisector of $\angle A$.
(i) If $\mathrm{AB}=6.4 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{BD}=5.6 \mathrm{~cm}$, find DC .
(ii) If $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find $B D$ and $D C$.
(iii) If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BD}=3.2 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find AC .
(iv) If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$, find BC .


## Sol:

(i) It is give that AD bisects $\angle \mathrm{A}$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{5.6}{D C}=\frac{6.4}{8}$
$\Rightarrow \mathrm{DC}=\frac{8 \times 5.6}{6.4}=7 \mathrm{~cm}$
(ii) It is given that AD bisects $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
Let BD be xcm .
Therefore, $\mathrm{DC}=(6-\mathrm{x}) \mathrm{cm}$
$\Rightarrow \frac{x}{6-x}=\frac{10}{14}$
$\Rightarrow 14 \mathrm{x}=60-10 \mathrm{x}$
$\Rightarrow 24 \mathrm{x}=60$
$\Rightarrow \mathrm{x}=2.5 \mathrm{~cm}$
Thus, $\mathrm{BD}=2.5 \mathrm{~cm}$
$\mathrm{DC}=6-2.5=3.5 \mathrm{~cm}$
(iii) It is given that AD bisector $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\mathrm{BD}=3.2 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$
Therefore, $\mathrm{DC}=6-3.2=2.8 \mathrm{~cm}$
$\Rightarrow \frac{3.2}{2.8}=\frac{5.6}{A C}$
$\Rightarrow \mathrm{AC}=\frac{5.6 \times 2.8}{3.2}=4.9 \mathrm{~cm}$
(iv) It is given that AD bisects $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:

$$
\begin{aligned}
& \frac{B D}{D C}=\frac{A B}{A C} \\
& \Rightarrow \frac{B D}{3}=\frac{5.6}{4} \\
& \Rightarrow \mathrm{BD}=\frac{5.6 \times 3}{4} \\
& \Rightarrow \mathrm{BD}=4.2 \mathrm{~cm} \\
& \text { Hence, } \mathrm{BC}=3+4.2=7.2 \mathrm{~cm}
\end{aligned}
$$

5. $\quad M$ is a point on the side $B C$ of a parallelogram $A B C D$. $D M$ when produced meets $A B$ produced at N . Prove that
(i) $\frac{D M}{M N}=\frac{D C}{B N}$
(ii) $\frac{D N}{D M}=\frac{A N}{D C}$


Sol:
(i) Given: ABCD is a parallelogram

To prove:
(i) $\frac{D M}{M N}=\frac{D C}{B N}$
(ii) $\frac{D N}{D M}=\frac{A N}{D C}$

Proof: In $\Delta$ DMC and $\Delta$ NMB
$\angle \mathrm{DMC}=\angle \mathrm{NMB}$ (Vertically opposite angle)
$\angle \mathrm{DCM}=\angle \mathrm{NBM} \quad$ (Alternate angles)
By AAA- Similarity
$\Delta \mathrm{DMC} \sim \Delta \mathrm{NMB}$
$\therefore \frac{D M}{M N}=\frac{D C}{B N}$
NOW, $\frac{M N}{D M}=\frac{B N}{D C}$
Adding 1 to both sides, we get
$\frac{M N}{D M}+1=\frac{B N}{D C}+1$
$\Rightarrow \frac{M N+D M}{D M}=\frac{B N+D C}{D C}$
$\Longrightarrow \frac{M N+D M}{D M}=\frac{B N+A B}{D C}[\because \mathrm{ABCD}$ is a parallelogram $]$
$\Rightarrow \frac{D N}{D M}=\frac{A N}{D C}$
6. Show that the line segment which joins the midpoints of the oblique sides of a trapezium is parallel sides
Sol:
(i)

Let the trapezium be ABCD with E and F as the mid Points of AD and BC ,
Respectively Produce AD and BC to Meet at P.


In $\triangle \mathrm{PAB}, \mathrm{DC} \| \mathrm{AB}$.
Applying Thales' theorem, we get
$\frac{P D}{D A}=\frac{P C}{C B}$
Now, E and F are the midpoints of AD and BC , respectively.
$\Rightarrow \frac{P D}{2 D E}=\frac{P C}{2 C F}$
$\Rightarrow \frac{P D}{D E}=\frac{P C}{C F}$

Applying the converse of Thales' theorem in $\triangle \mathrm{PEF}$, we get that DC
Hence, EF || AB.
Thus. EF is parallel to both AB and DC .
This completes the proof.
7. In the given figure, $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect at $O$. If $\mathrm{AO}=(5 \mathrm{x}-7), \mathrm{OC}=(2 \mathrm{x}+1), \mathrm{BO}=(7 \mathrm{x}-5)$ and $\mathrm{OD}=(7 \mathrm{x}+1)$, find the value of x .


## Sol:

In trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{CD}$ and the diagonals AC and BD intersect at O .
Therefore,
$\frac{A O}{O C}=\frac{B O}{O D}$
$\Rightarrow \frac{5 x-7}{2 x+1}=\frac{7 x-5}{7 x+1}$
$\Rightarrow(5 \mathrm{x}-7)(7 \mathrm{x}+1)=(7 \mathrm{x}-5)(2 \mathrm{x}+1)$
$\Rightarrow 35 x^{2}+5 \mathrm{x}-49 \mathrm{x}-7=14 x^{2}-10 \mathrm{x}+7 \mathrm{x}-5$
$\Rightarrow 21 x^{2}-41 \mathrm{x}-2=0$
$\Rightarrow 21 x^{2}-42 \mathrm{x}+\mathrm{x}-2=0$
$\Rightarrow 21 \mathrm{x}(\mathrm{x}-2)+1(\mathrm{x}-2)=0$
$\Rightarrow(\mathrm{x}-2)(21 \mathrm{x}+1)=0$
$\Rightarrow x=2,-\frac{1}{21}$
$\because \mathrm{x} \neq-\frac{1}{21}$
$\therefore \mathrm{x}=2$
8. In $\triangle A B C, \mathrm{M}$ and N are points on the sides AB and AC respectively such that $\mathrm{BM}=\mathrm{CN}$. If $\angle B=\angle C$ then show that $\mathrm{MN} \| \mathrm{BC}$
Sol:


In $\triangle \mathrm{ABC}, \angle \mathrm{B}=\angle C$
$\therefore \mathrm{AB}=\mathrm{AC}$ (Sides opposite to equal angle are equal)
Subtracting BM from both sides, we get
$\mathrm{AB}-\mathrm{BM}=\mathrm{AC}-\mathrm{BM}$
$\Rightarrow \mathrm{AB}-\mathrm{BM}=\mathrm{AC}-\mathrm{CN} \quad(\because \mathrm{BM}=\mathrm{CN})$
$\Rightarrow A M=A N$
$\therefore \angle A M N=\angle A N M$ (Angles opposite to equal sides are equal)
Now, in $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\angle A+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \tag{1}
\end{equation*}
$$

(Angle Sum Property of triangle)
Again In In $\triangle \mathrm{AMN}$,

$$
\begin{equation*}
\angle \mathrm{A}+\angle \mathrm{AMN}+\angle \mathrm{ANM}=180^{\circ} \tag{2}
\end{equation*}
$$

(Angle Sum Property of triangle)
From (1) and (2), we get
$\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{AMN}+\angle \mathrm{ANM}$
$\Rightarrow 2 \angle \mathrm{~B}=2 \angle \mathrm{AMN}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{AMN}$
Since, $\angle B$ and $\angle A M N$ are corresponding angles.
$\therefore \mathrm{MN} \| \mathrm{BC}$.
9. $\triangle A B C$ and $\triangle D B C$ lie on the same side of $B C$, as shown in the figure. From a point P on BC , $\mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{PR} \| \mathrm{BD}$ are drawn, meeting AC at Q and CD at R respectively. Prove that $\mathrm{QR} \| A D$.


## Sol:

In $\Delta \mathrm{CAB}, \mathrm{PQ} \| \mathrm{AB}$.
Applying Thales' theorem, we get:
$\frac{C P}{P B}=\frac{C Q}{Q A}$
Similarly, applying Thales theorem in $\triangle B D C$, Where PR $\| \mathrm{DM}$ we get:
$\frac{C P}{P B}=\frac{C R}{R D}$
Hence, from (1) and (2), we have :
$\frac{C Q}{Q A}=\frac{C R}{R D}$
Applying the converse of Thales' theorem, we conclude that $\mathrm{QR} \| \mathrm{AD}$ in $\triangle \mathrm{ADC}$.
This completes the proof.
10. In the given figure, side $B C$ of a $\triangle A B C$ is bisected at $D$ and O is any point on AD . BO and CO produced meet $A C$ and $A B$ at $E$ and $F$ respectively, and $A D$ is produced to X so that D is the midpoint of OX .
Prove that $\mathrm{AO}: \mathrm{AX}=\mathrm{AF}: \mathrm{AB}$ and show that $\mathrm{EF} \| \mathrm{BC}$.


## Sol:

It is give that BC is bisected at D .
$\therefore \mathrm{BD}=\mathrm{DC}$
It is also given that $\mathrm{OD}=\mathrm{OX}$
The diagonals OX and BC of quadrilateral BOCX bisect each other.
Therefore, BOCX is a parallelogram.
$\therefore \mathrm{BO} \| \mathrm{CX}$ and $\mathrm{BX} \| \mathrm{CO}$
$\mathrm{BX} \| \mathrm{CF}$ and $\mathrm{CX} \| \mathrm{BE}$
$\mathrm{BX} \| \mathrm{OF}$ and $\mathrm{CX} \| \mathrm{OE}$
Applying Thales' theorem in $\triangle \mathrm{ABX}$, we get:
$\frac{A O}{A X}=\frac{A F}{A B}$
Also, in $\triangle \mathrm{ACX}, \mathrm{CX} \| \mathrm{OE}$.
Therefore by Thales' theorem, we get:
$\frac{A O}{A X}=\frac{A E}{A C}$
From (1) and (2), we have:
$\frac{A O}{A X}=\frac{A E}{A C}$
Applying the converse of Theorem in $\Delta \mathrm{ABC}, \mathrm{EF} \| \mathrm{CB}$.
This completes the proof.
11. $A B C D$ is a parallelogram in which $P$ is the midpoint of $D C$ and $Q$ is a point on $A C$ such that $C Q=\frac{1}{4} A C$. If $P Q$ produced meets $B C$ at $R$, prove that $R$ is the midpoint of BC.


Sol:
We know that the diagonals of a parallelogram bisect each other.
Therefore,
$\mathrm{CS}=\frac{1}{2} \mathrm{AC}$
Also, it is given that $\mathrm{CQ}=\frac{1}{4} \mathrm{AC}$
Dividing equation (ii) by (i), we get:
$\frac{C Q}{C S}=\frac{\frac{1}{4} A C}{\frac{1}{2} A C}$
Or, $\mathrm{CQ}=\frac{1}{2} C S$
Hence, Q is the midpoint of CS.

Therefore, according to midpoint theorem in $\triangle \mathrm{CSD}$
PQ || DS
If $P Q \| D S$, we can say that $Q R \| S B$
In $\Delta \mathrm{CSB}, \mathrm{Q}$ is midpoint of CS and $\mathrm{QR} \| \mathrm{SB}$.
Applying converse of midpoint theorem, we conclude that $R$ is the midpoint of $C B$. This completes the proof.
12. In the adjoining figure, $A B C$ is a triangle in which $A B=A C$. IF $D$ and $E$ are points on $A B$ and $A C$ respectively such that $A D=A E$, show that the points $B$, $\mathrm{C}, \mathrm{E}$ and D are concyclic.

## Sol:



Given:
$\mathrm{AD}=\mathrm{AE}$
$\mathrm{AB}=\mathrm{AC}$
Subtracting AD from both sides, we get:
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AD}$
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AE}($ Since, $\mathrm{AD}=\mathrm{AE})$
$\Rightarrow \mathrm{BD}=\mathrm{EC}$
Dividing equation (i) by equation (iii), we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem, $\mathrm{DE} \| \mathrm{BC}$
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{ECB}=180^{\circ}$ (Sum of interior angles on the same side of a
Transversal Line is $0^{0}$.)
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{CBD}=180^{\circ}$ (Since, $\mathrm{AB}=\mathrm{AC} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$ )
Hence, quadrilateral BCED is cyclic.
Therefore, B,C,E and D are concylic points.
13. In $\triangle A B C$, the bisector of $\angle B$ meets $A C$ at $D$. A line $O Q \| A C$ meets $A B, B C$ and $B D$ at $O, Q$ and $R$ respectively. Show that $B P \times Q R=B Q \times P R$

## Sol:

In triangle $\mathrm{BQO}, \mathrm{BR}$ bisects angle B .
Applying angle bisector theorem, we get:

$\frac{Q R}{P R}=\frac{B Q}{B P}$
$\Rightarrow \mathrm{BP} \times \mathrm{QR}=\mathrm{BQ} \times \mathrm{PR}$
This completes the proof.

## Exercise - 4B

1. In each of the given pairs of triangles, find which pair of triangles are similar. State the similarity criterion and write the similarity relation in symbolic form:
(i)


(ii)


(iii)

(iv)


(v)



## Sol:

(i)

We have:
$\angle \mathrm{BAC}=\angle \mathrm{PQR}=50^{\circ}$
$\angle \mathrm{ABC}=\angle \mathrm{QPR}=60^{\circ}$
$\angle \mathrm{ACB}=\angle \mathrm{PRQ}=70^{\circ}$
Therefore, by AAA similarity theorem, $\triangle \mathrm{ABC}-\mathrm{QPR}$
(ii)

We have:
$\frac{A B}{D F}=\frac{3}{6}=\frac{1}{2}$ and $\frac{B C}{D E}=\frac{4.5}{9}=\frac{1}{2}$
But, $\angle \mathrm{ABC} \neq \angle \mathrm{EDF}$ (Included angles are not equal)
Thus, this triangles are not similar.
(iii)

We have:
$\frac{C A}{Q R}=\frac{8}{6}=\frac{4}{3}$ and $\frac{C B}{P Q}=\frac{6}{4.5}=\frac{4}{3}$
$\Rightarrow \frac{C A}{Q R}=\frac{C B}{P Q}$
Also, $\angle \mathrm{ACB}=\angle \mathrm{PQR}=80^{\circ}$
Therefore, by SAS similarity theorem, $\Delta \mathrm{ACB}-\Delta \mathrm{RQP}$.
(iv)

We have

$$
\begin{aligned}
& \frac{D E}{Q R}=\frac{2.5}{5}=\frac{1}{2} \\
& \frac{E F}{P Q}=\frac{2}{4}=\frac{1}{2} \\
& \frac{D F}{P R}=\frac{3}{6}=\frac{1}{2} \\
& \Rightarrow \frac{D E}{Q R}=\frac{E F}{P Q}=\frac{D F}{P R}
\end{aligned}
$$

Therefore, by SSS similarity theorem, $\Delta$ FED $-\Delta \mathrm{PQR}$
(v)

In $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \angle \mathrm{A}+\angle B+\angle C=180^{\circ} \text { (Angle Sum Property) } \\
& \Rightarrow 80^{\circ}+\angle B+70^{0}=180^{\circ} \\
& \Rightarrow \angle B=30^{\circ} \\
& \angle A=\angle M \text { and } \angle B=\angle N
\end{aligned}
$$

Therefore, by AA similarity , $\triangle$ ABC - $\triangle$ MNR
2. In the given figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=115^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$.

Find (i) $\angle D C O$ (ii) $\angle D C O$ (iii) $\angle O A B$ (iv) $\angle O B A$.

## Sol:

(i)

It is given that DB is a straight line.
Therefore,


$$
\begin{aligned}
& \angle D O C+\angle C O B=180^{\circ} \\
& \angle D O C=180^{\circ}-115^{\circ}=65^{\circ}
\end{aligned}
$$

(ii)

In $\triangle$ DOC, we have:

$$
\angle O D C+\angle D C O+\angle D O C=180^{\circ}
$$

Therefore,

$$
\begin{aligned}
& 70^{\circ}+\angle D C O+65^{\circ}=180^{0} \\
& \Rightarrow \angle D C O=180-70-65=45^{0}
\end{aligned}
$$

(iii)

It is given that $\Delta \mathrm{ODC}-\Delta \mathrm{OBA}$
Therefore,
$\angle O A B=\angle O C D=45^{\circ}$
(iv)

Again, $\triangle$ ODC- $\Delta$ OBA
Therefore,
$\angle O B A=\angle O D C=70^{\circ}$
3. In the given figure, $\triangle \mathrm{OAB} \sim \Delta \mathrm{OCD}$. If $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BO}=6.4 \mathrm{~cm}, \mathrm{OC}=3.5 \mathrm{~cm}$ and $\mathrm{CD}=5 \mathrm{~cm}$, find (i) OA (ii) DO .
Sol:
(i) Let OA be Xcm .
$\because \Delta$ OAB $-\Delta$ OCD
$\therefore \frac{O A}{O C}=\frac{A B}{C D}$
$\Rightarrow \frac{x}{3.5}=\frac{8}{5}$
$\Rightarrow x=\frac{8 \times 3.5}{5}=5.6$
Hence, OA = 5.6 cm
(ii) Let OD be Y cm

$$
\because \Delta \mathrm{OAB}-\Delta \mathrm{OCD}
$$

$$
\therefore \frac{A B}{C D}=\frac{O B}{O D}
$$

$$
\Rightarrow \frac{8}{5}=\frac{6.4}{y}
$$

$$
\Rightarrow y=\frac{6.4 \times 5}{8}=4
$$

$$
\text { Hence, } D O=4 \mathrm{~cm}
$$

4. In the given figure, if $\angle \mathrm{ADE}=\angle \mathrm{B}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$. If $\mathrm{AD}=3.8 \mathrm{~cm}, \mathrm{AE}=3.6 \mathrm{~cm}$, $\mathrm{BE}=2.1 \mathrm{~cm}$ and $\mathrm{BC}=4.2 \mathrm{~cm}$, find DE .

## Sol:

Given :
$\angle A D E=\angle A B C$ and $\angle A=\angle A$


Let DE be X cm
Therefore, by AA similarity theorem, $\Delta \mathrm{ADE}-\Delta \mathrm{ABC}$
$\Rightarrow \frac{A D}{A B}=\frac{D E}{B C}$
$\Rightarrow \frac{3.8}{3.6+2.1}=\frac{x}{4.2}$
$\Rightarrow x=\frac{3.8 \times 4.2}{5.7}=2.8$
Hence, DE $=2.8 \mathrm{~cm}$
5. The perimeter of two similar triangles $A B C$ and $P Q R$ are 32 cm and 24 cm respectively. If $P Q$ $=12 \mathrm{~cm}$, find AB .

## Sol:

It is given that triangles ABC and PQR are similar.
Therefore,
$\frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle P Q R)}=\frac{A B}{P Q}$
$\Rightarrow \frac{32}{24}=\frac{A B}{12}$
$\Rightarrow A B=\frac{32 \times 12}{24}=16 \mathrm{~cm}$
6. The corresponding sides of two similar triangles ABC and DEF are $\mathrm{BC}=9.1 \mathrm{~cm}$ and $\mathrm{EF}=$ 6.5 cm . If the perimeter of $\triangle D E F$ is 25 cm , find the perimeter of $\triangle A B C$.

