
Exercise 18

AREA OF A SECTOR

The area of a sector, A is proportional to the angle subtended at the centre of the circle.

Question 1:

Radius = $\frac{Diameter}{2} = \frac{35}{2}cm$ Circumference of circle = $2\pi r = \left(2 \times \frac{22}{7} \times \frac{35}{2}\right)cm = 110 \text{ cm}$ \therefore Area of circle = $\pi r^2 = \left(\frac{22}{7} \times \frac{35}{2} \times \frac{35}{2}\right)cm^2$ = 962.5 cm²

Question 2:

Circumference of circle = $2\pi r = 39.6$ cm

⇒
$$2x \frac{22}{7} \times r = 39.6$$

 $r = \left(39.6 \times \frac{7}{44}\right) \text{ cm} = 6.3$
 $r = 6.3 \text{ cm}$
Area of dirde = $\pi r^2 = \left(\frac{22}{7} \times 6.3 \times 6.3\right) \text{ cm}^2$
= 124.74 cm²

Question 3: Area of circle = πr^2 = 301.84

⇒
$$r^2 = 301.84 \times \frac{7}{22} = 96.04$$

r = $\sqrt{96.04}$ cm = 9.8 cm

Circumference of circle = $2\pi r = (2 \times \frac{22}{7} \times 9.8) = 61.6$ cm

Question 4:

Let radius of circle be r Then, diameter = 2 r circumference – Diameter = 16.8

$$\Rightarrow 2\pi r - 2r = 16.8$$

$$\Rightarrow \frac{44}{7}r - 2r = 16.8$$

$$\Rightarrow \frac{30r}{7} = 16.8 \Rightarrow r = \frac{16.8 \times 7}{30} = 3.92 \text{ cm}$$

Circumference of circle = $2\pi r = (2 \times \frac{22}{7} \times 3.92)$ cm = 24.64 cm

Question 5:

Let the radius of circle be r cm Then, circumference – radius = 37 cm

$$2\pi r - r = 37$$

$$\frac{44r}{7} - r = 37$$

$$\frac{37r}{7} = 37 \Rightarrow r = \frac{37 \times 7}{37} = 7 \text{ cm}$$
Area of dirde = $\pi r^2 = \frac{22}{7} \times 7 \times 7 = 154 \text{ cm}^2$

Question 6:

Area of square = $(side)^2 = 484 \text{ cm}^2$ \Rightarrow side = $\sqrt{484}cm = 22 \text{ cm}$ Perimeter of square = 4 × side = 4 × 22 = 88 cm Circumference of circle = Perimeter of square

$$2\pi r = 88 \text{cm} \Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14 \text{ cm}$$

Area of dirde = $\pi r^2 = \left(\frac{22}{7} \times 14 \times 14\right) \text{cm}^2 = 616 \text{ cm}^2$

Question 7:

Area of equilateral = $\frac{\sqrt{3}}{4}a^2 = 121\sqrt{3}$

Perimeter of equilateral triangle = $3a = (3 \times 22)$ cm = 66 cm Circumference of circle = Perimeter of circle $2\pi r = 66$ $\Rightarrow (2 \times \frac{22}{7} \times r)$ cm = 66 $\Rightarrow r = 10.5$ cm Area of circle = $\pi r^2 = (\frac{22}{7} \times 10.5 \times 10.5)$ cm² = 346.5 cm²

Question 8:

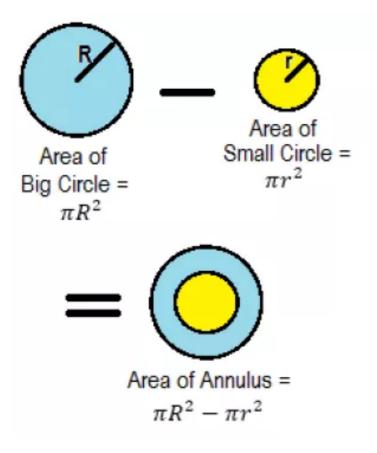
Let the radius of park be r meter

Thus,
$$\pi r + 2r = 90 \Rightarrow \frac{22r}{7} + 2r = 90$$

 $\Rightarrow \frac{36r}{7} = 90 \Rightarrow r = \frac{90 \times 7}{36}$
 $r = 17.5 \text{ cm}$