## Sol:

It is given that $\Delta \mathrm{ABC}-\Delta \mathrm{DEF}$.
Therefore, their corresponding sides will be proportional.
Also, the ratio of the perimeters of similar triangles is same as the ratio of their
corresponding sides.
$\Rightarrow \frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle D E F}=\frac{B C}{E F}$
Let the perimeter of $\triangle \mathrm{ABC}$ be X cm
Therefore,
$\frac{x}{25}=\frac{9.1}{6.5}$
$\Rightarrow x=\frac{9.1 \times 25}{6.5}=35$
Thus, the perimeter of $\triangle \mathrm{ABC}$ is 35 cm .
7. In the given figure, $\angle C A B=90^{\circ}$ and $A D \perp B C$. Show that $\triangle B D A \sim \triangle B A C$. If $A C=75 \mathrm{~cm}$, $\mathrm{AB}=1 \mathrm{~m}$ and $\mathrm{BC}=1.25 \mathrm{~m}$, find AD .

## Sol:

In $\triangle \mathrm{BDA}$ and $\triangle \mathrm{BAC}$, we have :

$$
\begin{aligned}
& \angle B D A=\angle B A C=90^{\circ} \\
& \angle D B A=\angle C B A \quad \text { (Common) }
\end{aligned}
$$



Therefore, by AA similarity theorem, $\Delta \mathrm{BDA}-\triangle \mathrm{BAC}$
$\Rightarrow \frac{A D}{A C}=\frac{A B}{B C}$
$\Rightarrow \frac{A D}{0.75}=\frac{1}{1.25}$
$\Rightarrow \mathrm{AD}=\frac{0.75}{1.25}$
$=0.6 \mathrm{~m}$ or 60 cm
8. In the given figure, $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{AB}=5.7 \mathrm{~cm}, \mathrm{BD}=3.8 \mathrm{~cm}$ and $\mathrm{CD}=5.4 \mathrm{~cm}$, find $B C$.

## Sol:



It is given that ABC is a right angled triangle and BD is the altitude drawn from the right angle to the hypotenuse.
In $\triangle \mathrm{BDC}$ and $\triangle \mathrm{ABC}$, we have :
$\angle A B C=\angle B B C=90^{\circ}$ (given)
$\angle C=\angle C$ (common)

By AA similarity theorem, we get :
$\Delta$ BDC- $\Delta \mathrm{ABC}$
$\frac{A B}{B D}=\frac{B C}{D C}$
$\Rightarrow \frac{5.7}{3.8}=\frac{B C}{5.4}$
$\Rightarrow B C=\frac{5.7}{3.8} \times 5.4$
$=8.1$
Hence, $\mathrm{BC}=8.1 \mathrm{~cm}$
9. In the given figure, $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$.

If $\mathrm{BD}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$, find CD .

## Sol:

It is given that $A B C$ is a right angled triangle
and BD is the altitude drawn from the right angle to the hypotenuse.


In $\triangle \mathrm{DBA}$ and $\triangle \mathrm{DCB}$, we have :
$\angle B D A=\angle C D B$
$\angle D B A=\angle D C B=90^{\circ}$
Therefore, by AA similarity theorem, we get :
$\triangle \mathrm{DBA}-\triangle \mathrm{DCB}$
$\Rightarrow \frac{B D}{C D}=\frac{A D}{B D}$
$\Rightarrow C D=\frac{B D^{2}}{A D}$
$\mathrm{CD}=\frac{8 \times 8}{4}=16 \mathrm{~cm}$
10. $P$ and $Q$ are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$. If $A P=2 \mathrm{~cm}, P B=4 \mathrm{~cm}$, $A Q=3 \mathrm{~cm}$ and $Q C=6 \mathrm{~cm}$, show that $B C=3 P Q$.
Sol:
We have :
$\frac{A P}{A B}=\frac{2}{6}=\frac{1}{3}$ and $\frac{A Q}{A C}=\frac{3}{9}=\frac{1}{3}$
$\Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}$
In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$, we have:
$\frac{A P}{A B}=\frac{A Q}{A C}$
$\angle A=\angle A$
Therefore, by AA similarity theorem, we get:
$\Delta \mathrm{APQ}-\triangle \mathrm{ABC}$
Hence, $\frac{P Q}{B C}=\frac{A Q}{A C}=\frac{1}{3}$
$\Rightarrow \frac{P Q}{B C}=\frac{1}{3}$
$\Rightarrow \mathrm{BC}=3 \mathrm{PQ}$

This completes the proof.
11. $A B C D$ is parallelogram and $E$ is a point on $B C$.

If the diagonal BD intersects AE at F , prove that
$\mathrm{AF} \times \mathrm{FB}=\mathrm{EF} \times \mathrm{FD}$.


## Sol:

We have:
$\angle A F D=\angle E F B \quad$ (Vertically Opposite angles)
$\because \mathrm{DA} \| \mathrm{BC}$
$\therefore \angle D A F=\angle B E F \quad$ (Alternate angles)
$\triangle \mathrm{DAF} \sim \triangle \mathrm{BEF} \quad$ (AA similarity theorem)
$\Rightarrow \frac{A F}{E F}=\frac{F D}{F B}$
Or, $\mathrm{AF} \times \mathrm{FB}=\mathrm{FD} \times \mathrm{EF}$
This completes the proof.
12. In the given figure, $\mathrm{DB} \perp \mathrm{BC}, \mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{AC} \perp \mathrm{BC}$.

Prove that $\frac{B E}{D E}=\frac{A C}{B C}$.

## Sol:



In $\triangle \mathrm{BED}$ and $\triangle \mathrm{ACB}$, we have:

$$
\begin{aligned}
& \angle B E D=\angle A C B=90^{\circ} \\
& \because \angle B+\angle C=180^{\circ} \\
& \therefore \mathrm{BD} \| \mathrm{AC} \\
& \angle E B D=\angle C A B \text { (Alternate angles) }
\end{aligned}
$$

Therefore, by AA similarity theorem, we get :
$\Delta \mathrm{BED} \sim \Delta \mathrm{ACB}$
$\Rightarrow \frac{B E}{A C}=\frac{D E}{B C}$
$\Rightarrow \frac{B E}{D E}=\frac{A C}{B C}$
This completes the proof.
13. A vertical pole of length 7.5 cm casts a shadow 5 m long on the ground and at the same time a tower casts a shadow 24 m long. Find the height of the tower.

## Sol:

Let AB be the vertical stick and BC be its shadow.
Given:
$\mathrm{AB}=7.5 \mathrm{~m}, \mathrm{BC}=5 \mathrm{~m}$


Let $P Q$ be the tower and $Q R$ be its shadow.
Given:
$\mathrm{QR}=24 \mathrm{~m}$
Let the length of PQ be $x \mathrm{~m}$.
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have:
$\angle A B C=\angle P Q R=90^{\circ}$
$\angle A C B=\angle P R Q$ (Angular elevation of the Sun at the same time)
Therefore, by AA similarity theorem, we get :
$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\Rightarrow \frac{A B}{B C}=\frac{P Q}{Q R}$
$\Rightarrow \frac{7.5}{5}=\frac{x}{24}$
$x=\frac{7.5}{5} \times 24=36 \mathrm{~cm}$
Therefore, $\mathrm{PQ}=36 \mathrm{~m}$
Hence, the height of the tower is 36 m .
14. In an isosceles $\triangle A B C$, the base $A B$ is produced both ways in $P$ and $Q$ such that
$\mathrm{AP} \times \mathrm{BQ}=\mathrm{AC}^{2}$.
Prove that $\triangle \mathrm{ACP} \sim \triangle \mathrm{BCQ}$.

## Sol:

Disclaimer: It should be $\triangle \mathrm{APC} \sim \triangle \mathrm{BCQ}$

instead of $\triangle \mathrm{ACP} \sim$ $\triangle B C Q$
It is given that $\triangle \mathrm{ABC}$ is an isosceles triangle.
Therefore,
$\mathrm{CA}=\mathrm{CB}$
$\Rightarrow \angle C A B=\angle C B A$
$\Rightarrow 180^{\circ}-\angle C A B=180^{\circ}-\angle C B A$
$\Rightarrow \angle C A P=\angle C B Q$
Also,
$\mathrm{AP} \times \mathrm{BQ}=A C^{2}$
$\Rightarrow \frac{A P}{A C}=\frac{A C}{B Q}$
$\Rightarrow \frac{A P}{A C}=\frac{B C}{B Q}(\because A C=B C)$
Thus, by SAS similarity theorem, we get
$\triangle \mathrm{APC} \sim \triangle \mathrm{BCQ}$
This completes the proof.
15. In the given figure, $\angle 1=\angle 2$ and $\frac{A C}{B D}=\frac{C B}{C E}$.

Prove that $\triangle \mathrm{ACB} \sim \Delta \mathrm{DCE}$.
Sol:
We have :

$\frac{A C}{B D}=\frac{C B}{C E}$
$\Rightarrow \frac{A C}{C B}=\frac{B D}{C E}$
$\Rightarrow \frac{A C}{C B}=\frac{C D}{C E} \quad($ Since,$B D=D C$ as $\angle 1=\angle 2)$
Also, $\angle 1=\angle 2$
i.e, $\angle D B C=\angle A C B$

Therefore, by SAS similarity theorem, we get :
$\Delta$ ACB - $\Delta$ DCE
16. ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$.

If $P, Q, R, S$ be the midpoints of $A B, A C, C D$ and BD respectively, show that PQRS is a rhombus.


## Sol:

In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are mid points of AB and AC respectively.
So, $\mathrm{PQ} \| \mathrm{BC}$, and $\mathrm{PQ}=\frac{1}{2} B C$
Similarly, in $\triangle \mathrm{ADC}$,
Now, in $\triangle \mathrm{BCD}, \mathrm{SR}=\frac{1}{2} B C$
Similarly, in $\triangle \mathrm{ABD}, \mathrm{PS}=\frac{1}{2} A D=\frac{1}{2} B C$
Using (1), (2), (3), and (4).
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
Since, all sides are equal
Hence, PQRS is a rhombus.
17. In a circle, two chords AB and CD intersect at a point P inside the circle. Prove that
(a) $\triangle P A C \sim \triangle P D B$
(b) PA. $\mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD}$


## Sol:

Given : AB and CD are two chords
To Prove:
(a) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(b) $\mathrm{PA} \cdot \mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD}$

Proof: In $\triangle$ PAC and $\triangle \mathrm{PDB}$
$\angle A P C=\angle D P B$ (Vertically Opposite angles)
$\angle C A P=\angle B D P$ (Angles in the same segment are equal)
by $A A$ similarity criterion $\triangle P A C \sim P D B$
When two triangles are similar, then the ratios of lengths of their corresponding sides are proportional.
$\therefore \frac{P A}{P D}=\frac{P C}{P B}$
$\Rightarrow \mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$
18. Two chords AB and CD of a circle intersect at a point P outside the circle.

Prove that: (i) $\Delta \mathrm{PAC} \sim \Delta \mathrm{PDB}$
(ii) $\mathrm{PA} \cdot \mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD}$

## Sol:



Given : AB and CD are two chords
To Prove:
(a) $\triangle \mathrm{PAC}-\triangle \mathrm{PDB}$
(b) PA. $\mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD}$

Proof: $\angle A B D+\angle A C D=180^{\circ} \quad \ldots$ (1) (Opposite angles of a cyclic quadrilateral are supplementary)
$\angle P C A+\angle A C D=180^{\circ} \quad \ldots(2) \quad$ (Linear Pair Angles )
Using (1) and (2), we get
$\angle A B D=\angle P C A$
$\angle A=\angle A$
(Common)

By AA similarity-criterion $\triangle \mathrm{PAC}-\Delta \mathrm{PDB}$
When two triangles are similar, then the rations of the lengths of their corresponding sides are proportional.
$\therefore \frac{P A}{P D}=\frac{P C}{P B}$
$\Rightarrow \mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$
19. In a right triangle ABC , right angled at $\mathrm{B}, \mathrm{D}$ is a point on hypotenuse such that $B D \perp A C$, if $D P \perp A B$ and $D Q \perp B C$ then prove that
(a) $D Q^{2}=D p \cdot Q C$
(b) $D P^{2}=D Q . A P 2$


## Sol:

We know that if a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then the triangles on the both sides of the perpendicular are similar to the whole triangle and also to each other.
(a) Now using the same property in In $\triangle \mathrm{BDC}$, we get
$\triangle \mathrm{CQD} \sim \triangle \mathrm{DQB}$
$\frac{C Q}{D Q}=\frac{D Q}{Q B}$
$\Rightarrow D Q^{2}=Q B . C Q$
Now. Since all the angles in quadrilateral BQDP are right angles.
Hence, BQDP is a rectangle.
So, $\mathrm{QB}=\mathrm{DP}$ and $\mathrm{DQ}=\mathrm{PB}$
$\therefore D Q^{2}=D P . C Q$
(b)

Similarly, $\triangle \mathrm{APD} \sim \triangle \mathrm{DPB}$
$\frac{A P}{D P}=\frac{P D}{P B}$
$\Rightarrow D P^{2}=A P . P B$
$\Rightarrow D P^{2}=A P . D Q \quad[\because D Q=P B]$

## Exercise - 4C

1. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find $B C$.

## Sol:

It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
Therefore, ratio of the areas of these triangles will be equal to the ration of squares of their corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}} \\
& \quad \text { Let } B C \text { be X cm. } \\
& \quad \Rightarrow \frac{64}{121}=\frac{x^{2}}{(15.4)^{2}} \\
& \quad \Rightarrow x^{2}=\frac{64 \times 15.4 \times 15.4}{121} \\
& \quad \Rightarrow x=\sqrt{\frac{(64 \times 15.4 \times 15.4)}{121}} \\
& \quad=\frac{8 \times 15.4}{11}
\end{aligned}
$$

$$
=11.2
$$

Hence, $\mathrm{BC}=11.2 \mathrm{~cm}$
2. The areas of two similar triangles $A B C$ and $P Q R$ are in the ratio 9:16. If $B C=4.5 \mathrm{~cm}$, find the length of QR .
Sol:
It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
Therefore, the ration of the areas of triangles will be equal to the ratio of squares of their corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}} \\
& \Rightarrow \frac{9}{16}=\frac{4^{2}}{Q R^{2}} \\
& \Rightarrow Q R^{2}=\frac{4.5 \times 4.5 \times 16}{9} \\
& \Rightarrow Q R=\sqrt{\frac{(4.5 \times 4.5 \times 16)}{9}} \\
& =\frac{4.5 \times 4}{3} \\
& =6 \mathrm{~cm} \\
& \text { Hence, } Q R=6 \mathrm{~cm}
\end{aligned}
$$

3. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\operatorname{ar}(\triangle \mathrm{ABC})=4$, $\operatorname{ar}(\triangle \mathrm{PQR})$. If $\mathrm{BC}=12 \mathrm{~cm}$, find QR .

## Sol:

Given : $\operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle P Q R)$
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{4}{1}$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}}$
$\therefore \frac{B C^{2}}{Q R^{2}}=\frac{4}{1}$
$\Rightarrow Q R^{2}=\frac{12^{2}}{4}$
$\Rightarrow Q R^{2}=36$
$\Rightarrow Q R=6 \mathrm{~cm}$
Hence, $\mathrm{QR}=6 \mathrm{~cm}$
4. The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle is 26 cm , find the longest side of the smaller triangle.

## Sol:

It is given that the triangles are similar.
Therefore, the ratio of the areas of these triangles will be equal to the ratio of squares of their corresponding sides.
Let the longest side of smaller triangle be Xcm .
$\frac{\operatorname{ar}(\text { Larger triangle })}{\text { ar }(\text { Smaller triangle })}=\frac{(\text { Longest side of larger traingle })^{2}}{(\text { Longest side of smaller traingle })^{2}}$
$\Rightarrow \frac{169}{121}=\frac{26^{2}}{x^{2}}$
$\Rightarrow x=\sqrt{\frac{26 \times 26 \times 121}{169}}$
$=22$
Hence, the longest side of the smaller triangle is 22 cm .
5. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ and their areas are respectively $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$. If the altitude of $\Delta \mathrm{ABC}$ is 5 cm , find the corresponding altitude of $\triangle \mathrm{DEF}$.

## Sol:



It is given that $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
Therefore, the ration of the areas of these triangles will be equal to the ratio of squares of their corresponding sides.
Also, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

Let the altitude of $\triangle \mathrm{ABC}$ be AP , drawn from A to BC to meet BC at P and the altitude of $\triangle D E F$ be $D Q$, drawn from $D$ to meet $E F$ at $Q$.
Then,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A P^{2}}{D Q^{2}}$
$\Rightarrow \frac{100}{49}=\frac{5^{2}}{D Q^{2}}$
$\Rightarrow \frac{100}{49}=\frac{25}{D Q^{2}}$
$\Rightarrow D Q^{2}=\frac{49 \times 25}{100}$
$\Rightarrow D Q=\sqrt{\frac{49 \times 25}{100}}$
$\Rightarrow D Q=3.5 \mathrm{~cm}$
Hence, the altitude of $\triangle \mathrm{DEF}$ is 3.5 cm
6. The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

## Sol:

Let the two triangles be ABC and DEF with altitudes AP and DQ , respectively.


It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
We know that the ration of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{(A P)^{2}}{(D Q)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(D E F)}=\frac{6^{2}}{9^{2}}$
$=\frac{36}{81}$
$=\frac{4}{9}$
Hence, the ratio of their areas is $4: 9$
7. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 6.3 cm , find the corresponding altitude of the other.

## Sol:

It is given that the triangles are similar.
Therefore, the areas of these triangles will be equal to the ratio of squares of their corresponding sides.

Also, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.
Let the two triangles be ABC and DEF with altitudes AP and DQ, respectively.


$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A P^{2}}{D Q^{2}}
$$

$\Rightarrow \frac{81}{49}=\frac{6.3^{2}}{D Q}$
$\Rightarrow D Q^{2}=\frac{49}{81} \times 6.3^{2}$
$\Rightarrow D Q^{2}=\sqrt{\frac{49}{81} \times 6.3 \times 6.3}$
Hence, the altitude of the other triangle is 4.9 cm .
8. The areas of two similar triangles are $64 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$ respectively. If a median of the smaller triangle is 5.6 cm , find the corresponding median of the other.

## Sol:

Let the two triangles be ABC and PQR with medians AM and PN , respectively.


Therefore, the ratio of areas of two similar triangles will be equal to the ratio of squares of their corresponding medians.
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A M^{2}}{P N^{2}}$
$\Rightarrow \frac{64}{100}=\frac{5.6^{2}}{P N^{2}}$
$\Rightarrow P N^{2}=\frac{64}{100} \times 5.6^{2}$
$\Rightarrow P N^{2}=\sqrt{\frac{100}{64} \times 5.6 \times 5.6}$
$=7 \mathrm{~cm}$
Hence, the median of the larger triangle is 7 cm .
9. In the given figure, $A B C$ is a triangle and $P Q$ is a straight line meeting $A B$ in $P$ and $A C$ in Q . If $\mathrm{AP}=1 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{AQ}=1.5 \mathrm{~cm}, \mathrm{QC}=4.5 \mathrm{~cm}$, prove that area of $\triangle \mathrm{APQ}$ is $\frac{1}{16}$ of the area of $\triangle \mathrm{ABC}$.

## Sol:

We have :
$\frac{A P}{A B}=\frac{1}{1+3}=\frac{1}{4}$ and $\frac{A Q}{A C}=\frac{1.5}{1.5+4.5}=\frac{1.5}{6}=\frac{1}{4}$

$\Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}$
Also, $\angle A=\angle A$
By SAS similarity, we can conclude that $\triangle \mathrm{APQ}-\triangle \mathrm{ABC}$.
$\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}=\frac{A P^{2}}{A B^{2}}=\frac{1^{2}}{4^{2}}=\frac{1}{16}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{16}$
$\Rightarrow \operatorname{ar}(\triangle A P Q)=\frac{1}{16} \times \operatorname{ar}(\triangle A B C)$
Hence proved.
10. In the given figure, $D E \| B C$. If $D E=3 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\operatorname{ar}(\triangle A D E)=15 \mathrm{~cm}^{2}$, find the area of $\triangle \mathrm{ABC}$.

## Sol:

It is given that $\mathrm{DE} \| \mathrm{BC}$
$\therefore \angle A D E=\angle A B C$ (Corresponding angles)

$\angle A E D=\angle A C B$ (Corresponding angles)
By AA similarity, we can conclude that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$
$\therefore \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{D E^{2}}{B C^{2}}$
$\Rightarrow \frac{15}{\operatorname{ar}(\triangle A B C)}=\frac{3^{2}}{6^{2}}$
$\Rightarrow \operatorname{ar}(\triangle A B C)=\frac{15 \times 36}{9}$
$=60 \mathrm{~cm}^{2}$
Hence, area of triangle ABC is $60 \mathrm{~cm}^{2}$
11. $\triangle A B C$ is right angled at $A$ and $A D \perp B C$. If $B C=13 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$, find the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$.

## Sol:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$, we have:

$$
\begin{aligned}
& \angle B A C=\angle A D C=90^{\circ} \\
& \angle A C B=\angle A C D(\text { common })
\end{aligned}
$$



By AA similarity, we can conclude that $\triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$.
Hence, the ratio of the areas of these triangles is equal to the ratio of squares of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle B A C)}{\operatorname{ar}(\triangle A D C)}=\frac{B C^{2}}{A C^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle B A C)}{\operatorname{ar}(\triangle A D C)}=\frac{13^{2}}{5^{2}}$
$=\frac{169}{25}$
Hence, the ratio of areas of both the triangles is $169: 25$
12. In the given figure, $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{DE}: \mathrm{BC}=3: 5$. Calculate the ratio of the areas of $\triangle \mathrm{ADE}$ and the trapezium BCED.

## Sol:

It is given that $\mathrm{DE} \| \mathrm{BC}$.
$\therefore \angle A D E=\angle A B C$ (Corresponding angles) $\angle A E D=\angle A C B$ (Corresponding angles)


Applying AA similarity theorem, we can conclude that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(A D E)}=\frac{B C^{2}}{D E^{2}}$
Subtracting 1 from both sides, we get:
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A D E)}-1=\frac{5^{2}}{3^{2}}-1$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A D E)}=\frac{25-9}{9}$
$\Rightarrow \frac{\operatorname{ar}(B C E D)}{\operatorname{ar}(\triangle A D E)}=\frac{16}{9}$
Or, $\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(B C E D)}=\frac{9}{16}$
13. In $\triangle A B C, D$ and $E$ are the midpoints of $A B$ and $A C$ respectively. Find the ratio of the areas of $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$.


## Sol:

It is given that D and E are midpoints of AB and AC .
Applying midpoint theorem, we can conclude that $\mathrm{DE} \| \mathrm{BC}$.
Hence, by B.P.T., we get :
$\frac{A D}{A B}=\frac{A E}{A C}$
Also, $\angle A=\angle A$
Applying SAS similarity theorem, we can conclude that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$.
Therefore, the ration of areas of these triangles will be equal to the ratio of squares of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{D E^{2}}{B C^{2}}$
$=\frac{\left(\frac{1}{2} B C\right)^{2}}{B C^{2}}$
$=\frac{1}{4}$

## Exercise - 4D

1. The sides of certain triangles are given below. Determine which of them right triangles are.
(i) $9 \mathrm{~cm}, 16 \mathrm{~cm}, 18 \mathrm{~cm}$
(ii) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(iii) $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}, 5 \mathrm{~cm}$
(iv) $1.6 \mathrm{~cm}, 3.8 \mathrm{~cm}, 4 \mathrm{~cm}$
(v) $(\mathrm{a}-1) \mathrm{cm}, 2 \sqrt{a} \mathrm{~cm},(\mathrm{a}+1) \mathrm{cm}$

## Sol:

For the given triangle to be right-angled, the sum of the two sides must be equal to the square of the third side.
Here, let the three sides of the triangle be $\mathrm{a}, \mathrm{b}$ and c .
(i)
$\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$ and $\mathrm{c}=18 \mathrm{~cm}$
Then,

$$
\begin{aligned}
& a^{2}+b^{2}=9^{2}+16^{2} \\
& =81+256 \\
& =337 \\
& c^{2}=19^{2} \\
& =361 \\
& a^{2}+b^{2} \neq c^{2}
\end{aligned}
$$

Thus, the given triangle is not right-angled.
(ii)
$\mathrm{A}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$
Then,

$$
\begin{aligned}
& a^{2}+b^{2}=7^{2}+24^{2} \\
& =49+576 \\
& =625 \\
& c^{2}=25^{2} \\
& =625 \\
& a^{2}+b^{2}=c^{2}
\end{aligned}
$$

Thus, the given triangle is a right-angled.
(iii)
$\mathrm{A}=1.4 \mathrm{~cm}, \mathrm{~b}=4.8 \mathrm{~cm}$ and $\mathrm{c}=5 \mathrm{~cm}$
Then,
$a^{2}+b^{2}=(1.4)^{2}+(4.8)^{2}$
$=1.96+23.04$
$=25$

$$
\begin{aligned}
& c^{2}=5^{2} \\
& =25 \\
& a^{2}+b^{2}=c^{2}
\end{aligned}
$$

Thus, the given triangle is right-angled.
(iv) $\mathrm{A}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}$ and $\mathrm{c}=4 \mathrm{~cm}$

Then
$a^{2}+b^{2}=(1.6)^{2}+(3.8)^{2}$
$=2.56+14.44$
$=16$
$a^{2}+b^{2} \neq c^{2}$
Thus, the given triangle is not right-angled.
(v)
$\mathrm{P}=(\mathrm{a}-1) \mathrm{cm}, \mathrm{q}=2 \sqrt{a} \mathrm{~cm}$ and $r=(a+1) \mathrm{cm}$
Then,

$$
\begin{aligned}
p^{2}+q^{2} & =(a-1)^{2}+(2 \sqrt{a})^{2} \\
& =a^{2}+1-2 a+4 a \\
& =a^{2}+1+2 a \\
& =(a+1)^{2} \\
r^{2}= & (a+1)^{2} \\
p^{2}+q^{2} & =r^{2}
\end{aligned}
$$

Thus, the given triangle is right-angled.
2. A man goes 80 m due east and then 150 m due north. How far is he from the starting point?

## Sol:

Let the man starts from point $A$ and goes 80 m due east to $B$.
Then, from B, he goes 150 m due north to c .


We need to find AC.
In right- angled triangle ABC , we have:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
& A C=\sqrt{80^{2}+150^{2}} \\
& =\sqrt{6400+22500} \\
& =\sqrt{28900} \\
& =170 \mathrm{~m}
\end{aligned}
$$

Hence, the man is 170 m away from the starting point.
3. A man goes 10 m due south and then 24 m due west. How far is he from the starting point?

## Sol:

Let the man starts from point D and goes 10 m due south at E . He then goes 24 m due west at F .
In right $\triangle \mathrm{DEF}$, we have:
$\mathrm{DE}=10 \mathrm{~m}, \mathrm{EF}=24 \mathrm{~m}$

$D F^{2}=E F^{2}+D E^{2}$
$D F=\sqrt{10^{2}+24^{2}}$
$=\sqrt{100+576}$
$=\sqrt{676}$
$=26 \mathrm{~m}$
Hence, the man is 26 m away from the starting point.
4. A 13 m long ladder reaches a window of a building 12 m above the ground. Determine the distance of the foot of the ladder from the building.
Sol:
Let AB and AC be the ladder and height of the building.
It is given that :
$\mathrm{AB}=13 \mathrm{~m}$ and $\mathrm{AC}=12 \mathrm{~m}$
We need to find distance of the foot of the ladder from the building, i.e, BC.
In right-angled triangle ABC , we have:


Hence, the distance of the foot ladder from the building is 5 m
5. A ladder is placed in such a way that its foot is at a distance of 15 m from a wall and its top reaches a window 20 m above the ground. Find the length of the ladder.

## Sol:

Let the height of the window from the ground and the distance of the foot of the ladder from the wall be AB and BC , respectively.
We have :
$\mathrm{AB}=20 \mathrm{~m}$ and $\mathrm{BC}=15 \mathrm{~m}$
Applying Pythagoras theorem in right-angled ABC , we get:

$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow A C=\sqrt{20^{2}+15^{2}}$
$=\sqrt{400+225}$
$=\sqrt{625}$
$=25 \mathrm{~m}$
Hence, the length of the ladder is 25 m .
6. Two vertical poles of height 9 m and 14 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.
Sol:
Let the two poles be DE and AB and the distance between their bases be BE.
We have:
$\mathrm{DE}=9 \mathrm{~m}, \mathrm{AB}=14 \mathrm{~m}$ and $\mathrm{BE}=12 \mathrm{~m}$
Draw a line parallel to BE from D , meeting AB at C .
Then, $\mathrm{DC}=12 \mathrm{~m}$ and $\mathrm{AC}=5 \mathrm{~m}$
We need to find AD , the distance between their tops.


Applying Pythagoras theorem in right-angled ACD, we have:
$A D^{2}=A C^{2}+D C^{2}$
$A D^{2}=5^{2}+12^{2}=25+144=169$
$A D=\sqrt{169}=13 \mathrm{~m}$

Hence, the distance between the tops to the two poles is 13 m .
7. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

## Sol:



Let AB be a guy wire attached to a pole BC of height 18 m . Now, to keep the wire taut let it to be fixed at A.
Now, In right triangle ABC
By using Pythagoras theorem, we have
$A B^{2}=B C^{2}+C A^{2}$
$\Rightarrow 24^{2}=18^{2}+C A^{2}$
$\Rightarrow C A^{2}=576-324$
$\Rightarrow C A^{2}=252$
$\Rightarrow C A=6 \sqrt{7} \mathrm{~m}$
Hence, the stake should be driven $6 \sqrt{7} m$ far from the base of the pole.
8. In the given figure, O is a point inside a $\triangle \mathrm{PQR}$ such that $\angle \mathrm{PQR}$ such that $\angle \mathrm{POR}=90^{\circ}$, OP $=6 \mathrm{~cm}$ and $\mathrm{OR}=8 \mathrm{~cm}$. If $\mathrm{PQ}=24 \mathrm{~cm}$ and $\mathrm{QR}=26 \mathrm{~cm}$, prove that $\triangle P Q R$ is right-angled.
Sol:
Applying Pythagoras theorem in right-angled triangle POR, we have:

$$
P R^{2}=P O^{2}+O R^{2}
$$


$\Rightarrow P R^{2}=6^{2}+8^{2}=36+64=100$
$\Rightarrow P R=\sqrt{100}=10 \mathrm{~cm}$
IN $\Delta \mathrm{PQR}$,

$$
P Q^{2}+P R^{2}=24^{2}+10^{2}=576+100=676
$$

And $Q R^{2}=26^{2}=676$
$\therefore P Q^{2}+P R^{2}=Q R^{2}$
Therefore, by applying Pythagoras theorem, we can say that $\triangle \mathrm{PQR}$ is right-angled at P .
9. $\triangle \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$. The length of altitude from A on BC is 5 cm . Find BC.

## Sol:

It is given that $\triangle \mathrm{ABC}$ is an isosceles triangle.
Also, $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$

Suppose the altitude from A on BC meets BC at D . Therefore, D is the midpoint of BC .
$\mathrm{AD}=5 \mathrm{~cm}$
$\triangle A D B$ and $\triangle A D C$ are right-angled triangles.
Applying Pythagoras theorem, we have;

$A B^{2}=A D^{2}+B D^{2}$
$B D^{2}=A B^{2}-A D^{2}=13^{2}-5^{2}$
$B D^{2}=169-25=144$
$B D=\sqrt{144}=12$
Hence,
$\mathrm{BC}=2(\mathrm{BD})=2 \times 12=24 \mathrm{~cm}$
10. Find the length of altitude $A D$ of an isosceles $\triangle A B C$ in which $A B=A C=2 a$ units and $B C$ = a units.

## Sol:

In isosceles $\triangle \mathrm{ABC}$, we have:
$\mathrm{AB}=\mathrm{AC}=2$ a units and $\mathrm{BC}=\mathrm{a}$ units
Let AD be the altitude drawn from A that meets BC at D .
Then, D is the midpoint of BC .
$\mathrm{BD}=\mathrm{BC}=\frac{a}{2}$ units
Applying Pythagoras theorem in right-angled $\triangle \mathrm{ABD}$, we have:

$A B^{2}=A D^{2}+B D^{2}$
$A D^{2}=A B^{2}-B D^{2}=(2 a)^{2}-\left(\frac{a}{2}\right)^{2}$
$A D^{2}=4 a^{2}-\frac{a^{2}}{4}=\frac{15 a^{2}}{4}$
$A D=\sqrt{\frac{15 a^{2}}{4}}=\frac{a \sqrt{15}}{2}$ units.
11. $\triangle \mathrm{ABC}$ is am equilateral triangle of side 2 a units. Find each of its altitudes.

## Sol:



Let $\mathrm{AD}, \mathrm{BE}$ and CF be the altitudes of $\triangle \mathrm{ABC}$ meeting $\mathrm{BC}, \mathrm{AC}$ and AB at $\mathrm{D}, \mathrm{E}$ and F , respectively.
Then, $\mathrm{D}, \mathrm{E}$ and F are the midpoint of $\mathrm{BC}, \mathrm{AC}$ and AB , respectively.
In right-angled $\triangle \mathrm{ABD}$, we have:
$\mathrm{AB}=2 \mathrm{a}$ and $\mathrm{BD}=\mathrm{a}$
Applying Pythagoras theorem, we get:

$$
A B^{2}=A D^{2}+B D^{2}
$$

$$
A D^{2}=A B^{2}-B D^{2}=(2 a)^{2}-a^{2}
$$

$A D^{2}=4 a^{2}-a^{2}=3 a^{2}$
$A D=\sqrt{3} a$ units
Similarly,
$\mathrm{BE}=a \sqrt{3}$ units and $C F=a \sqrt{3}$ units
12. Find the height of an equilateral triangle of side 12 cm .

Sol:
Let ABC be the equilateral triangle with AD as an altitude from A meeting BC at D . Then, D will be the midpoint of BC .
Applying Pythagoras theorem in right-angled triangle ABD, we get:

$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A D^{2}=12^{2}-6^{2}\left(\because B D=\frac{1}{2} B C=6\right)$
$\Rightarrow A D^{2}=144-36=108$
$\Rightarrow A D=\sqrt{108}=6 \sqrt{3} \mathrm{~cm}$.
Hence, the height of the given triangle is $6 \sqrt{3} \mathrm{~cm}$.
13. Find the length of a diagonal of a rectangle whose adjacent sides are 30 cm and 16 cm .

## Sol:

Let ABCD be the rectangle with diagonals AC and BD meeting at O .
According to the question:
$\mathrm{AB}=\mathrm{CD}=30 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{AD}=16 \mathrm{~cm}$


Applying Pythagoras theorem in right-angled triangle ABC , we get:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=30^{2}+16^{2}=900+256=1156 \\
& A C=\sqrt{1156}=34 \mathrm{~cm}
\end{aligned}
$$

Diagonals of a rectangle are equal.
Therefore, $\mathrm{AC}=\mathrm{BD}=34 \mathrm{~cm}$
14. Find the length of each side of a rhombus whose diagonals are 24 cm and 10 cm long.

Sol:
Let ABCD be the rhombus with diagonals $(\mathrm{AC}=24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm})$ meeting at O .
We know that the diagonals of a rhombus bisect each other at angles.
Applying Pythagoras theorem in right-angled AOB , we get:

$$
\begin{aligned}
& A B^{2}=A O^{2}+B O^{2}=12^{2}+5^{2} \\
& A B^{2}=144+25=169 \\
& A B=\sqrt{169}=13 \mathrm{~cm}
\end{aligned}
$$

Hence, the length of each side of the rhombus is 13 cm .
15. In $\triangle \mathrm{ABC}, \mathrm{D}$ is the midpoint of BC and $\mathrm{AE} \perp \mathrm{BC}$. If $\mathrm{AC}>\mathrm{AB}$, show that $\mathrm{AB}^{2}=A D^{2}+$ $\frac{1}{4} B C^{2}-B C . D E$

## Sol:

In right-angled triangle AED, applying Pythagoras theorem, we have:
$A B^{2}=A E^{2}+E D^{2}$
In right-angled triangle AED, applying Pythagoras theorem, we have:

$A D^{2}=A E^{2}+E D^{2}$
$\Rightarrow A E^{2}=A D^{2}-E D^{2}$
Therefore,

$$
\begin{align*}
A B^{2} & =A D^{2}-E D^{2}+E B^{2}(\text { from }(i) \text { and }(i i))  \tag{ii}\\
A B^{2} & =A D^{2}-E D^{2}+(B D-D E)^{2} \\
& =A D^{2}-E D^{2}+\left(\frac{1}{2} B C-D E\right)^{2} \\
& =A D^{2}-D E^{2}+\frac{1}{4} B C^{2}+D E^{2}-B C \cdot D E \\
& =A D^{2}+\frac{1}{4} B C^{2}-B C . D E
\end{align*}
$$

This completes the proof.
16. In the given figure, $\angle A C B=90^{\circ} C D \perp A B$ Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$


Sol:
Given: $\angle A C B=90^{\circ}$ and $C D \perp A B$
To Prove; $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$
Proof: $\quad$ In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{CDB}$
$\angle A C B=\angle C D B=90^{\circ}$ (Given)
$\angle A B C=\angle C B D$ (Common)
By AA similarity-criterion $\triangle \mathrm{ACB} \sim \Delta \mathrm{CDB}$
When two triangles are similar, then the ratios of the lengths of their corresponding sides are proportional.
$\therefore \frac{B C}{B D}=\frac{A B}{B C}$
$\Rightarrow B C^{2}=B D . A B$
In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ADC}$

$$
\begin{aligned}
& \angle A C B=\angle A D C=90^{\circ} \text { (Given) } \\
& \angle C A B=\angle D A C(\text { Common })
\end{aligned}
$$

By AA similarity-criterion $\triangle \mathrm{ACB} \sim \triangle \mathrm{ADC}$

When two triangles are similar, then the ratios of their corresponding sides are proportional.
$\therefore \frac{A C}{A D}=\frac{A B}{A C}$
$\Rightarrow A C^{2}=\mathrm{AD} . \mathrm{AB}$
Dividing (2) by (1), we get
$\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$
17. In the given figure, $D$ is the midpoint of side $B C$ and $A E \perp B C$. If $B C=a, A C=b, A B=c$,
$\mathrm{AD}=\mathrm{p}$ and $\mathrm{AE}=\mathrm{h}$, prove that
(i) $b^{2}=p^{2}+a x+\frac{a^{2}}{x}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{x}$