Area of semicircle= $\frac{1}{2}\pi r^2 = \left(\frac{1}{2} \times \frac{22}{7} \times 17.5 \times 17.5\right) m^2$ = 481.25 m²

Question 9:


Let the radii of circles be x cm and (7 - x) cm Then, $2\pi x - [2\pi(7 - x)] = 8$ $2\pi x - [14\pi - 2\pi x] = 8$ $2\pi x - 14\pi + 2\pi x = 8$ $4\pi x - 14\pi = 8$ $2\pi x = 4 + 7\pi$ $2\pi x = 4 + 22$ $2\pi x = 26$ Substitute the value of $2\pi x$ in $2\pi(7 - x)$ $= 14\pi - 2\pi x = 14x \frac{22}{2\pi} - 26$

$$= 14\pi - 2\pi x = 14 \times \frac{22}{7} - 26$$
$$= 44 - 26 = 18 \text{ cm}$$

Circumference of the circles are 26 cm and 18 cm

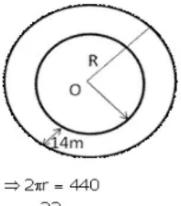
Question 10:

Area of first circle = πr^2 = 962.5 cm² $r^2 = \left(962.5 \times \frac{7}{22}\right)$ cm $r^2 = 306.25$ r = 17.5 cm Area of second circle = πR^2 = 1386 cm² $R^2 = \left(1386 \times \frac{7}{22}\right)$ cm $R^2 = 441$ $\Rightarrow R = 21$ cm Width of ring R - r = (21 - 17.5) cm = 3.5 cm

Question 11:

Area of outer circle = $\pi r_1^2 = (\frac{22}{7} \times 23 \times 23) \text{ cm}^2$ = 1662.5 Area of inner circle = $\pi r_2^2 = (\frac{22}{7} \times 12 \times 12) \text{ cm}^2$ = 452.2 cm² Area of ring = Outer area – inner area = (1662.5 - 452.5) cm² = 1210 cm²

Question 12:


Inner radius of the circular park = 17 m Width of the path = 8 m Outer radius of the circular park = (17 + 8)m = 25 mArea of path = $\pi[(25)^2 - (17)^2] = cm^2$

$$= \frac{1}{2} (25 + 17)(25 - 17) \text{m}^2$$
$$= \left[\frac{22}{7} \times 42 \times 8\right] \text{m}^2$$

Area = 1056 m^2

Question 13:

Let the inner and outer radii of the circular tacks be r meter and R meter respectively. Then Inner circumference = 440 meter

 $2 \times \frac{22}{7} \times r = 440$ $\Rightarrow r = 70 \text{ m}$

Since the track is 14 m wide every where. Therefore, Outer radius R = r + 14m = (70 + 14) m = 84 m Outer circumference = 2nR = $(2 \times \frac{22}{7} \times 84) m$ = 528 m Rate of fencing = Rs. 5 per meter Total cost of fencing = Rs. (528 × 5) = Rs. 2640 Area of circular ring = nR² - nr²

$$= \pi \left(84^2 - 70^2 \right) = \frac{22}{7} \times 2156 = 6776 \text{ m}^2$$

Cost of levelling = Rs 0.25 per m2 Cost of levelling the track = $Rs(6776 \times 0.25) = Rs. 1694$

Question 14:

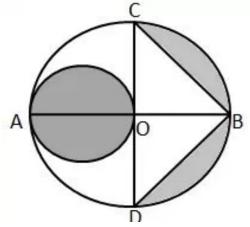
Let r m and R m be the radii of inner circle and outer boundaries respectively. Then, 2r = 352 and 2R = 396

$$r = \frac{352}{2\pi}, R = \frac{396}{2\pi}$$

Width of the track = (R - r) m

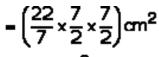
$$= \left(\frac{396}{2\pi} - \frac{352}{2\pi}\right) m = \left(\frac{44}{2\pi}\right) m$$
$$= \left(\frac{44}{2} \times \frac{7}{22}\right) m = 7 m$$

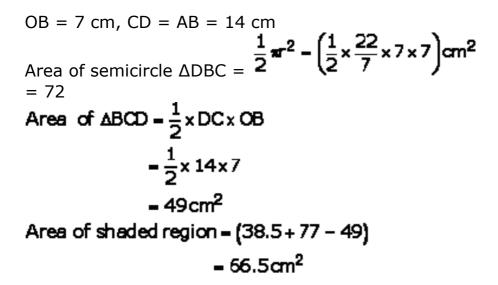
Area the track = $\pi (R^2 - r^2) = \pi (R+r)(R-r)$ = $\left[\pi \left(\frac{352}{2\pi} + \frac{396}{2\pi}\right) \times 7\right] m^2$ = $\left[\left(\pi \times \frac{748}{2\pi}\right) \times 7\right] m^2 = (374 \times 7) m^2$ = 2618 m²

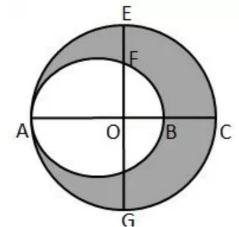

Question 15:

Area of rectangle = (120×90) = 10800 m² Area of circular lawn = [Area of rectangle – Area of park excluding circular lawn] = $[10800 - 2950] \text{ m}^2 = 7850 \text{ m}^2$ Area of circular lawn = 7850 m² $\Rightarrow \pi r^2 = 7850 \text{ m}^2$

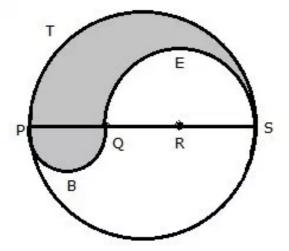
3.14×r² = 7850 m²
r² =
$$\left(\frac{7850}{3.14}\right)$$
m²
= 2500 m²
r = √2500 m
or r = 50 m


Hence, radius of the circular lawn = 50 m

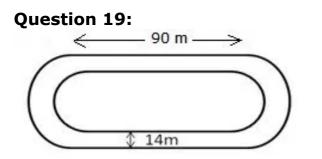




Area of the shaded region = (area of circle with OA as diameter) + (area of semicircle ΔDBC) – (area of ΔBCD)


Area of circle with OA as diameter = πr^2

Diameter of bigger circle = AC = 54 cm Radius of bigger circle = $\frac{AC}{2}$ = $\left(\frac{54}{2}\right)$ cm = 27 cm Diameter AB of smaller circle = AC - BC = 54-10 = 44 cm Radius of smaller circle = $\frac{44}{2}$ cm = 22 cm Area of bigger circle = $\pi R^2 = \left(\frac{22}{7} \times 27 \times 27\right)$ cm² = 2291. 14 cm² Area of smaller circle = $\pi r^2 = \left(\frac{22}{7} \times 22 \times 22\right)$ cm² = 1521. 11 cm² Area of shaded region = area of bigger circle - area of smaller circle = (2291. 14 - 1521. 11) cm² = 770 cm² **Question 18:**



PS = 12 cm PQ = QR = RS = 4 cm, QS = 8 cmPerimeter = arc PTS + arc PBQ + arc QES

- $= (\pi \times 6 + \pi \times 2 + \pi \times 4) \text{ cm}$
- = 12x cm
- $= 12z = 12 \times 3.14$ cm
- = 37.68 cm

Area of shaded region = (area of the semicircle PBQ) + (area of semicircle PTS)-(Area of semicircle QES)

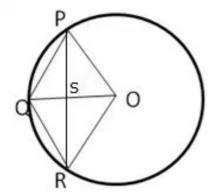
- $= \left[\frac{1}{2}\pi \times (2)^{2} + \frac{1}{2} \times \pi \times (6)^{2} \frac{1}{2} \times \pi \times (4)^{2}\right] \text{cm}^{2}$ $= \left[2\pi + 18\pi 8\pi\right] = 12\pi \text{ cm}^{2} = (12 \times 3.14) \text{ cm}^{2}$
- = 37.68 cm²