(iii) $b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
(iv) $b^{2}-c^{2}=2 a x$

## Sol:

(i)

In right-angled triangle AEC , applying Pythagoras theorem, we have:

$$
\begin{equation*}
A C^{2}=A E^{2}+E C^{2} \tag{i}
\end{equation*}
$$

$\Rightarrow b^{2}=h^{2}+\left(x+\frac{a}{2}\right)^{2}=h^{2}+x^{2}+\frac{a^{2}}{4}+a x$.
In right - angled triangle AED, we have:
$A D^{2}=A E^{2}+E D^{2}$
$\Rightarrow p^{2}=h^{2}+x^{2}$.
Therefore,
from (i) and (ii),
$b^{2}=p^{2}+a x+\frac{a^{2}}{x}$
(ii)

In right-angled triangle AEB , applying Pythagoras, we have:
$A B^{2}=A E^{2}+E B^{2}$
$\Rightarrow c^{2}=h^{2}+\left(\frac{a}{2}-x\right)^{2}\left(\because B D=\frac{a}{2}\right.$ and $\left.B E=B D-x\right)$
$\Rightarrow c^{2}=h^{2}+x^{2}-\frac{a^{2}}{4}\left(\because h^{2}+x^{2}=p^{2}\right)$
$\Rightarrow c^{2}=p^{2}-a x+\frac{a^{2}}{x}$
(iii)

Adding (i) and (ii), we get:

$$
\begin{aligned}
\Rightarrow b^{2}+c^{2} & =p^{2}+a x+\frac{a^{2}}{4}+p^{2}-a x+\frac{a^{2}}{4} \\
& =2 p^{2}+a x-a x+\frac{a^{2}+a^{2}}{4}
\end{aligned}
$$

$$
=2 p^{2}+\frac{a^{2}}{2}
$$

(iv)

Subtracting (ii) from (i), we get:

$$
\begin{aligned}
b^{2}-c^{2} & =p^{2}+a x+\frac{a^{2}}{4}-\left(p^{2}-a x+\frac{a^{2}}{4}\right) \\
& =p^{2}-p^{2}+a x+a x+\frac{a^{2}}{4}-\frac{a^{2}}{4} \\
& =2 \mathrm{ax}
\end{aligned}
$$

18. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$. Side BC is produced to D . Prove that $A D^{2}-A C^{2}=\mathrm{BD}$. CD

## Sol:

Draw $\mathrm{AE} \perp \mathrm{BC}$, meeting BC at D .
Applying Pythagoras theorem in right-angled triangle AED, we get:


Since, ABC is an isosceles triangle and AE is the altitude and we know that the altitude is also the median of the isosceles triangle.
So, $\mathrm{BE}=\mathrm{CE}$
And $\mathrm{DE}+\mathrm{CE}=\mathrm{DE}+\mathrm{BE}=\mathrm{BD}$
$A D^{2}=A E^{2}+D E^{2}$
$\Rightarrow A E^{2}=A D^{2}-D E^{2}$
In $\triangle \mathrm{ACE}$,

$$
\begin{align*}
& A C^{2}=A E^{2}+E C^{2}  \tag{i}\\
& \Rightarrow A E^{2}=A C^{2}-E C^{2} \tag{ii}
\end{align*}
$$

Using (i) and (ii),

$$
\begin{aligned}
\Rightarrow A D^{2}-D E^{2}= & A C^{2}-E C^{2} \\
\Rightarrow A D^{2}-A C^{2}= & D E^{2}-E C^{2} \\
& =(\mathrm{DE}+\mathrm{CE})(\mathrm{DE}-\mathrm{CE}) \\
& =(\mathrm{DE}+\mathrm{BE}) \mathrm{CD} \\
& =\mathrm{BD} \cdot \mathrm{CD}
\end{aligned}
$$

19. $A B C$ is an isosceles triangle, right-angled at $B$. Similar triangles $A C D$ and $A B E$ are constructed on sides $A C$ and $A B$. Find the ratio between the areas of $\triangle A B E$ and $\triangle A C D$.


Sol:
We have, ABC as an isosceles triangle, right angled at B .
Now, $\mathrm{AB}=\mathrm{BC}$
Applying Pythagoras theorem in right-angled triangle ABC , we get: $A C^{2}=A B^{2}+B C^{2}=2 A B^{2}(\because A B=A C) \ldots(i)$

$\because \triangle \mathrm{ACD} \sim \Delta \mathrm{ABE}$
We know that ratio of areas of 2 similar triangles is equal to squares of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle A B E)}{\operatorname{ar}(\triangle A C D)}=\frac{A B^{2}}{A C^{2}}=\frac{A B^{2}}{2 A B^{2}}[$ from (i)]
$=\frac{1}{2}=1: 2$
20. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?

## Sol:



Let A be the first aeroplane flied due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$ and $B$ be the second aeroplane flied due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$
Distance covered by plane A in $1 \frac{1}{2}$ hours $=1000 \times \frac{3}{2}=1500 \mathrm{~km}$
Distance covered by plane B in $1 \frac{1}{2}$ hours $=1200 \times \frac{3}{2}=1800 \mathrm{~km}$
Now, In right triangle ABC
By using Pythagoras theorem, we have

$$
A B^{2}=B C^{2}+C A^{2}
$$

$=(1800)^{2}+(1500)^{2}$
$=3240000+2250000$
$=5490000$
$\therefore A B^{2}=5490000$
$\Rightarrow \mathrm{AB}=300 \sqrt{61} \mathrm{~m}$
Hence, the distance between two planes after $1 \frac{1}{2}$ hours is $300 \sqrt{61} \mathrm{~m}$
21. In a $\triangle A B C, \mathrm{AD}$ is a median and $A L \perp B C$.

Prove that

(a) $A C^{2}=A D^{2}+B C \cdot D L+\left(\frac{B C}{2}\right)^{2}$
(b) $A B^{2}=A D^{2}-B C \cdot D L+\left(\frac{B C}{2}\right)^{2}$
(c) $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

## Sol:

(a) In right triangle ALD

Using Pythagoras theorem, we have

$$
\begin{aligned}
& A C^{2}=A L^{2}+L C^{2} \\
& =A D^{2}-D L^{2}+(D L+D C)^{2} \quad[\text { Using (1)] } \\
& =A D^{2}-D L^{2}+\left(D L+\frac{B C}{2}\right)^{2} \quad[\because \mathrm{AD} \text { is a median }] \\
& =A D^{2}-D L^{2}+D L^{2}+\left(\frac{B C}{2}\right)^{2}+B C \cdot D L \\
& \therefore A C^{2}=A D^{2}+B C \cdot D L+\left(\frac{B C}{2}\right)^{2}
\end{aligned}
$$

(b) In right triangle ALD

Using Pythagoras theorem, we have

$$
\begin{equation*}
A L^{2}=A D^{2}-D L^{2} \tag{3}
\end{equation*}
$$

Again, In right triangle ABL
Using Pythagoras theorem, we have

$$
\begin{align*}
& A B^{2}=A L^{2}+L B^{2} \\
= & A D^{2}-D L^{2}+L B^{2} \quad[U \operatorname{sing}(3)] \\
= & A D^{2}-D L^{2}+(B D-D L)^{2} \\
= & A D^{2} D L^{2}+\left(\frac{1}{2} B C-D L\right)^{2} \\
= & A D^{2}-D L^{2}+\left(\frac{B C}{2}\right)^{2}-B C \cdot D L+D L^{2} \\
\therefore & A B^{2}=A D^{2}-B C \cdot D L+\left(\frac{B C}{2}\right)^{2} \tag{4}
\end{align*}
$$

(c) Adding (2) and (4), we get,

$$
\begin{aligned}
& =A C^{2}+A B^{2}=A D^{2}+B C \cdot D L+\left(\frac{B C}{2}\right)^{2}+A D^{2}-B C \cdot D L+\left(\frac{B C}{2}\right)^{2} \\
& =2 A D^{2}+\frac{B C^{2}}{4}+\frac{B C^{2}}{4} \\
& =2 A D^{2}+\frac{1}{2} B C^{2}
\end{aligned}
$$

22. Naman is doing fly-fishing in a stream. The trip fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away from him and 2.4 m from the point directly under the tip of the rod. Assuming that the string( from the tip of his rod to the fly) is taut, how much string does he have out (see the adjoining figure) if he pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from him after 12 seconds?


Sol:


Naman pulls in the string at the rate of 5 cm per second.
Hence, after 12 seconds the length of the string he will pulled is given by
$12 \times 5=60 \mathrm{~cm}$ or 0.6 m
Now, in $\triangle \mathrm{BMC}$
By using Pythagoras theorem, we have

$$
B C^{2}=C M^{2}+M B^{2}
$$

$=(2.4)^{2}+(1.8)^{2}$
$=9$
$\therefore \mathrm{BC}=3 \mathrm{~m}$
Now, BC' $=\mathrm{BC}-0.6$
$=3-0.6$
$=2.4 \mathrm{~m}$
Now, In $\triangle \mathrm{BC}^{\prime} \mathrm{M}$
By using Pythagoras theorem, we have

$$
C^{\prime} M^{2}=B C^{\prime 2}-M B^{2}
$$

$=(2.4)^{2}-(1.8)^{2}$
$=2.52$
$\therefore \mathrm{C}^{\prime} \mathrm{M}=1.6 \mathrm{~m}$
The horizontal distance of the fly from him after 12 seconds is given by
$\mathrm{C}^{\prime} \mathrm{A}=\mathrm{C}^{\prime} \mathrm{M}+\mathrm{MA}$
$=1.6+1.2$
$=2.8 \mathrm{~m}$

## Exercise - 4E

1. State the two properties which are necessary for given two triangles to be similar.

Sol:
The two triangles are similar if and only if

1. The corresponding sides are in proportion.
2. The corresponding angles are equal.
3. State the basic proportionality theorem.

## Sol:

If a line is draw parallel to one side of a triangle intersect the other two sides, then it divides the other two sides in the same ratio.
3. State and converse of Thale's theorem.

## Sol:

If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.
4. State the midpoint theorem

## Sol:

The line segment connecting the midpoints of two sides of a triangle is parallel to the third side and is equal to one half of the third side.
5. State the AAA-similarity criterion

## Sol:

If the corresponding angles of two triangles are equal, then their corresponding sides are proportional and hence the triangles are similar.
6. State the AA-similarity criterion

## Sol:

If two angles are correspondingly equal to the two angles of another triangle, then the two triangles are similar.
7. State the SSS-similarity criterion for similarity of triangles

## Sol:

If the corresponding sides of two triangles are proportional then their corresponding angles are equal, and hence the two triangles are similar.
8. State the SAS-similarity criterion

## Sol:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional then the two triangles are similar.
9. State Pythagoras theorem

## Sol:

The square of the hypotenuse is equal to the sum of the squares of the other two sides. Here, the hypotenuse is the longest side and it's always opposite the right angle.
10. State the converse of Pythagoras theorem.

## Sol:

If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.
11. If $D, E, F$ are the respectively the midpoints of sides $B C, C A$ and $A B$ of $\triangle A B C$. Find the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$.

## Sol:



By using mid theorem i.e., the segment joining two sides of a triangle at the midpoints of those sides is parallel to the third side and is half the length of the third side.
$\therefore \mathrm{DF} \| \mathrm{BC}$
And $D F=\frac{1}{2} B C$
$\Rightarrow \mathrm{DF}=\mathrm{BE}$
Since, the opposite sides of the quadrilateral are parallel and equal.
Hence, BDFE is a parallelogram
Similarly, DFCE is a parallelogram.
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFD}$

$$
\begin{array}{ll}
\angle A B C=\angle E F D & \text { (Opposite angles of a parallelogram) } \\
\angle B C A=\angle E D F & \text { (Opposite angles of a parallelogram) }
\end{array}
$$

By AA similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{EFD}$
If two triangles are similar, then the ratio of their areas is equal to the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle D E F)}{\operatorname{area}(\triangle A B C)}=\left(\frac{D F}{B C}\right)^{2}=\left(\frac{D F}{2 D F}\right)^{2}=\frac{1}{4}$
Hence, the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$ is $1: 4$.
12. Two triangles ABC and PQR are such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \angle A=70^{\circ}, \mathrm{PR}=9 \mathrm{~cm}$ $\angle P=70^{\circ}$ and $P Q=4.5 \mathrm{~cm}$. Show that $\triangle A B C \sim \triangle P Q R$ and state that similarity criterion.

## Sol:

Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$
$\angle A=\angle P=70^{\circ} \quad$ (Given)
$\frac{A B}{P Q}=\frac{A C}{P R} \quad\left[\because \frac{3}{4.5}=\frac{6}{9} \Rightarrow \frac{1}{1.5}=\frac{1}{1.5}\right]$
By SAS similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
13. In $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find EF .

## Sol:

When two triangles are similar, then the ratios of the lengths of their corresponding sides are equal.
Here, $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{A B}{2 A B}=\frac{6}{E F}$
$\Rightarrow \mathrm{EF}=12 \mathrm{~cm}$
14. In the given figure, $D E \| B C$ such that $A D=x \mathrm{~cm}, D B=(3 x+4) \mathrm{cm}, A E=(x+3) \mathrm{cm}$ and $E C=(3 x+19) c m$. Find the value of $x$.

## Sol:

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle A D E=\angle A B C \quad$ (Corresponding angles in $D E \| B C$ )

$\angle A E D=\angle A C B \quad$ (Corresponding angles in $D E \| B C$
By AA similarity criterion, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
If two triangles are similar, then the ratio of their corresponding sides are proportional
$\therefore \frac{A D}{A B}=\frac{A E}{A C}$
$\Rightarrow \frac{A D}{A D+D B}=\frac{A E}{A E+E C}$
$\Rightarrow \frac{x}{x+3 x+4}=\frac{x+3}{x+3+3 x+19}$
$\Rightarrow \frac{x}{4 x+4}=\frac{x+3}{x+3+3 x+19}$
$\Rightarrow \frac{x}{2 x+2}=\frac{x+3}{2 x+11}$
$\Rightarrow 2 x^{2}+11 x=2 x^{2}+2 x+6 x+6$
$\Rightarrow 3 \mathrm{x}=6$
$\Rightarrow \mathrm{x}=2$
Hence, the value of $x$ is 2 .
15. A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
Sol:


Let $A B$ be $A$ ladder and $B$ is the window at 8 m above the ground $C$.
Now, In right triangle $A B C$
By using Pythagoras theorem, we have
$A B^{2}=B C^{2}+C A^{2}$
$\Rightarrow 10^{2}=8^{2}+C A^{2}$
$\Rightarrow C A^{2}=100-64$
$\Rightarrow C A^{2}=36$
$\Rightarrow C A=6 \mathrm{~m}$
Hence, the distance of the foot of the ladder from the base of the wall is 6 m .
16. Find the length of the altitude of an equilateral triangle of side 2 a cm .

Sol:


We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{a}$.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, it will bisects the side BC

$$
\therefore \mathrm{DC}=\mathrm{a}
$$

Now, In right triangle ADC
By using Pythagoras theorem, we have

$$
\begin{aligned}
& A C^{2}=C D^{2}+D A^{2} \\
& \Rightarrow(2 a)^{2}=a^{2}+D A^{2}
\end{aligned}
$$

$\Rightarrow D A^{2}=4 a^{2}-a^{2}$
$\Rightarrow D A^{2}=3 a^{2}$
$\Rightarrow \mathrm{DA}=\sqrt{3} a$
Hence, the length of the altitude of an equilateral triangle of side 2 acm is $\sqrt{3} a \mathrm{~cm}$
17. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that $\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle \mathrm{DEF})=169 \mathrm{~cm}^{2}$. If $\mathrm{BC}=4 \mathrm{~cm}$, find EF .

## Sol:

We have $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$
If two triangles are similar then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\left(\frac{B C}{E F}\right)^{2}$
$\Rightarrow \frac{64}{169}=\left(\frac{B C}{E F}\right)^{2}$
$\Rightarrow\left(\frac{8}{13}\right)^{2}=\left(\frac{4}{E F}\right)^{2}$
$\Rightarrow \frac{8}{13}=\frac{4}{E F}$
$\Rightarrow \mathrm{EF}=6.5 \mathrm{~cm}$
18. In a trapezium $A B C D$, it is given that $A B \| C D$ and $A B=2 C D$. Its diagonals $A C$ and $B D$ intersect at the point $O$ such that $\operatorname{ar}(\triangle A O B)=84 \mathrm{~cm}^{2}$. Find $\operatorname{ar}(\triangle C O D)$.
Sol:


In $\triangle \mathrm{AOB}$ and COD

$$
\begin{aligned}
& \angle A B O=\angle C D O \quad(\text { Alternte angles in } A B \| C D) \\
& \angle A O B=\angle C O D \quad(\text { Vertically opposite angles) } \\
& \text { By AA similarity criterion, } \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}
\end{aligned}
$$

If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A O B)}{\operatorname{area}(\triangle C O D)}=\left(\frac{A B}{C D}\right)^{2}$
$\Rightarrow \frac{84}{\operatorname{area}(\triangle C O D)}=\left(\frac{2 C D}{C D}\right)^{2}$
$\Rightarrow \operatorname{area}(\triangle C O D)=12 \mathrm{~cm}^{2}$
19. The corresponding sides of two similar triangles are in the ratio $2: 3$. If the area of the smaller triangle is $48 \mathrm{~cm}^{2}$, find the area of the larger triangle.
Sol:

If two triangles are similar, then the ratio of their areas is equal to the squares of their corresponding sides.

$$
\begin{aligned}
& \therefore \frac{\text { area of smaller triangle }}{\text { area of lager triangle }}=\left(\frac{\text { Side of smaller triangle }}{\text { side of larger triangle }}\right)^{2} \\
& \Rightarrow \frac{48}{\text { area of larger triangle }}=\left(\frac{2}{3}\right)^{2} \\
& \Rightarrow \text { area of larger triangle }=108 \mathrm{~cm}^{2}
\end{aligned}
$$

20. In an equilateral triangle with side a, prove that area $=\frac{\sqrt{3}}{4} a^{2}$.

## Sol:



We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{a}$.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, It will bisects the side BC
$\therefore D C=\frac{1}{2} a$
Now, In right triangle ADC
By using Pythagoras theorem, we have

$$
\begin{aligned}
& A C^{2}=C D^{2}+D A^{2} \\
& \Rightarrow a^{2}-\left(\frac{1}{2} a\right)^{2}+D A^{2} \\
& \Rightarrow D A^{2}=a^{2}-\frac{1}{4} a^{2} \\
& \Rightarrow D A^{2}=\frac{3}{4} a^{2} \\
& \Rightarrow D A=\frac{\sqrt{3}}{2} a
\end{aligned}
$$

$$
\text { Now, area }(\triangle A B C)=\frac{1}{2} \times B C \times A D
$$

$$
=\frac{1}{2} \times a \times \frac{\sqrt{3}}{2} a
$$

$$
=\frac{\sqrt{3}}{4} a^{2}
$$

21. Find the length of each side of a rhombus whose diagonals are 24 cm and 10 cm long.

## Sol:



Suppose ABCD is a rhombus.
We know that the diagonals of a rhombus perpendicularly bisect each other.
$\therefore \angle A O B=90^{\circ}, A O=12 \mathrm{~cm}$ and $B O=5 \mathrm{~cm}$
Now, In right triangle AOB
By using Pythagoras theorem we have
$A B^{2}=A O^{2}+B O^{2}$
$=12^{2}+5^{2}$
$=144+25$
$=169$
$\therefore A B^{2}=169$
$\Rightarrow A B=13 \mathrm{~cm}$
Since, all the sides of a rhombus are equal.
Hence, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=13 \mathrm{~cm}$
22. Two triangles DEF an GHK are such that $\angle D=48^{\circ}$ and $\angle H=57^{\circ}$. If $\triangle D E F \sim \Delta G H K$ then find the measures of $\angle F$

## Sol:

If two triangles are similar then the corresponding angles of the two triangles are equal.
Here, $\triangle \mathrm{DEF} \sim \Delta \mathrm{GHK}$
$\therefore \angle E=\angle H=57^{\circ}$
Now, In $\triangle$ DEF
$\angle D+\angle E+\angle F=180^{\circ}$ (Angle sum property of triangle)
$\Rightarrow \angle F=180^{\circ}-48^{\circ}-57^{\circ}=75^{\circ}$
23. In the given figure $\mathrm{MN} \| \mathrm{BC}$ and $\mathrm{AM}: \mathrm{MB}=1: 2$


Find $\frac{\operatorname{area}(\triangle A M N)}{\operatorname{area}(\triangle A B C)}$

## Sol:

We have
$\mathrm{AM}: \mathrm{MB}=1: 2$
$\Rightarrow \frac{M B}{A M}=\frac{2}{1}$
Adding 1 to both sides, we get
$\Rightarrow \frac{M B}{A M}+1=\frac{2}{1}+1$
$\Rightarrow \frac{M B+A M}{A M}=\frac{2+1}{1}$
$\Rightarrow \frac{A B}{A M}=\frac{3}{1}$
Now, In $\triangle \mathrm{AMN}$ and $\triangle \mathrm{ABC}$
$\angle A M N=\angle A B C \quad$ (Corresponding angles in $M N \| B C$ )
$\angle A N M=\angle A C B \quad$ (Corresponding angles in $M N \| B C$ )
By AA similarity criterion, $\triangle \mathrm{AMN} \sim \Delta \mathrm{ABC}$
If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A M N)}{\operatorname{area}(\triangle A B C)}=\left(\frac{A M}{A B}\right)^{2}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
24. In triangle $B M P$ and $C N R$ it is given that $P B=5 \mathrm{~cm}, \mathrm{MP}=6 \mathrm{~cm} B M=9 \mathrm{~cm}$ and $N R=9 \mathrm{~cm}$. If $\triangle B M P \sim \triangle C N R$ then find the perimeter of $\triangle C N R$

## Sol:

When two triangles are similar, then the ratios of the lengths of their corresponding sides are proportional.
Here, $\triangle \mathrm{BMP} \sim \triangle \mathrm{CNR}$
$\therefore \frac{B M}{C N}=\frac{B P}{C R}=\frac{M P}{N R}$
Now, $\frac{B M}{C N}=\frac{M P}{N R} \quad[U \operatorname{sing}$ (1)]
$\Rightarrow C N=\frac{B M \times N R}{M P}=\frac{9 \times 9}{6}=13.5 \mathrm{~cm}$
Again, $\frac{B M}{C N}=\frac{B P}{C R}=[U \operatorname{sing}$ (1)]
$\Rightarrow C R=\frac{B P \times C N}{B M}=\frac{5 \times 13.5}{9}=7.5 \mathrm{~cm}$
Perimeter of $\Delta \mathrm{CNR}=\mathrm{CN}+\mathrm{NR}+\mathrm{CR}=13.5+9+7.5=30 \mathrm{~cm}$
25. Each of the equal sides of an isosceles triangle is 25 cm . Find the length of its altitude if the base is 14 cm .

## Sol:



We know that the altitude drawn from the vertex opposite to the non-equal side bisects the non-equal side.
Suppose ABC is an isosceles triangle having equal sides AB and BC .
So, the altitude drawn from the vertex will bisect the opposite side.
Now, In right triangle ABD
By using Pythagoras theorem, we have
$A B^{2}=B D^{2}+D A^{2}$
$\Rightarrow 25^{2}=7^{2}+D A^{2}$
$\Rightarrow D A^{2}=625-49$
$\Rightarrow D A^{2}=576$
$\Rightarrow D A=24 \mathrm{~cm}$
26. A man goes 12 m due south and then 35 m due west. How far is he from the starting point.

Sol:


In right triangle SOW
By using Pythagoras theorem, we have
$O W^{2}=W S^{2}+S O^{2}$
$=35^{2}+12^{2}$
$=1225+144$
$=1369$
$\therefore O W^{2}=1369$
$\Rightarrow O W=37 \mathrm{~m}$
Hence, the man is 37 m away from the starting point.
27. If the lengths of the sides $\mathrm{BC}, \mathrm{CA}$ and AB of a $\triangle A B C$ are $\mathrm{a}, \mathrm{b}$ and c respectively and AD is the bisector $\angle A$ then find the lengths of BD and DC
Sol:
Let $\mathrm{DC}=\mathrm{X}$
$\therefore \mathrm{BD}=\mathrm{a}-\mathrm{X}$

By using angle bisector there in $\triangle \mathrm{ABC}$, we have
$\frac{A B}{A C}=\frac{B D}{D C}$
$\Rightarrow \frac{c}{b}=\frac{a-x}{x}$
$\Rightarrow c x=a b-b x$
$\Rightarrow x(b+c)=a b$
$\Rightarrow x=\frac{a b}{(b+c)}$
Now, $a-x=a-\frac{a b}{b+c}$
$=\frac{a b+a c-a b}{b+c}$
$=\frac{a c}{a+b}$
28. In the given figure, $\angle A M N=\angle M B C=76^{\circ}$. If $\mathrm{p}, \mathrm{q}$ and r are the lengths of $\mathrm{AM}, \mathrm{MB}$ and BC respectively then express the length of MN of terms of $\mathrm{P}, \mathrm{q}$ and r .


## Sol:

In $\triangle \mathrm{AMN}$ and $\triangle \mathrm{ABC}$
$\angle A M N=\angle A B C=76^{\circ}$ (Given)
$\angle A=\angle A$ (Common)
By AA similarity criterion, $\triangle \mathrm{AMN} \sim \triangle \mathrm{ABC}$
If two triangles are similar, then the ratio of their corresponding sides are proportional
$\therefore \frac{A M}{A B}=\frac{M N}{B C}$
$\Rightarrow \frac{A M}{A M+M B}=\frac{M N}{B C}$
$\Rightarrow \frac{a}{a+b}=\frac{M N}{c}$
$\Rightarrow M N=\frac{a c}{a+b}$
29. Find the length of each side of a rhombus are 40 cm and 42 cm . find the length of each side of the rhombus.
Sol:


Suppose ABCD is a rhombus.
We know that the diagonals of a rhombus perpendicularly bisect each other.
$\therefore \angle A O B=90^{\circ}, A O=20 \mathrm{~cm}$ and $B O=21 \mathrm{~cm}$
Now, In right triangle AOB
By using Pythagoras theorem we have
$A B^{2}=A O^{2}+O B^{2}$
$=20^{2}+21^{2}$
$=400+441$
$=841$
$\therefore A B^{2}=841$
$\Rightarrow \mathrm{AB}=29 \mathrm{~cm}$
Since, all the sides of a rhombus are equal.
Hence, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=29 \mathrm{~cm}$
30. For each of the following statements state whether true(T) or false (F)
(i) Two circles with different radii are similar.
(ii) any two rectangles are similar
(iii) if two triangles are similar then their corresponding angles are equal and their corresponding sides are equal
(iv) The length of the line segment joining the midpoints of any two sides of a triangles is equal to half the length of the third side.
(v) In a $\triangle A B C, \mathrm{AB}=6 \mathrm{~cm}, \angle A=45^{\circ}$ and $\mathrm{AC}=8 \mathrm{~cm}$ and in a $\triangle D E F, \mathrm{DF}=9 \mathrm{~cm} \angle D=45^{\circ}$ and $D E=12 \mathrm{~cm}$ then $\triangle A B C \sim \triangle D E F$.
(vi) the polygon formed by joining the midpoints of the sides of a quadrilateral is a rhombus.
(vii) the ratio of the perimeter of two similar triangles is the same as the ratio of the their corresponding medians.
(ix) if O is any point inside a rectangle ABCD then $O A^{2}+O C^{2}=O B^{2}+O D^{2}$
(x) The sum of the squares on the sides of a rhombus is equal to the sum of the squares on its diagonals.

## Sol:

(i)

Two rectangles are similar if their corresponding sides are proportional.
(ii) True

Two circles of any radii are similar to each other.
(iii)false

If two triangles are similar, their corresponding angles are equal and their corresponding sides are proportional.
(iv) True

Suppose ABC is a triangle and $\mathrm{M}, \mathrm{N}$ are


Construction: DE is expanded to F such that $\mathrm{EF}=\mathrm{DE}$
To proof $=\mathrm{DE}=\frac{1}{2} B C$
Proof: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{CEF}$
$\mathrm{AE}=\mathrm{EC} \quad(\mathrm{E}$ is the mid point of AC$)$
$\mathrm{DE}=\mathrm{EF} \quad$ (By construction)
$\mathrm{AED}=\mathrm{CEF} \quad$ (Vertically Opposite angle)
By SAS criterion, $\triangle \mathrm{ADE} \sim=\triangle \mathrm{CEF}$
$\mathrm{CF}=\mathrm{AD} \quad(\mathrm{CPCT})$
$\Rightarrow \mathrm{BD}=\mathrm{CF}$
$\angle A D E=\angle E F C \quad(C P C T)$
Since, $\angle A D E$ and $\angle E F C$ are alternate angle
Hence, $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{BD} \| \mathrm{CF}$
When two sides of a quadrilateral are parallel, then it is a parallelogram
$\therefore \mathrm{DF}=\mathrm{BC}$ and $\mathrm{BD} \| \mathrm{CF}$
$\therefore \mathrm{BDFC}$ is a parallelogram
Hence, $\mathrm{DF}=\mathrm{BC}$
$\Rightarrow \mathrm{DE}+\mathrm{EF}=\mathrm{BC}$
$\Rightarrow D E=\frac{1}{2} B C$
(v) False

In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}, \angle A=45^{\circ}$ and $A C=8 \mathrm{~cm}$ and in $\triangle D E F, D F=9 \mathrm{~cm}, \angle D=$
$45^{\circ}$ and $D E=12 \mathrm{~cm}$, then $\triangle A B C \sim \triangle D E F$.
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
(vi) False

The polygon formed by joining the mid points of the sides of a quadrilateral is a parallelogram.
(vii) True


Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
To prove $=\frac{\operatorname{Ar}(\triangle A B C)}{A r(\triangle D E F)}=\left(\frac{A P}{D Q}\right)^{2}$
Proof: in $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DEQ}$
$\angle B A P=\angle E D Q \quad($ As $\angle A=\angle D$, so their Half is also equal)
$\angle B=\angle E \quad(\angle A B C \sim \triangle D E F)$
By AA criterion, $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DEQ}$
$\frac{A B}{D E}=\frac{A P}{D Q}$
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\operatorname{Ar}(\triangle A B C)}{\operatorname{Ar}(\triangle D E F)}=\left(\frac{A B}{D E}\right)^{2}$
$\Rightarrow \frac{A r(\triangle A B C)}{A r(\triangle D E F)}=\left(\frac{A P}{D Q}\right)^{2} \quad[U \operatorname{sing}$ (1)]
(viii)


Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
To Prove $=\frac{\operatorname{Perimeter}(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A P}{D Q}$
Proof: In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DEQ}$
$\angle B=\angle E \quad(\therefore \triangle A B C \sim \triangle D E F)$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{A B}{D E}=\frac{2 B P}{2 E Q}$
$\Rightarrow \frac{A B}{D E}=\frac{B P}{E Q}$
By SAS criterion, $\triangle \mathrm{ABP} \sim \triangle \mathrm{DEQ}$
$\frac{A B}{D E}=\frac{A P}{D Q}$
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\operatorname{Perimeter}(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B}{D E}$
$\Rightarrow \frac{\operatorname{Perimeter}(\triangle A B C)}{\operatorname{Perimeter}(\triangle D E F)}=\frac{A P}{D Q} \quad[U \operatorname{sing}(1)]$
(ix) True


Suppose $A B C D$ is a rectangle with $O$ is any point inside it.
Construction: $O A^{2}+O C^{2}=O B^{2}+O D^{2}$
Proof:

$$
O A^{2}+O C^{2}=\left(A S^{2}+O S^{2}\right)+\left(O Q^{2}+Q C^{2}\right) \quad[\text { Using Pythagoras theorem in right }
$$

triangle AOP and COQ]
$=\left(B Q^{2}+O S^{2}\right)+\left(O Q^{2}+D S^{2}\right)$
$=\left(B Q^{2}+O Q^{2}\right)+\left(O S^{2}+D S^{2}\right) \quad[$ Using Pythagoras theorem in right triangle BOQ
and DOS]
$=O B^{2}+O D^{2}$
Hence, LHS = RHS
(x) True


Suppose ABCD is a rhombus having AC and BD its diagonals.
Since, the diagonals of a rhombus perpendicular bisect each other.
Hence, AOC is a right angle triangle
In right triangle AOC
By using Pythagoras theorem, we have

$$
A B^{2}=\left(\frac{A C}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2}
$$

[ $\because$ Diagonals of a rhombus perpendicularly bisect each other]
$\Rightarrow A B^{2}=\frac{A C^{2}}{4}+\frac{B D^{2}}{4}$
$\Rightarrow 4 A B^{2}=A C^{2}+B D^{2}$
$\Rightarrow A B^{2}+A B^{2}+A B^{2}+A B^{2}=A C^{2}+B D^{2}$
$\Rightarrow A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}[\because$ All sides of a rhombus are equal $]$

## Exercise - MCQ

1. A man goes 24 m due west and then 10 m due both. How far is he from the starting point?
(a) 34 m
(b) 17 m
(c) 26 m
(d) 28 m

## Sol:

(c) 26 m


Suppose, the man starts from point A and goes 24 m due west to point B. From here, he goes 10 m due north and stops at C .
In right triangle ABC , we have:
$\mathrm{AB}=24 \mathrm{~m}, \mathrm{BC}=10 \mathrm{~m}$
Applying Pythagoras theorem, we get:
$A C^{2}=A B^{2}+B C^{2}=24^{2}+10^{2}$
$A C^{2}=576+100=676$
$A C=\sqrt{676}=26$
2. Two poles of height 13 m and 7 m respectively stand vertically on a plane ground at a distance of 8 m from each other. The distance between their tops is
(a) 9 m
(b) 10 m
(c) 11 m
(d) 12 m

## Sol:

(b) 10 m


Let AB and DE be the two poles.
According to the question:
$\mathrm{AB}=13 \mathrm{~m}$
$\mathrm{DE}=7 \mathrm{~m}$
Distance between their bottoms $=\mathrm{BE}=8 \mathrm{~m}$
Draw a perpendicular $D C$ to $A B$ from $D$, meeting $A B$ at $C$. We get:
$\mathrm{DC}=8 \mathrm{~m}, \mathrm{AC}=6 \mathrm{~m}$

Applying, Pythagoras theorem in right-angled triangle $A C D$, we have

$$
\begin{aligned}
A D^{2} & =D C^{2}+A C^{2} \\
& =8^{2}+6^{2}=64+36=100 \\
A D & =\sqrt{100}=10 M
\end{aligned}
$$

3. A vertical stick 1.8 m long casts a shadow 45 cm long on the ground. At the same time, what is the length of the shadow of a pole 6 m high?
(a) 2.4 m
(b) 1.35 m
(c) 1.5 m
(d) 13.5 m

## Sol:



Let $A B$ and $A C$ be the vertical stick and its shadow, respectively.
According to the question:
$\mathrm{AB}=1.8 \mathrm{~m}$
$\mathrm{AC}=45 \mathrm{~cm}=0.45 \mathrm{~m}$
Again, let DE and DF be the pole and its shadow, respectively.
According to the question:
$\mathrm{DE}=6 \mathrm{~m}$
$\mathrm{DF}=$ ?
Now, in right-angled triangles ABC and DEF, we have:

$$
\begin{aligned}
& \angle B A C=\angle E D F=90^{\circ} \\
& \angle A C B=\angle D F E \quad \text { (Angular elevation of the Sun at the same time) }
\end{aligned}
$$

Therefore, by AA similarity theorem, we get:
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$
$\Rightarrow \frac{A B}{A C}=\frac{D E}{D F}$
$\Rightarrow \frac{1.8}{0.45}=\frac{6}{D F}$
$\Rightarrow D F=\frac{6 \times 0.45}{1.8}=1.5 \mathrm{~m}$
4. A vertical pole 6 m long casts a shadow of length 3.6 m on the ground. What is the height of a tower which casts a shadow of length 18 m at the same time?
(a) 10.8 m
(b) 28.8 m
(c) 32.4 m
(d) 30 m

## Sol:

(d)


Let AB and AC be the vertical pole and its shadow, respectively.
According to the question:
$\mathrm{AB}=6 \mathrm{~m}$
$\mathrm{AC}=3.6 \mathrm{~m}$
Again, let DE and DF be the tower and its shadow.
According to the question:
$\mathrm{DF}=18 \mathrm{~m}$
$\mathrm{DE}=$ ?
Now, in right -angled triangles ABC and DEF , we have:
$\angle B A C=\angle E D F=90^{\circ}$
$\angle A B C=\angle D F E=\quad$ (Angular elevation of the sun at the same time)
Therefore, by AA similarity theorem, we get:
$\triangle \mathrm{ABC}-\triangle \mathrm{DEF}$
$\Rightarrow \frac{A B}{A C}=\frac{D E}{D F}$
$\Rightarrow \frac{6}{3.6}=\frac{D E}{18}$
$\Rightarrow D E=\frac{6 \times 18}{3.6}=30 \mathrm{~m}$
5. The shadow of a 5 m long stick is 2 m long. At the same time the length of the shadow of a 12.5 m high tree(in m ) is
(a) 3.0
(b) 3.5
(c) 4.5
(d) 5.0

## Sol:



Suppose DE is a 5 m long stick and BC is a 12.5 m high tree.
Suppose DA and BA are the shadows of DE and BC respectively.
Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$
$\angle A B C=\angle A D E=90^{\circ}$

$$
\angle A=\angle A \text { (Common) }
$$

By AA- similarity criterion
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
If two triangles are similar, then the ratio of their corresponding sides are equal.
$\therefore \frac{A B}{A D}=\frac{B C}{D E}$
$\Rightarrow \frac{A B}{2}=\frac{12.5}{5}$
$\Rightarrow \mathrm{AB}=5 \mathrm{~cm}$
Hence, the correct answer is option (d).
6. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of the ladder from the building?
(a) 7 m
(b) 14 m
(c) 21 m
(d) 24.5 m

## Sol:

(a) 7 m


Let the ladder BC reaches the building at C .
Let the height of building where the ladder reaches be AC.
According to the question:
$\mathrm{BC}=25 \mathrm{~m}$
$\mathrm{AC}=24 \mathrm{~m}$
In right-angled triangle $C A B$, we apply Pythagoras theorem to find the value of $A B$.

$$
\begin{aligned}
& B C^{2}=A C^{2}+A B^{2} \\
& \Rightarrow A B^{2}=B C^{2}-A C^{2}=25^{2}-24^{2} \\
& \Rightarrow A B^{2}=625-576=49 \\
& \Rightarrow A B=\sqrt{49}=7 \mathrm{~m}
\end{aligned}
$$

7. In the given figure, O is the point inside a $\triangle M N P$ such that $\angle M O P=90^{\circ} \mathrm{OM}=16 \mathrm{~cm}$ and $\mathrm{OP}=12 \mathrm{~cm}$ if $\mathrm{MN}=21 \mathrm{~cm}$ and $\angle N M P=90^{\circ}$ then $\mathrm{NP}=$ ?