Length of the inner curved portion = $(400 - 2 \times 90)$ m = 220 m

Let the radius of each inner curved part be r

Then,
$$\frac{22}{7} \times r = 110 \text{ m}$$

 $r = \left(110 \times \frac{7}{22}\right) \text{m} = 35 \text{ m}$


Inner radius = 35 m, outer radius = (35 + 14) = 49 m Area of the track = (area of 2 rectangles each 90 m × 14 m) + (area of circular ring with R = 49 m, r = 35 m

$$= \left[2 \times 90 \times 14 + \frac{22}{7} \left((49)^2 - (35)^2 \right) \right] m^2$$
$$= \left[2520 + \frac{22}{7} (49 + 35) (49 - 35) \right] m^2$$
$$= \left[2520 + 3696 \right] m^2 = 6216 m^2$$

Length of outer boundary of the track

$$= \left[2 \times 90 + 2 \times \frac{22}{7} \times 49 \right] m = 488 m$$

Question 20:

OP = OR = OQ = rLet OQ and PR intersect at S We know the diagonals of a rhombus bisect each other at right angle.

Therefore we have

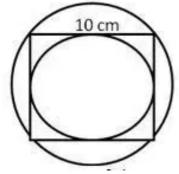
$$OS = \frac{1}{2}r \text{ and } \angle OSR = 90^{\circ}$$

$$: SR = \sqrt{OR^{2} - OS^{2}}$$

$$= \sqrt{r^{2} - \frac{r^{2}}{4}} = \frac{\sqrt{3}r}{2}$$

$$: PR = 2 \times SR = \sqrt{3}r$$

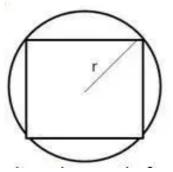
Area of rhombus $= \frac{1}{2} \times OQ \times PR$


$$= \frac{1}{2} \times r \times \sqrt{3}r = \frac{\sqrt{3}r^{2}}{2}$$

$$: \frac{\sqrt{3}r^{2}}{2} = 32\sqrt{3} \Rightarrow r^{2} = \frac{32\sqrt{3}}{\sqrt{3}} \times 2 = 64cm$$

$$r = 8 cm$$

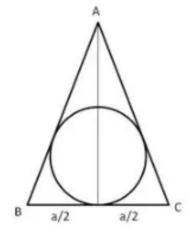
Question 21:


Diameter of the inscribed circle = Side of the square = 10 cmRadius of the inscribed circle = 5 cm

Diameter of the circumscribed circle = Diagonal of the square = $(\sqrt{2} \times 10)$ cm Radius of circumscribed circle = $5\sqrt{2}$ cm (i) Area of inscribed circle = $\left(\frac{22}{7} \times 5 \times 5\right)$ = 78.57 cm² = $\left(\frac{22}{7} \times 5\sqrt{2} \times 5\sqrt{2}\right)$ = 157.14 cm²

Question 22:

Let the radius of circle be r cm



Then diagonal of square = diameter of circle = 2r cmArea of the circle = $\pi r^2 \text{ cm}^2$

Area of square = $\frac{1}{2} \times (\text{diagonal})^2$ = $\frac{1}{2} \times 4r^2 = 2r^2 \text{ cm}$ Ratio = $\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi r^2}{2r^2} = \frac{\pi}{2} = (\pi : 2)$

Question 23:

Let the radius of circle be r cm

Then, $\pi r^2 = 154$ $\Rightarrow r^2 = \left(154 \times \frac{7}{22}\right)$ $\Rightarrow r = 7 \text{ cm}$

Let each side of the triangle be a cm

And height be h cm

Then,
$$r = \frac{h}{3}$$

 $\Rightarrow h = 3r = 21 \text{ cm}$
 $h = \sqrt{a^2 - \frac{a^2}{4}} = \frac{\sqrt{3a^2}}{2} = \frac{\sqrt{3a}}{2} = 21$
 $a = \frac{42}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 14\sqrt{3} \text{ cm}$
Perimeter = $3a = (3 \times 14 \times \sqrt{3}) = (42 \times 1.73) \text{ cm}$
 $= 72.66 \text{ cm}$

Question 24:

Radius of the wheel = 42 cm Circumference of wheel = $2\pi r = (2 \times \frac{22}{7} \times 42) = 264$ cm Distance travelled = 19.8 km = 1980000 cm Number of revolutions = $\frac{1980000}{264} = 7500$

Question 25:

Radius of wheel = 2.1 m

Circumference of wheel = $2\pi r = (2 \times \frac{22}{7} \times 2.1) = 13.2 \text{ m}$ Distance covered in one revolution = 13.2 m Distance covered in 75 revolutions = (13.2 × 75) m = 990 m = $\frac{990}{1000}$ km

Distance a covered in 1 minute = $\frac{99}{100}$ km Distance covered in 1 hour = $\frac{99}{100} \times \frac{60}{100}$ km = 59.4 km

Question 26:

Distance covered by the wheel in 1 revolution

$$=\left(\frac{4.95 \times 1000 \times 100}{2500}\right)$$
 cm = 198 cm

The circumference of the wheel = 198 cmLet the diameter of the wheel be d cm

Then, $\pi d = 198 \Rightarrow \frac{22}{7} \times d = 198$ $\Rightarrow \qquad d = \frac{198 \times 7}{22} = 63 \text{ cm}$

Hence diameter of the wheel is 63 cm

Question 27:

Radius of the wheel = $r = \frac{60}{2} = 30 \text{ cm}$ Circumference of the wheel = $2\pi r = (2 \times \frac{22}{7} \times 30) = \frac{1320}{7} \text{ cm}$ Distance covered in 140 revolution

$$= \left(\frac{1320}{7} \times 140\right) \text{cm} = (1320 \times 20) \text{cm}$$
$$= 26400 \text{cm} = \frac{26400}{100} \text{m} = 264 \text{m} = \frac{264}{1000} \text{km}$$

Distance covered in one hour = $\frac{204}{1000} \times 60$ = 15.84 km

Question 28:

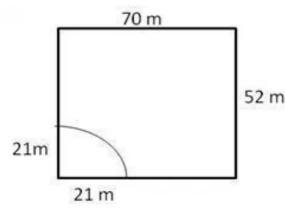
Distance covered by a wheel in 1minute

$$=\left(\frac{72.6 \times 1000 \times 100}{60}\right)$$
 cm = 121000 cm

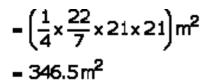
Circumference of a wheel = $2\pi r = (2 \times \frac{22}{7} \times 70) = 440$ cm Number of revolution in 1 min = $\frac{121000}{440} = 275$

Question 29:

Area of quadrant = $\frac{1}{4} \pi r^2$ Circumference of circle = $2\pi r$ = 22

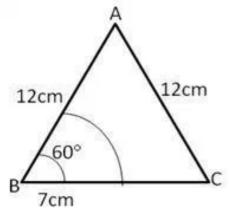

$$2 \times \frac{22}{7} \times r = 22$$

⇒


 $r = \frac{22 \times 7}{2 \times 22} = 3.5 \text{ cm}$

Area of quadrant = $\frac{1}{4}\pi^2 = \left(\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5\right) \text{cm}^2$ = 9.625 cm²

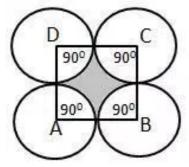
Question 30:


Area which the horse can graze = Area of the quadrant of radius 21 m

Area ungrazed = $[(70 \times 52) - 346.5] \text{ m}^2$ = 3293.5 m²

Question 31:

Each angle of equilateral triangle is 60°

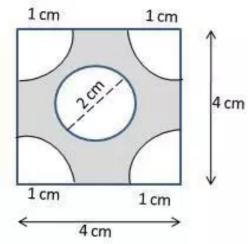


Area which cannot be grazed =(area of equilateral $\triangle ABC$)

- (area of the sector with
$$r = 7m, \theta = 60^{\circ}$$
)
= $\left[\frac{\sqrt{3}}{4} \times (12)^2 - \frac{22}{7} \times (7)^2 \times \frac{60}{360}\right] m^2$
= $\left[(\sqrt{3} \times 12 \times 3) - \frac{(22 \times 7)}{6}\right]$
= 62.35 - 25.66 m²
= 36.68 m²

Area that the horse cannot graze is 36.68 $\ensuremath{\text{m}}^2$

Question 32:

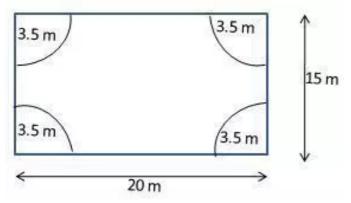


Each side of the square is 14 cm Then, area of square = $(14 \times 14) \text{ cm}^2$ = 196 cm² Thus, radius of each circle 7 cm Required area = area of square ABCD - 4 (area of sector with r = 7 cm, θ = 90°)