## Sol:

Now, In right triangle MOP
By using Pythagoras theorem, we have

$$
\begin{aligned}
& M P^{2}=P O^{2}+O M^{2} \\
& =12^{2}+16^{2} \\
& =144+256 \\
& =400 \\
& \therefore M P^{2}=400 \\
& \Rightarrow M O=20 \mathrm{~cm}
\end{aligned}
$$

Now, In right triangle MPN
By using Pythagoras theorem, we have
$P N^{2}=N M^{2}+M P^{2}$
$=21^{2}+20^{2}$
$=441+400$
$=841$
$\therefore M P^{2}=841$
$\Rightarrow \mathrm{MP}=29 \mathrm{~cm}$
Hence, the correct answer is option (b).
8. The hypotenuse of a right triangle is 25 cm . The other two sides are such that one is 5 cm longer than the other. The lengths of these sides are
(a) $10 \mathrm{~cm}, 15 \mathrm{~cm}$
(b) $15 \mathrm{~cm}, 20 \mathrm{~cm}$
(c) $12 \mathrm{~cm}, 17 \mathrm{~cm}$
(d) $13 \mathrm{~cm}, 18 \mathrm{~cm}$

## Sol:

(b) $15 \mathrm{~cm}, 20 \mathrm{~cm}$

It is given that length of hypotenuse is 25 cm .
Let the other two sides be xcm and $(\mathrm{x}-5) \mathrm{cm}$.
Applying Pythagoras theorem, we get:

$$
\begin{aligned}
& 25^{2}=x^{2}+(x-5)^{2} \\
& \Rightarrow 625=x^{2}+x^{2}+25-10 x \\
& \Rightarrow 2 x^{2}-10 x-600=0 \\
& \Rightarrow x^{2}-5 x-300=0 \\
& \Rightarrow x^{2}-20 x+15 x-300=0 \\
& \Rightarrow x(x-20)+15(x-20)=0 \\
& \Rightarrow(\mathrm{x}-20)(\mathrm{x}+15)=0 \\
& \Rightarrow x-20=0 \text { or } x+15=0 \\
& \Rightarrow x=20 \text { or } x=-15
\end{aligned}
$$

Side of a triangle cannot be negative.
Therefore, $\mathrm{x}=20 \mathrm{~cm}$
Now,
$\mathrm{x}-5=20-5=15 \mathrm{~cm}$
9. The height of an equilateral triangle having each side 12 cm , is
(a) $6 \sqrt{2} \mathrm{~cm}$
(b) $6 \sqrt{3} \mathrm{~m}$
(c) $3 \sqrt{6} \mathrm{~m}$
(d) $6 \sqrt{6} \mathrm{~m}$

Sol:
(b) $6 \sqrt{3} \mathrm{~cm}$


Let ABC be the equilateral triangle with AD as its altitude from A .
In right-angled triangle ABD , we have

$$
\begin{aligned}
A B^{2} & =A D^{2}+B D^{2} \\
A D^{2} & =A B^{2}-B D^{2} \\
& =12^{2}-6^{2} \\
& =144-36=108 \\
\mathrm{AD} & =\sqrt{108}=6 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

10. $\triangle \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$ and the length of altitude from A on BC is 5 cm . Then, $\mathrm{BC}=$ ?
(a) 12 cm
(b) 16 cm
(c) 18 cm
(d) 24 cm

## Sol:

(d) 24 cm


In triangle ABC , let the altitude from A on BC meets BC at D .
We have:
$\mathrm{AD}=5 \mathrm{~cm}, \mathrm{AB}=13 \mathrm{~cm}$ and D is the midpoint of BC .
Applying Pythagoras theorem in right-angled triangle ABD , we get:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow B D^{2}=A B^{2}-A D^{2}$
$\Rightarrow B D^{2}=13^{2}-5^{2}$
$\Rightarrow B D^{2}=169-25$
$\Rightarrow B D^{2}=144$
$\Rightarrow B D=\sqrt{144}=12 \mathrm{~cm}$
Therefore, $\mathrm{BC}=2 \mathrm{BD}=24 \mathrm{~cm}$
11. In a $\triangle A B C$, it is given that $A B=6 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $A D$ is the bisector of $\angle A$. Then, $B D$ : DC = ?
(a) $3: 4$
(b) $9: 16$
(c) $4: 3$
(d) $\sqrt{3}: 2$

## Sol:

(a) $3: 4$


In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$, we have:
$\angle B A D=\angle C A D$
Now,
$\frac{B D}{D C}=\frac{A B}{A C}=\frac{6}{8}=\frac{3}{4}$
$\mathrm{BD}: \mathrm{DC}=3: 4$
12. In $\triangle A B C$, it is given that $A D$ is the internal bisector of $\angle A$. If $B D=4 \mathrm{~cm}, D C=5 \mathrm{~cm}$ and $A B$ $=6 \mathrm{~cm}$, then $\mathrm{AC}=$ ?
(a) 4.5 cm
(b) 8 cm
(c) 9 cm
(d) 7.5 cm

## Sol:

(d) 7.5 cm

It is given that AD bisects angle A


Therefore, applying angle bisector theorem, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{4}{5}=\frac{6}{x}$
$\Rightarrow x=\frac{5 \times 6}{4}=7.5$
Hence, $\mathrm{AC}=7.5 \mathrm{~cm}$
13. In a $\triangle A B C$, it is given that $A D$ is the internal bisector of $\angle A$. If $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, then $\mathrm{CD}=$ ?
(a) 4.8 cm
(b) 3.5 cm
(c) 7 cm
(d) 10.5 cm


## Sol:

By using angle bisector in $\triangle \mathrm{ABC}$, we have

$$
\frac{A B}{A C}=\frac{B D}{D C}
$$

$$
\Rightarrow \frac{10}{14}=\frac{6-x}{x}
$$

$\Rightarrow 10 \mathrm{x}=84-14 \mathrm{x}$
$\Rightarrow 24 \mathrm{x}=84$
$\Rightarrow \mathrm{x}=3.5$
Hence, the correct answer is option (b).
14. In a triangle, the perpendicular from the vertex to the base bisects the base. The triangle is
(a) right-angled
(b) isosceles
(c) scalene
(d) obtuse-angled

## Sol:

(b) Isosceles

In an isosceles triangle, the perpendicular from the vertex to the base bisects the base.
15. In an equilateral triangle ABC , if $\mathrm{AD} \perp \mathrm{BC}$, then which of the following is true?
(a) $2 \mathrm{AB}^{2}=3 \mathrm{AD}^{2}$
(b) $4 \mathrm{AB}^{2}=3 \mathrm{AD}^{2}$
(c) $3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$
(d) $3 \mathrm{AB}^{2}=2 \mathrm{AD}^{2}$

## Sol:

(c) $3 A B^{2}=4 A D^{2}$

Applying Pythagoras theorem in right-angled triangles ABD and ADC , we get:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A B^{2}=\left(\frac{1}{2} A B\right)^{2}+A D^{2} \quad\left(\because \triangle A B C\right.$ is equilateral and $\left.A D=\frac{1}{2} A B\right)$
$\Rightarrow A B^{2}=\frac{1}{4} A B^{2}+A D^{2}$
$\Rightarrow A B^{2}-\frac{1}{4} A B^{2}=A D^{2}$
$\Rightarrow \frac{3}{4} A B^{2}=A D^{2}$
$\Rightarrow 3 A B^{2}=4 A D^{2}$
16. In a rhombus of side 10 cm , one of the diagonals is 12 cm long. The length of the second diagonal is
(a) 20 cm
(b) 18 cm
(c) 16 cm
(d) 22 cm

## Sol:

(c) 16 cm


Let ABCD be the rhombus with diagonals AC and BD intersecting each other at O .
Also, diagonals of a rhombus bisect each other at right angles.

If $\mathrm{AC}=12 \mathrm{~cm}, \mathrm{AO}=6 \mathrm{~cm}$
Applying Pythagoras theorem in right-angled triangle AOB. We get:

$$
\begin{aligned}
& A B^{2}=A O^{2}+B O^{2} \\
& \Rightarrow B O^{2}=A B^{2}-A O^{2} \\
& \Rightarrow B O^{2}=10^{2}-6^{2}=100-36=64 \\
& \Rightarrow B O=\sqrt{64}=8 \\
& \Rightarrow B D=2 \times B O=2 \times 8=16 \mathrm{~cm}
\end{aligned}
$$

Hence, the length of the second diagonal BD is 16 cm .
17. The lengths of the diagonals of a rhombus are 24 cm and 10 cm . The length of each side of the rhombus is
(a) 12 cm
(b) 13 cm
(c) 14 cm
(d) 17 cm

## Sol:

(b) 13 cm


Let ABCD be the rhombus with diagonals AC and BD intersecting each other at O .
We have:
$\mathrm{AC}=24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm}$
We know that diagonals of a rhombus bisect each other at right angles.
Therefore applying Pythagoras theorem in right-angled triangle AOB, we get:

$$
\begin{aligned}
& A B^{2}=A O^{2}+B O^{2}=12^{2}+5^{2} \\
& \quad=144+25=169 \\
& A B=\sqrt{169}=13
\end{aligned}
$$

Hence, the length of each side of the rhombus is 13 cm .
18. If the diagonals of a quadrilateral divide each other proportionally, then it is a
(a) parallelogram
(b) trapezium
(c) rectangle
(d) square

## Sol:

(b) trapezium

Diagonals of a trapezium divide each other proportionally.
19. The line segments joining the midpoints of the adjacent sides of a quadrilateral form
(a) parallelogram
(b) trapezium
(c) rectangle
(d) square

Sol:
(a) A parallelogram

The line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
20. If the bisector of an angle of a triangle bisects the opposite side, then the triangle is
(a) scalene
(b) equilateral
(c) isosceles
(d) right-angled

## Sol:

(c) isosceles


Let AD be the angle bisector of angle A in triangle ABC .
Applying angle bisector theorem, we get:
$\frac{A B}{A C}=\frac{B D}{D C}$
It is given that AD bisects BC .
Therefore, $\mathrm{BD}=\mathrm{DC}$
$\Rightarrow \frac{A B}{A C}=1$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$
Therefore, the triangle is isosceles.
21. In the given figure, $A B C D$ is a trapezium whose diagonals $A C$ and $B D$ intersect at $O$ such that $O A=(3 x-1) \mathrm{cm}, O B=(2 x+1) \mathrm{cm}, O C=(5 x-3) \mathrm{cm}$ and $O D=(6 x-5) \mathrm{cm}$. Then, $\mathrm{x}=$ ?
(a) 2
(b) 3
(c) 2.5
(d) 4


Sol:
(a) 2

We know that the diagonals of a trapezium are proportional.
Therefore $\frac{O A}{O C}=\frac{O B}{O D}$
$\Rightarrow \frac{3 x-1}{5 x-3}=\frac{2 x+1}{6 x-5}$
$\Rightarrow(3 X-1)(6 X-5)=(2 X+1)(5 X-3)$
$\Rightarrow 18 X^{2}-15 X-6 X+5=10 X^{2}-6 X+5 X-3$
$\Rightarrow 18 X^{2}-21 X+5=10 X^{2}-X-3$
$\Rightarrow 18 X^{2}-21 X+5-10 X^{2}+X+3=0$
$\Rightarrow 8 X^{2}-20 X+8=0$
$\Rightarrow 4\left(2 X^{2}-5 X+2\right)=0$
$\Rightarrow 2 X^{2}-5 X+2=0$
$\Rightarrow 2 X^{2}-4 X-X+2=0$
$\Rightarrow 2 X(X-2)-1(X-2)=0$
$\Rightarrow(X-2)(2 X-1)=0$
$\Rightarrow$ Either $x-2=0$ or $2 x-1=0$
$\Rightarrow$ Either $x=2$ or $x=\frac{1}{2}$
When $x=\frac{1}{2}, 6 x-5=-2<0$, which is not possible.
Therefore, $\mathrm{x}=2$
22. In $\triangle \mathrm{ABC}$, it is given that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle \mathrm{B}=70^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$, then $\angle \mathrm{BAD}=$ ?
(a) $30^{\circ}$
(b) $40^{0}$
(c) $45^{0}$
(d) $50^{0}$

## Sol:

(a) $30^{0}$

We have:
$\frac{A B}{A C}=\frac{B D}{D C}$


Applying angle bisector theorem, we can conclude that AD bisects $\angle A$.
In $\triangle \mathrm{ABC}$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A=180-\angle B-\angle C$
$\Rightarrow \angle A=180-70-50=60^{\circ}$
$\because \angle B A D=\angle C A D=\frac{1}{2} \angle B A C$
$\therefore \angle B A D=\frac{1}{2} \times 60=30^{\circ}$
23. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ so that $\mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}$ and $\mathrm{EC}=4.8 \mathrm{~cm}$. Then, $\mathrm{AB}=$ ?
(a) 3.6 cm
(b) 6 cm
(c) 6.4 cm
(d) 7.2 cm

## Sol:

(b) 6 cm

It is given that $\mathrm{DE} \| \mathrm{BC}$.
Applying basic proportionality theorem, we have:

$\frac{A D}{B D}=\frac{A E}{E C}$
$\Rightarrow \frac{2.4}{B D}=\frac{3.2}{4.8}$
$\Rightarrow B D=\frac{2.4 \times 4.8}{3.2}=3.6 \mathrm{~cm}$
Therefore, $\mathrm{AB}=\mathrm{AD}+\mathrm{BD}=2.4+3.6=6 \mathrm{~cm}$
24. In a $\triangle A B C$, if $D E$ is drawn parallel to $B C$, cutting $A B$ and $A C$ at $D$ and $E$ respectively such that $\mathrm{AB}=7.2 \mathrm{~cm}, \mathrm{AC}=6.4 \mathrm{~cm}$ and $\mathrm{AD}=4.5 \mathrm{~cm}$. Then, $\mathrm{AE}=$ ?
(a) 5.4 cm
(b) 4 cm
(c) 3.6 cm
(d) 3.2 cm

## Sol:

(b) 4 cm

It is given that $\mathrm{DE} \| \mathrm{BC}$.


Applying basic proportionality theorem, we get:
$\frac{A D}{A B}=\frac{A E}{A C}$
$\Rightarrow \frac{4.5}{7.2}=\frac{A E}{6.4}$
$\Rightarrow A E=\frac{4.5 \times 6.4}{7.2}=4 \mathrm{~cm}$
25. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ so that $\mathrm{AD}=(7 \mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=(5 \mathrm{x}-2) \mathrm{cm}, \mathrm{DB}=(3 \mathrm{x}+4) \mathrm{cm}$ and $\mathrm{EC}=$ 3 x cm . Then, we have:
(a) $x=3$
(b) $x=5$
(c) $x=4$
(d) $x=2.5$

## Sol:

(c) $x=4$

It is given $\mathrm{DE} \| \mathrm{BC}$.


Applying Thales' theorem. We get:
$\frac{A D}{B D}=\frac{A E}{E C}$
$\Rightarrow \frac{7 x-4}{3 x+4}=\frac{5 x-2}{3 x}$
$\Rightarrow 3 x(7 x-4)=(5 x-2)(3 x+4)$
$\Rightarrow 21 x^{2}-12 x=15 x^{2}+20 x-6 x-8$
$\Rightarrow 21 x^{2}-12 x=15 x^{2}+14 x-8$
$\Rightarrow 6 x^{2}-26 x+8=0$
$\Rightarrow 2\left(3 x^{2}-13 x+4\right)=0$
$\Rightarrow 3 x^{2}-13 x+4=0$
$\Rightarrow 3 x^{2}-12 x-x+4=0$
$\Rightarrow 3 x(x-4)-1(x-4)=0$
$\Rightarrow(x-4)(3 x-1)=0$
$\Rightarrow x-4=0$ or $3 x-1=0$
$\Rightarrow x-4$ or $x=\frac{1}{3}$
If $x=\frac{1}{3}, 7 x-4=-\frac{5}{3}<0$; it is not possible.
Therefore, $\mathrm{x}=4$
26. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ such that $\frac{A D}{D B}=\frac{3}{5}$. If $\mathrm{AC}=5.6 \mathrm{~cm}$, then $\mathrm{AE}=$ ?
(a) 4.2 cm
(b) 3.1 cm
(c) 2.8 cm
(d) 2.1 cm

## Sol:

(d) 2.1 cm

It is given that $\mathrm{DE} \| \mathrm{BC}$.


Applying Thales' theorem, we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
Let AE be x cm.
Therefore, EC $=(5.6-x) \mathrm{cm}$
$\Rightarrow \frac{3}{5}=\frac{x}{5.6-x}$
$\Rightarrow 3(5.6-x)=5 x$
$\Rightarrow 16.8-3 x=5 x$
$\Rightarrow 8 x=16.8$
$\Rightarrow \mathrm{x}=2.1 \mathrm{~cm}$
27. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and the perimeters of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are 30 cm and 18 cm respectively. If $\mathrm{BC}=9 \mathrm{~cm}$, then $\mathrm{EF}=$ ?
(a) 6.3 cm
(b) 5.4 cm
(c) 7.2 cm
(d) 4.5 cm

## Sol:

(b) 5.4 cm
$\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
Therefore,
$\frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{B C}{E F}$
$\Rightarrow \frac{30}{18}=\frac{9}{E F}$
$\Rightarrow E F=\frac{9 \times 18}{30}=5.4 \mathrm{~cm}$
28. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that $\mathrm{AB}=9.1 \mathrm{~cm}$ and $\mathrm{DE}=6.5 \mathrm{~cm}$. If the perimeter of $\triangle \mathrm{DEF}$ is 25 cm , what is the perimeter of $\triangle \mathrm{ABC}$ ?
(a) 35 cm
(b) 28 cm
(c) 42 cm
(d) 40 cm

## Sol:

(a) 35 cm
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B}{D E}$
$\Rightarrow \frac{\text { Perimeter }(\triangle A B C)}{25}=\frac{9.1}{6.5}$
$\Rightarrow$ Perimeter $(\triangle A B C)=\frac{9.1 \times 25}{6.5}=35 \mathrm{~cm}$
29. In $\triangle \mathrm{ABC}$, it is given that $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{CA}=7.5 \mathrm{~cm}$. Also, $\triangle \mathrm{DEF}$ is given such that $\mathrm{EF}=8 \mathrm{~cm}$ and $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$. Then, perimeter of $\triangle \mathrm{DEF}$ is
(a) 22.5 cm
(b) 25 cm
(c) 27 cm
(d) 30 cm

## Sol:

(d) 30 cm

Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=9+6+7.5=22.5 \mathrm{~cm}$
$\because \triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\text { Perimeter } \triangle(A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{B C}{E F}$
$\Rightarrow \frac{22.5}{\text { Perimeter }(\triangle D E F)}=\frac{6}{8}$
$\operatorname{Perimeter}(\triangle \mathrm{DEF})=\frac{22.5 \times 8}{6}=30 \mathrm{~cm}$
30. $A B C$ and $B D E$ are two equilateral triangles such that $D$ is the midpoint of $B C$. Ratio of these area of triangles ABC and BDE is
(a) $2: 1$
(b) $1: 4$
(c) $1: 2$
(d) $4: 1$

## Sol:

Give: ABC and BDE are two equilateral triangles
Since, D is the midpoint of BC and BDE is also an equilateral triangle.
Hence, E is also the midpoint of AB .
Now, D and E are the midpoint of BC and AB .
In a triangle, the line segment that joins midpoint of the two sides of a triangle is parallel to the third side and is half of it.
$D E \| C A$ and $D E=\frac{1}{2} C A$
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EBD}$

$$
\angle B E D=\angle B A C \quad \text { (Corresponding angles) }
$$

$\angle B=\angle B \quad$ (Common)
By AA-similarity criterion
$\triangle \mathrm{ABC} \sim \triangle \mathrm{EBD}$
If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D B E)}=\left(\frac{A C}{E D}\right)^{2}=\left(\frac{2 E D}{E D}\right)^{2}=\frac{4}{1}$
Hence, the correct answer is option (d).
31. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$. If $\angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$, then which of the following is true?
(a) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=50^{\circ}$
(b) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=100^{\circ}$
(c) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ}$
(d) $\mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ}$

## Sol:

(b) $\mathrm{DE}=12 \mathrm{~cm}, \angle F=100^{\circ}$

Disclaimer: In the question, it should be $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$ instead of $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$. In triangle ABC ,
$\angle A+\angle B+\angle C=180^{\circ}$
$\therefore \angle B=180-30-50=100^{\circ}$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$
$\therefore \angle D=\angle A=30^{\circ}$
$\angle F=\angle B=100^{\circ}$
And $\angle E=\angle C=50^{\circ}$
Also,

$$
\begin{aligned}
& \frac{A B}{D F}=\frac{A C}{D E} \Rightarrow \frac{5}{7.5}=\frac{8}{D E} \\
& \quad \Rightarrow D E=\frac{8 \times 7.5}{5}=12 \mathrm{~cm}
\end{aligned}
$$

32. In the given figure, $\angle \mathrm{BAC}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Then,

(a) $\mathrm{BC} . \mathrm{CD}=\mathrm{BC}^{2}$
(b) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
(c) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
(d) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{AD}^{2}$

## Sol:

(c) $\mathrm{BD} \cdot \mathrm{CD}=A D^{2}$

In $\triangle \mathrm{BDA}$ and $\triangle \mathrm{ADC}$, we have:

$$
\begin{aligned}
& \angle B D A=\angle A D C=90^{0} \\
& \angle A B D=90^{\circ}-\angle D A B \\
& =90^{\circ}-\left(90^{\circ}-\angle D A C\right) \\
& \\
& =90^{\circ}-90^{\circ}+\angle D A C \\
& \\
& =\angle D A C
\end{aligned}
$$

Applying AA similarity, we conclude that $\triangle B D A-\triangle A D C$.
$\Rightarrow \frac{B D}{A D}=\frac{A D}{C D}$
$\Rightarrow A D^{2}=B D . C D$
33. In $\triangle A B C, A B=6 \sqrt{3}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. Then $\angle B$ is

Sol:

$$
\begin{aligned}
& A B=6 \sqrt{3} \mathrm{~cm} \\
& \Rightarrow A B^{2}=108 \mathrm{~cm}^{2} \\
& \mathrm{AC}=12 \mathrm{~cm} \\
& \Rightarrow A C^{2}=144 \mathrm{~cm}^{2}
\end{aligned}
$$

$\mathrm{BC}=6 \mathrm{~cm}$
$\Rightarrow B C^{2}=36 \mathrm{~cm}$
$\therefore A C^{2}=A B^{2}+B C^{2}$
Since, the square of the longest side is equal to the sum of two sides, so $\triangle \mathrm{ABC}$ is a right angled triangle.
$\therefore$ The angle opposite to $\angle 90^{\circ}$
Hence, the correct answer is option (c)
34. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, it is given that $\frac{A B}{D E}=\frac{B C}{F D}$, then
(a) $\angle \mathrm{B}=\angle \mathrm{E}$
(b) $\angle \mathrm{A}=\angle \mathrm{D}$
(c) $\angle \mathrm{B}=\angle \mathrm{D}$
(d) $\angle \mathrm{A}=\angle \mathrm{F}$

## Sol:

(c) $\angle B=\angle D$

Disclaimer: In the question, the ratio should be $\frac{A B}{D E}=\frac{B C}{F D}=\frac{A C}{E F}$.
We can write it as:
$\frac{A B}{E D}=\frac{B C}{D F}=\frac{A C}{F E}$
Therefore, $\triangle \mathrm{ABC}$ - EDF
Hence, the corresponding angles, i.e., $\angle B$ and $\angle D$, will be equal.

$$
\text { i.e., } \angle B=\angle D
$$

35. In $\triangle D E F$ and $\triangle P Q R$, it is given that $\angle D=\angle Q$ and $\angle R=\angle E$, then which of the following is not true?
(a) $\frac{E F}{P R}=\frac{D F}{P Q}$
(b) $\frac{D E}{P Q}=\frac{E F}{R P}$
(c) $\frac{D E}{Q R}=\frac{D F}{P Q}$
(d) $\frac{E F}{R P}=\frac{D E}{Q R}$

## Sol:

(b) $\frac{D E}{P Q}=\frac{E F}{R P}$

In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$, we have:
$\angle D=\angle Q$ and $\angle R=\angle E$
Applying AA similarity theorem, we conclude that $\triangle \mathrm{DEF} \sim \Delta \mathrm{QRP}$.
Hence, $\frac{D E}{Q R}=\frac{D F}{Q P}=\frac{E F}{P R}$
36. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ and $\triangle \mathrm{ABC}$ is not similar to $\triangle \mathrm{DEF}$, then which of the following is not true?
(a) $\mathrm{BC} . \mathrm{EF}=\mathrm{AC} . \mathrm{FD}$
(b) AB.EF $=\mathrm{AC} \cdot \mathrm{DE}$
(c) BC.DE $=\mathrm{AB} \cdot \mathrm{EF}$
(d) BC.DE $=$ AB.FD

Sol:
(c) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF}$
$\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$

Therefore,

$$
\begin{aligned}
& \frac{A B}{D E}=\frac{A C}{E F}=\frac{B C}{D F} \\
& \Rightarrow \mathrm{BC} . \mathrm{DE} \neq \mathrm{AB} . \mathrm{EF}
\end{aligned}
$$

37. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, it is given that $\angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C}$ and $\mathrm{AB}=3 \mathrm{DE}$, then the two triangles are
(a) congruent but not similar
(b) similar but not congruent
(c) neither congruent nor similar
(d) similar as well as congruent

## Sol:

(b) similar but not congruent

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have:
$\angle B=\angle E$ and $\angle F=\angle C$
Applying AA similarity theorem, we conclude that $\triangle \mathrm{ABC}-\triangle \mathrm{DEF}$.
Also,
$\mathrm{AB}=3 \mathrm{DE}$
$\Rightarrow \mathrm{AB} \neq \mathrm{DE}$
Therefore, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are not congruent.
38. If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have: $\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
(a) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$
(b) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
(c) $\triangle \mathrm{CBA} \sim \triangle \mathrm{PQR}$
(d) $\triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$

## Sol:

(a) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have:
$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$
$\Rightarrow \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$
We can also write it as $\triangle \mathrm{PQR} \sim \Delta \mathrm{CAB}$.
39. In the given figure, two line segment $A C$ and $B D$ intersect each other at the point $P$ such that $\mathrm{PA}=6 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{PC}=2.5 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}, \angle \mathrm{APB}=50^{\circ}$ and $\angle \mathrm{CDP}=30^{\circ}$, then $\angle \mathrm{PBA}=$ ?
(a) $50^{0}$
(b) $30^{0}$
(c) $60^{0}$
(b) $100^{0}$

## Sol:


(d) $100^{0}$

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{DPC}$, we have:

$$
\begin{aligned}
& \angle A P B=\angle D P C=50^{0} \\
& \frac{A P}{B P}=\frac{6}{3}=2
\end{aligned}
$$

$\frac{D P}{C P}=\frac{5}{2.5}=2$
Hence, $\frac{A P}{B P}=\frac{D P}{C P}$
Applying SAS theorem, we conclude that $\triangle$ APB- $\triangle$ DPC.
$\therefore \angle P B A=\angle P C D$
In $\triangle \mathrm{DPC}$, we have:
$\angle C D P+\angle C P D+\angle P C D=180^{\circ}$
$\Rightarrow \angle P C D=180^{\circ}-\angle C D P-\angle C P D$
$\Rightarrow \angle P C D=180^{\circ}-30^{\circ}-50^{\circ}$
$\Rightarrow \angle P C D=100^{\circ}$
Therefore, $\angle P B A=100^{\circ}$
40. Corresponding sides of two similar triangles are in the ratio 4:9 Areas of these triangles are in the ration
(a) $2: 3$
(b) $4: 9$
(c) $9: 4$
(d) $16: 81$

## Sol:

If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\text { area of first triangle }}{\text { area of second triangle }}=\left(\frac{\text { Side of first triangle }}{\text { Side of second triangle }}\right)^{2}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$
Hence, the correct answer is option (d).
41. It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\frac{B C}{Q R}=\frac{2}{3}$, then $\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}=$ ?
(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{4}{9}$
(d) $\frac{9}{4}$

## Sol:

(d) $9: 4$

It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\frac{B C}{Q R}=\frac{2}{3}$
Therefore,

$$
\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}=\frac{Q R^{2}}{B C^{2}}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}
$$

42. In an equilateral $\triangle \mathrm{ABC}, \mathrm{D}$ is the midpoint of AB and E is the midpoint of AC . Then, $\operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{ADE})=$ ?
(a) $2: 1$
(b) $4: 1$
(c) $1: 2$
(d) $1: 4$

## Sol:

(b) $4: 1$

In $\triangle \mathrm{ABC}, \mathrm{D}$ is the midpoint of AB and E is the midpoint of AC .


Therefore, by midpoint theorem,
Also, by Basic Proportionality Theorem,

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Also,
$\mathrm{AB}=\mathrm{AC}=\mathrm{BC}(\because \Delta \mathrm{ABC}$ is an equilateral triangle $)$
So, $\frac{A D}{D B}=\frac{A E}{E C}=1$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$, we have:
$\angle A=\angle A$
$\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{2}$
$\therefore \triangle \mathrm{ABC}-\triangle \mathrm{ADE}$ (SAS criterion)
$\therefore \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=(A B)^{2}:(A D)^{2}$
$\Rightarrow \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=2^{2}: 1^{2}$
$\Rightarrow \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=4: 1$
43. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{5}{7}$, then $\operatorname{ar}(\triangle \mathrm{ABC}): \Delta(\mathrm{DEF})=$ ?
(a) $5: 7$
(b) $25: 49$
(c) $49: 25$
(d) $125: 343$

## Sol:

(b) $25: 49$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have :
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D E}=\frac{5}{7}$
Therefore, by SSS criterion, we conclude that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\left(\frac{5}{7}\right)^{2}=\frac{25}{49}=25: 49$
44. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ such that $\operatorname{ar}(\triangle \mathrm{ABC})=36 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle \mathrm{DEF})=49 \mathrm{~cm}^{2}$. Then, the ratio of their corresponding sides is
(a) $36: 49$
(b) $6: 7$
(c) $7: 6$
(d) $\sqrt{6}: \sqrt{7}$

## Sol:

(b) $6: 7$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Also,

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}} \tag{i}
\end{equation*}
$$

$\Rightarrow \frac{36}{49}=\frac{A B^{2}}{D E^{2}}$
$\Rightarrow \frac{6}{7}=\frac{A B}{D E}$
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{6}{7}($ from $(i))$
Thus, the ratio of corresponding sides is $6: 7$.
45. Two isosceles triangles have their corresponding angles equal and their areas are in the ratio 25: 36. The ratio of their corresponding heights is
(a) $25: 36$
(b) $36: 25$
(c) $5: 6$
(d) $6: 5$

## Sol:

(c) $5: 6$

Let x and y be the corresponding heights of the two triangles.
It is given that the corresponding angles of the triangles are equal.
Therefore, the triangles are similar. (By AA criterion)
Hence,
$\frac{\operatorname{ar}\left(\Delta_{1}\right)}{\operatorname{ar}\left(\Delta_{2}\right)}=\frac{25}{36}=\frac{x^{2}}{y^{2}}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{25}{36}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\sqrt{\frac{25}{36}}=\frac{5}{6}=5: 6$
46. The line segments joining the midpoints of the sides of a triangle form four triangles, each of which is
(a) congruent to the original triangle
(b) similar to the original triangle
(c) an isosceles triangle
(d) an equilateral triangle

## Sol:

(b) similar to the original triangle


The line segments joining the midpoint of the sides of a triangle form four triangles, each of which is similar to the original triangle.
47. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle Q R P)}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm}$ and $\mathrm{BC}=15 \mathrm{~cm}$, then $\mathrm{PR}=$ ?
(a) 18 cm
(b) 10 cm
(c) 12 cm
(d) $\frac{20}{3} \mathrm{~cm}$

## Sol:

(b) 10 cm
$\because \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$
$\therefore \frac{A B}{Q R}=\frac{B C}{P R}$
Now,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle Q R P)}=\frac{9}{4}$
$\Rightarrow\left(\frac{A B}{Q R}\right)^{2}=\frac{9}{4}$
$\Rightarrow \frac{A B}{Q R}=\frac{B C}{P R}=\frac{3}{2}$
Hence, $3 P R=2 B C=2 \times 15=30$
$\mathrm{PR}=10 \mathrm{~cm}$
48. In the given figure, $O$ is the point of intersection of two chords $A B$ and $C D$ such that $\mathrm{OB}=\mathrm{OD}$ and $\angle \mathrm{AOC}=45^{\circ}$. Then, $\triangle \mathrm{OAC}$ and $\triangle \mathrm{ODB}$ are
(a) equilateral and similar
(b) equilateral but not similar
(c) isosceles and similar
(d) isosceles but not similar

## Sol:

(c) isosceles and similar

In $\triangle \mathrm{AOC}$ and $\triangle \mathrm{ODB}$, we have:
$\angle A O C=\angle D O B$ (Vertically opposite angles)
and $\angle O A C=\angle O D B$ (Angles in the same segment $)$
Therefore, by $A A$ similarity theorem, we conclude that $\triangle A O C-\triangle D O B$.
$\Rightarrow \frac{O C}{O B}=\frac{O A}{O D}=\frac{A C}{B D}$
Now, OB = OD
$\Rightarrow \frac{O C}{O A}=\frac{O B}{O D}=1$
$\Rightarrow \mathrm{OC}=\mathrm{OA}$
Hence, $\triangle \mathrm{OAC}$ and $\triangle \mathrm{ODB}$ are isosceles and similar.
49. In an isosceles $\triangle \mathrm{ABC}$, if $\mathrm{AC}=\mathrm{BC}$ and $A B^{2}=2 A C^{2}$, then $\angle \mathrm{C}=$ ?
(a) $30^{\circ}$
(b) $45^{0}$
(c) $60^{0}$
(d) $90^{\circ}$

Sol:
(d) $90^{0}$

Given:
$\mathrm{AC}=\mathrm{BC}$
$A B^{2}=2 A C^{2}=A C^{2}+A C^{2}=A C^{2}+B C^{2}$
Applying Pythagoras theorem, we conclude that $\triangle \mathrm{ABC}$ is right angled at C .
Or, $\angle C=90^{\circ}$
50. In $\triangle \mathrm{ABC}$, if $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=20 \mathrm{~cm}$, then $\triangle \mathrm{ABC}$ is
(a) acute-angled
(b) right-angled
(c) obtuse-angled

Sol:
(b) right-angled

We have:
$A B^{2}+B C^{2}=16^{2}+12^{2}=256+144=400$
and, $A C^{2}=20^{2}=400$
$\therefore A B^{2}+B C^{2}=A C^{2}$
Hence, $\triangle \mathrm{ABC}$ is a right-angled triangle.
51. Which of the following is a true statement?
(a) Two similar triangles are always congruent
(b) Two figures are similar if they have the same shape and size.
(c)Two triangles are similar if their corresponding sides are proportional.
(d) Two polygons are similar if their corresponding sides are proportional.

## Sol:

(c)Two triangles are similar if their corresponding sides are proportional.

According to the statement:
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
if $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$
52. Which of the following is a false statement?
(a) If the areas of two similar triangles are equal, then the triangles are congruent.
(b) The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides.
(c) The ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding.
(d) The ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.
Sol:
(b) The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides.
Because the ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
53. Match the following columns:

| Column I | Column II |
| :---: | :---: |
| (a) In a given $\triangle \mathrm{ABC}, \mathrm{DE} \\| \mathrm{BC}$ and $\frac{A D}{D B}=\frac{3}{5}$. If $\mathrm{AC}=5.6 \mathrm{~cm}$, then $\mathrm{AE}=$ ........cm. <br> (b) If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that $2 \mathrm{AB}=$ 3 DE and $\mathrm{BC}=6 \mathrm{~cm}$, then $\mathrm{EF}=$ .......cm. <br> (c) If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ such that $\operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{PQR})=9: 16$ and $\mathrm{BC}=4.5 \mathrm{~cm}$, then $\mathrm{QR}=\ldots \ldots . . \mathrm{cm}$. <br> (d) In the given figure, $A B \\| C D$ and $\mathrm{OA}=(2 \mathrm{x}+4) \mathrm{cm}, \mathrm{OB}=(9 \mathrm{x}-$ <br> 21) $\mathrm{cm}, \mathrm{OC}=(2 \mathrm{x}-1) \mathrm{cm}$ and $\mathrm{OD}=$ 3 cm . Then $\mathrm{x}=$ ? | (p) 6 <br> (q) 4 <br> (r) 3 <br> (s) 2.1 |

The correct answer is:
(a) - ......,
(b) $-\ldots .$. ,
(c)-......,
(d) $-\ldots .$. ,

Sol:
(a) -(s)

Let AE be X.
Therefore, EC = 5.6-X
It is given that $\mathrm{DE} \| \mathrm{BC}$.
Therefore, by B.P.T.,we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{3}{5}=\frac{x}{5.6-x}$
$\Rightarrow 3(5.6-x)=5 x$
$\Rightarrow 16.8-3 x=5 x$
$\Rightarrow 8 x=16.8$
$\Rightarrow x=2.1 \mathrm{~cm}$
(b) $-(\mathrm{q})$
$\because \triangle \mathrm{ABC}-\triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{3}{2}=\frac{6}{E F}$
$E F=\frac{6 \times 2}{3}=4 \mathrm{~cm}$
(c) $-(\mathrm{p})$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}}$
$\Rightarrow \frac{9}{16}=\frac{4.5^{2}}{Q R^{2}} \Rightarrow Q R=\sqrt{\frac{4.5 \times 4.5 \times 16}{9}}=\frac{4.5 \times 4}{3}=6 \mathrm{~cm}$
(d) $-(\mathrm{r})$
$\because \mathrm{AB} \| \mathrm{CD}$
$\therefore \frac{O A}{O B}=\frac{O C}{O D}$ (Thales'theorem)
$\Rightarrow \frac{2 x+4}{9 x-21}=\frac{2 x-1}{3}$
$3(2 x+4)=(2 x-1(9 x-21))$
$\Rightarrow 6 x+12=18 x^{2}-42 x-9 x+21$
$\Rightarrow 18 x^{2}-57 x+9=0$
$\Rightarrow 6 x^{2}-19 x+3=0$
$\Rightarrow 6 x^{2}-18 x-x+3=0$
$\Rightarrow(6 \mathrm{x}-1)(\mathrm{x}-3)=0$
$\Rightarrow x=3$ or $x=-\frac{1}{6}$
But $x=-\frac{1}{6}$ makes $(2 x-1)<0$, which is not possible.
Therefore, $\mathrm{x}=3$
54. Match the following columns:

| Column I | Column II |
| :--- | :--- |
| (a) A man goes 10m due east and then <br> 20m due north. His distance from the <br> starting point is ........ <br> (b) In an equilateral triangle with each side <br> 10 cm , the altitude is ....cm. | (p) $25 \sqrt{3}$ |
| (c) The area of an equilateral triangle $5 \sqrt{3}$ |  |
| (c) | (r) $10 \sqrt{5}$ |
| having each side 10cm is ......cm ${ }^{2}$. |  |
| (d) The length of a diagonal of a rectangle |  |
| having length 8 m and breadth 6 m is $\ldots . \mathrm{m}$. | (s) 10 |

The correct answer is:
(a) $-\ldots \ldots$,
(b)-......,
(c)-......,
(d) $-\ldots$, ,

## Sol:


(a) $-(\mathrm{r})$

Let the man starts from A and goes 10 m due east at B and then 20 m due north at C .
Then, in right-angled triangle ABC , we have:

$$
\begin{aligned}
& A B^{2}+B C^{2}=A C^{2} \\
& \Rightarrow A C=\sqrt{10^{2}+20^{2}}=\sqrt{100+200}=10 \sqrt{3}
\end{aligned}
$$

Hence, the man is $10 \sqrt{3}$ m away from the staring point.

(b) $-(\mathrm{q})$

Let the triangle be ABC with altitude AD .
In right-angled triangle $A B C$, we have:

$$
\begin{aligned}
& A B^{2}=A D^{2}+B D^{2} \\
& \Rightarrow A D^{2}=10^{2}-5^{2}\left(\because B D=\frac{1}{2} B C\right) \\
& \Rightarrow A D=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$


(c) $-(\mathrm{p})$

Area of an equilateral triangle with side $\mathrm{a}=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times 10^{2}=\sqrt{3} \times 5 \times 5$

$$
=25 \sqrt{3} \mathrm{~cm}^{2}
$$

(d) - (s)

Let the rectangle be ABCD with diagonals AC and BD .
In right-angled triangle $A B C$, we have:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=8^{2}+6^{2}=64+36 \\
& \Rightarrow A C=\sqrt{100}=10 \mathrm{~m}
\end{aligned}
$$

## Exercise - Formative Assessment

1. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and the perimeters of $\triangle \mathrm{ABC}$ and $\sim \triangle \mathrm{DEF}$ are 32 cm and 24 cm respectively. If $\mathrm{AB}=10 \mathrm{~cm}$, then $\mathrm{DE}=$ ?
(a) 8 cm
(b) 7.5 cm
(c) 15 cm
(d) $5 \sqrt{3} \mathrm{~cm}$

## Sol:

(b) 7.5 cm
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B}{D E}$
$\Rightarrow \frac{32}{24}=\frac{10}{D E}$
$\Rightarrow D E=\frac{10 \times 24}{32}=7.5 \mathrm{~cm}$
2. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$. If $\mathrm{DE}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AD}=3.5 \mathrm{~cm}$, then $\mathrm{AB}=$ ?
(a) 5.6 cm
(b) 4.8 cm
(c) 5.2 cm
(d) 6.4 cm

## Sol:

(a) 5.6 cm
$\because \mathrm{DE} \| \mathrm{BC}$
$\therefore \frac{A D}{A B}=\frac{A E}{A C}=\frac{D E}{B C} \quad$ (Thales'theorem)
$\Rightarrow \frac{3.5}{A B}=\frac{5}{8}$
$\Rightarrow A B=\frac{3.5 \times 8}{5}=5.6 \mathrm{~cm}$
3. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.
(a) 12 m
(b) 13 m
(c) 14 m
(d) 15 m

## Sol:

(b) 13 m


Let the poles be and CD
It is given that:
$\mathrm{AB}=6 \mathrm{~m}$ and $\mathrm{CD}=11 \mathrm{~m}$
Let AC be 12 m
Draw a perpendicular farm Bon $C D$, meeting $C D$ at $E$

Then,
$\mathrm{BE}=12 \mathrm{~m}$
We have to find BD.
Applying Pythagoras theorem in right-angled triangle BED, we have:
$B D^{2}=B E^{2}+E D^{2}$
$=12^{2}+5^{2}(\because E D=C D-C E=11-6)$
$=144+25=169$
$B D=13 \mathrm{~m}$
4. The areas of two similar triangles are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 3.5 cm , then the corresponding altitude of the other triangle.
(a) 5.6 cm
(b) 6.3 cm
(c) 4.2 cm
(d) 7 cm

## Sol:

(c)

We know that the ratio of areas of similar triangles is equal to the ratio of squares of their corresponding altitudes.
Let f be the altitude of the other triangle.
Therefore,
$\frac{25}{36}=\frac{(3.5)^{2}}{h^{2}}$
$\Rightarrow h^{2}=\frac{(3.5)^{2} \times 36}{25}$
$\Rightarrow h^{2}=17.64$
$\Rightarrow h=4.2 \mathrm{~cm}$
5. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find EF .

Sol:
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{1}{2}=\frac{6}{E F}$
$\Rightarrow E F=12 \mathrm{~cm}$
6. In the given figure, $\mathrm{DE} \| \mathrm{BC}$ such that $\mathrm{AD}=\mathrm{xcm}, \mathrm{DB}=(3 \mathrm{x}+4) \mathrm{cm}, \mathrm{AE}=(\mathrm{x}+3) \mathrm{cm}$ and $E C=(3 x+19) c m$. Find the value of $x$.

## Sol:

$\because \mathrm{DE}|\mid \mathrm{BC}$
$\therefore \frac{A D}{D B}=\frac{A E}{E C} \quad$ (Basic proportinality theorem)

$\frac{x}{3 x+4}=\frac{x+3}{3 x+19}$
$\Rightarrow x(3 x+19)=(x+3)(3 x+4)$
$\Rightarrow 3 x^{2}+19 x=3 x^{2}+4 x+9 x+12$
$\Rightarrow 19 x-13 x=12$
$\Rightarrow 6 \mathrm{x}=12$
$\Rightarrow x=2$
7. A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

## Sol:

Let the ladder be AB and BC be the height of the window from the ground.


We have:
AB 10 m and $\mathrm{BC}=8 \mathrm{~m}$
Applying theorem in right-angled triangle ACB , we have:
$A B^{2}=A C^{2}+B C^{2}$
$\Rightarrow A C^{2}=A B^{2}-B C^{2}=10^{2}-8^{2}=100-64=36$
$\Rightarrow A C=6 \mathrm{~m}$
Hence, the ladder is 6 m away from the base of the wall.
8. Find the length of the altitude of an equilateral triangle of side 2 a cm .

## Sol:

Let the triangle be ABC with AD as its altitude. Then, D is the midpoint of BC . In right-angled triangle ABD , we have:


$$
A B^{2}=A D^{2}+D B^{2}
$$

$$
\Rightarrow A D^{2}=A B^{2}-D B^{2}=4 a^{2}-a^{2} \quad\left(\because B D=\frac{1}{2} B C\right)
$$

$$
=3 a^{2}
$$

$$
A D=\sqrt{3} a
$$

Hence, the length of the altitude of an equilateral triangle of side 2 a cm is $\sqrt{3 a} \mathrm{~cm}$.
9. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that $\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle \mathrm{DEF})=169 \mathrm{~cm}^{2}$. If $\mathrm{BC}=4 \mathrm{~cm}$, find EF.

## Sol:

$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
$\Rightarrow \frac{64}{169}=\frac{4^{2}}{E F^{2}}$
$\Rightarrow E F^{2}=\frac{16 \times 169}{64}$
$\Rightarrow E F=\frac{4 \times 13}{8}=6.5 \mathrm{~cm}$
10. In a trapezium $A B C D$, it is given that $A B \| C D$ and $A B=2 C D$. Its diagonals $A C$ and $B D$ intersect at the point $O$ such that $\operatorname{ar}(\triangle A O B)=84 \mathrm{~cm}^{2}$. Find $\operatorname{ar}(\triangle C O D)$.

## Sol:

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have:

$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle O A B=\angle O C D$ (Alternate angles as $A B \| C D$ )
Applying AA similarity criterion, we get :
$\triangle \mathrm{AOB}-\triangle \mathrm{COD}$
$\therefore \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B^{2}}{C D^{2}}$
$\Rightarrow \frac{84}{\operatorname{ar}(\triangle C O D)}=\left(\frac{A B}{C D}\right)^{2}$
$\Rightarrow \frac{84}{\operatorname{ar}(\triangle C O D)}=\left(\frac{2 C D}{C D}\right)^{2}$
$\Rightarrow \operatorname{ar}(\triangle C O D)=\frac{84}{4}=21 \mathrm{~cm}^{2}$
11. The corresponding sides of two similar triangles are in the ratio $2: 3$. If the area of the smaller triangle is $48 \mathrm{~cm}^{2}$, find the area of the larger triangle.
Sol:
It is given that the triangles are similar.
Therefore, the ratio of areas of similar triangles will be equal to the ratio of squares of their corresponding sides.
$\therefore \frac{48}{\text { Area of larger triangle }}=\frac{2^{2}}{3^{2}}$
$\Rightarrow \frac{48}{\text { Area of larger triangle }}=\frac{4}{9}$
$\Rightarrow$ Area of larger triangle $=\frac{48 \times 9}{4}=108 \mathrm{~cm}^{2}$
12. In the given figure, $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$. Prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

## Sol:

LM || CB and LN || CD
Therefore, applying Thales' theorem, we have:
$\frac{A B}{A M}=\frac{A C}{A L}$ and $\frac{A D}{A N}=\frac{A C}{A L}$
$\Rightarrow \frac{A B}{A M}=\frac{A D}{A N}$

$\therefore \frac{A M}{A B}=\frac{A N}{A D}$
This completes the proof.
13. Prove that the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
Sol:
Let the triangle be $A B C$ with $A D$ as the bisector of $\angle A$ which meets $B C$ at $D$.
We have to prove:
$\frac{B D}{D C}=\frac{A B}{A C}$


Draw CE $\| \mathrm{DA}$, meeting BA produced at E .
CE || DA
Therefore,
$\angle 2=\angle 3 \quad$ (Alternate angles)
and $\angle 1=\angle 4 \quad$ (Corresponding angles)
But,
$\angle 1=\angle 2$
Therefore,
$\angle 3=\angle 4$
$\Rightarrow \mathrm{AE}=\mathrm{AC}$
In $\triangle \mathrm{BCE}, \mathrm{DA} \| \mathrm{CE}$.
Applying Thales' theorem, we gave:
$\frac{B D}{D C}=\frac{A B}{A E}$
$\Rightarrow \frac{B D}{D C}=\frac{A B}{A C}$
This completes the proof.
14. In an equilateral triangle with side a, prove that area $=\frac{\sqrt{3}}{4} a^{2}$.

## Sol:



Let ABC be the equilateral triangle with each side equal to a .
Let AD be the altitude from A , meeting BC at D .
Therefore, $D$ is the midpoint of $B C$.
Let AD be h.
Applying Pythagoras theorem in right-angled ABD , we have:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow a^{2}=h^{2}+\left(\frac{a}{2}\right)^{2}$
$\Rightarrow h^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3}{4} a^{2}$
$\Rightarrow h=\frac{\sqrt{3}}{2} a$
Therefore,
Area of triangle $A B C=\frac{1}{2} \times$ base $\times$ height $=\frac{1}{2} \times a \times \frac{\sqrt{3}}{2} a$
This completes the proof.
15. Find the length of each side of a rhombus whose diagonals are 24 cm and 10 cm long.

Sol:


Let ABCD be the rhombus with diagonals AC and BD intersecting each other at O .
We know that the diagonals of a rhombus bisect each other at right angles.
$\therefore$ If $\mathrm{AC}-24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm}, \mathrm{AO}=12 \mathrm{~cm}$ and $\mathrm{BO}=5 \mathrm{~cm}$
Applying Pythagoras theorem in right-angled triangle AOB, we get:

$$
A B^{2}=A O^{2}+B O^{2}=12^{2}+5^{2}=144+25=169
$$

$\mathrm{AB}=13 \mathrm{~cm}$
Hence, the length of each side of the given rhombus is 13 cm .
16. Prove that the ratio of the perimeters of two similar triangles is the same as the ratio of their corresponding sides.

## Sol:

Let the two triangles be ABC and PQR .
We have:
$\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}$,
Here,
$\mathrm{BC}=\mathrm{a}, \mathrm{AC}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$
$P Q=r, P R=q$ and $Q R=p$
We have to prove:
$\frac{a}{p}=\frac{b}{q}=\frac{c}{r}=\frac{a+b+c}{p+q+r}$
$\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}$; therefore, their corresponding sides will be proportional.
$\Rightarrow \frac{a}{p}=\frac{b}{q}=\frac{c}{r}=k \quad$ (say)
$\Rightarrow a=k p, b=k q$ and $c=k r$
$\therefore \frac{\text { Premieter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}=\frac{a+b+c}{p+q+r}=\frac{k p+k q+k r}{p+q+r}=k$
From (i)and (ii), we get:
$\frac{a}{p}=\frac{b}{q}=\frac{c}{r}=\frac{a+b+c}{p+q+r}=\frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}$
This completes the proof.
17. In the given figure, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ have the same base BC . If AD and BC intersect at O , prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$.

## Sol:



Construction : Draw $A X \perp C O$ and $D Y \perp B O$.
As,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times A X \times B C}{\frac{1}{2} \times D Y \times B C}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A X}{D Y} \ldots(i)$
In $\triangle A B C$ and $\triangle D B C, \angle A X Y=\angle D Y O=90^{\circ}$ (BY constructin) $\angle A O X=$
$\angle D O Y$ (Vertically opposite anges) $\therefore \triangle A X O \sim \triangle D Y O$ (BY AA criterion) $\therefore \frac{A X}{D Y}$
$=\frac{A O}{D O}$ (Thales'stheorem) ... (ii)From (i)and (ii), we have $: \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}$
$=\frac{A X}{D Y}=\frac{A O}{D O}$ or, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
This completes the proof.
18. In the given figure, $X Y \| A C$ and $X Y$ divides $\triangle A B C$ into two regions, equal in area. Show that $\frac{A X}{A B}=\frac{(2-\sqrt{2})}{2}$.
Sol:
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BXY}$, we have:
$\angle B=\angle B$

$\angle B X Y=\angle B A C \quad$ (Corresponding angles)
Thus, $\triangle A B C-\triangle B X Y$ (AA criterion)
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B X Y)}=\frac{A B^{2}}{B X^{2}}=\frac{A B^{2}}{(A B-A X)^{2}}$
Also, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B X Y)}=\frac{2}{1}\{\therefore \operatorname{ar}(\triangle B X Y)=\operatorname{ar}($ trapezium $A X Y V)\} \ldots(i i)$
From (i)and (ii), we have:
$\frac{A B^{2}}{(A B-A X)^{2}}=\frac{2}{1}$
$\Rightarrow \frac{A B}{(A B-A X)}=\sqrt{2}$
$\Rightarrow \frac{(A B-A X)}{A B}=\frac{1}{\sqrt{2}}$
$\Rightarrow 1-\frac{A X}{A B}=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{A X}{A B}=1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2-1}}{\sqrt{2}}=\frac{(2-\sqrt{2})}{2}$
19. In the given figure, $\triangle \mathrm{ABC}$ is an obtuse triangle, obtuse-angled at B . If $\mathrm{AD} \perp \mathrm{CB}$, prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.
Sol:
Applying Pythagoras theorem in right-angled triangle ADC, we get:


$A C^{2}=A D^{2}+D C^{2}$
$\Rightarrow A C^{2}-D C^{2}=A D^{2}$
$\Rightarrow A D^{2}=A C^{2}-D B^{2}$
Applying Pythagoras theorem in right-angled triangle ADB, we get:
$A B^{2}=A D^{2}+D B^{2}$
$\Rightarrow A B^{2}-D B^{2}=A D^{2}$
$\Rightarrow A D^{2}=A B^{2}-D B^{2}$
From equation (1) and (2), we have:
$A C^{2}-D C^{2}=A B^{2}-D B^{2}$
$\Rightarrow A C^{2}=A B^{2}+D C^{2}-D B^{2}$
$\Rightarrow A C^{2}=A B^{2}+(D B+B C)^{2}-D B^{2} \quad(\because D B+B C=D C)$
$\Rightarrow A C^{2}=A B^{2}+D B^{2}+B C^{2}+2 D B \cdot B C-D B^{2}$
$\Rightarrow A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D$
This completes the proof.
20. In the given figure, each one of $P A, Q B$ and $R C$ is perpendicular to $A C$. If $A P=x, Q B=z$,
$\mathrm{RC}=\mathrm{y}, \mathrm{AB}=\mathrm{a}$ and $\mathrm{BC}=\mathrm{b}$, show that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.

## Sol:

In $\triangle \mathrm{PAC}$ and $\triangle \mathrm{QBC}$, we have:

$$
\begin{array}{ll}
\angle A=\angle B & \text { (Both angles are } \left.90^{\circ}\right) \\
\angle P=\angle Q & \text { (Corresponding angles) }
\end{array}
$$



And
$\angle C=\angle C \quad$ (common angles)
Therefore, $\triangle P A C \sim \triangle Q B C$
$\frac{A P}{B Q}=\frac{A C}{B C}$
$\Rightarrow \frac{x}{2}=\frac{a+b}{b}$
$\Rightarrow a+b=\frac{a y}{z}$
In $\Delta \mathrm{RCA}$ and $\triangle \mathrm{QBA}$, we have:
$\angle C=\angle B \quad$ (Both angles are $90^{\circ}$ )
$\angle R=\angle Q \quad$ (Corresponding angles)
And
$\angle A=\angle A \quad$ (common angles)
Therefore, $\triangle R C A \sim \triangle Q B A$
$\frac{R C}{B Q}=\frac{A C}{A B}$
$\Rightarrow \frac{y}{z}=\frac{a+b}{a}$
$\Rightarrow a+b=\frac{a y}{z}$
From equation (1) and (2), we have:
$\frac{b x}{z}=\frac{a y}{z}$
$\Rightarrow \mathrm{bx}=\mathrm{ay}$
$\Rightarrow \frac{a}{b}=\frac{x}{y}$
Also,
$\frac{x}{z}=\frac{a+b}{b}$
$\Rightarrow \frac{x}{z}=\frac{a}{b}+1$
Using the value of $\frac{a}{b}$ from equation (3), we have:
$\Rightarrow \frac{x}{z}=\frac{x}{y}+1$
Dividing both sides by $x$, we get:
$\frac{1}{z}=\frac{1}{y}+\frac{1}{x}$
$\therefore \frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
This completes the proof.