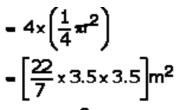
- $= \left[196 4 \times \frac{22}{7} \times 7 \times 7 \times \frac{90}{360} \right] \text{cm}^2$
- = [196-154]cm²
- = 42 cm²

Area of the shaded region = 42 cm^2

Question 33:

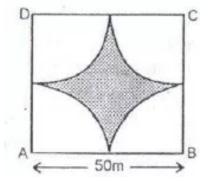


Area of square = (4×4) cm² = 16 cm² Area of four quadrant corners

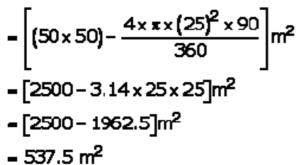

$$= 4 \left[\frac{1}{4} \pi^2 \right] \\= \pi^2 \\= (\pi \times 1 \times 1) \text{ cm}^2 \\= 3.14 \text{ cm}^2$$

Radius of inner circle = 2/2 = 1 cmArea of circle at the center = $\pi r^2 = (3.14 \times 1 \times 1) \text{ cm}^2$ = 3.14 cm^2 Area of shaded region = [area of square – area of four corner quadrants – area of circle at the centre] = $[16 - 3.14 - 3.14] \text{ cm}^2 = 9.72 \text{ cm}^2$

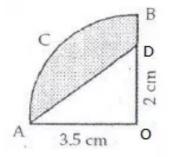
Question 34:


Area of rectangle = $(20 \times 15) \text{ m}^2 = 300 \text{ m}^2$ Area of 4 corners as quadrants of circle

= 38.5 m²

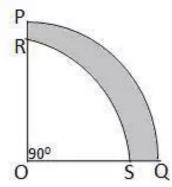

Area of remaining part = (area of rectangle – area of four quadrants of circles) = $(300 - 38.5) m^2 = 261.5 m^2$

Question 35:



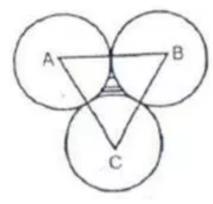
Ungrazed area

- shaded area


Question 36:

Shaded area = (area of quadrant) - (area of DAOD)

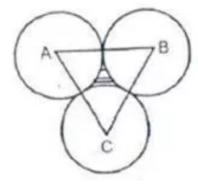
- $-\left[\frac{1}{4}\pi^2 \frac{1}{2}xhxb\right]$ $= \left[\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5 - \frac{1}{2} \times 2 \times 3.5\right] \text{cm}^2$
- = (9.625-3.5) cm² = 6.125 cm²


Question 37:

Area of flower bed = (area of quadrant OPQ) - (area of the quadrant ORS)

$$= \left[\frac{1}{4}\pi_1^2 - \frac{1}{4}\pi_2^2\right]$$
$$= \left[\frac{1}{4}\times\frac{22}{7}\times21\times21 - \frac{1}{4}\times\frac{22}{7}\times14\times14\right]m^2$$
$$= [346.5 - 154]m^2 = 192.5 m^2$$

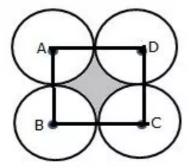
Question 38:



Let A, B, C be the centres of these circles. Joint AB, BC, CA Required area=(area of \triangle ABC with each side a = 12 cm) – 3(area of sector with r = 6, θ = 60°)

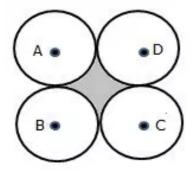
$$= \left[\frac{\sqrt{3}}{4} \times (12)^2 - 3 \times \left(3.14 \times (6)^2 \times \frac{60}{360}\right)\right]$$
$$= \left[\frac{\sqrt{3}}{4} \times 12 \times 12 - 3 \times 3.14 \times 6\right] \text{cm}$$
$$= (36 \times 1.73 - 56.52) \text{ cm}^2$$
$$= (62.28 - 56.52) \text{ cm}^2$$
$$= 5.76 \text{ cm}^2$$

The area enclosed = 5.76 cm^2

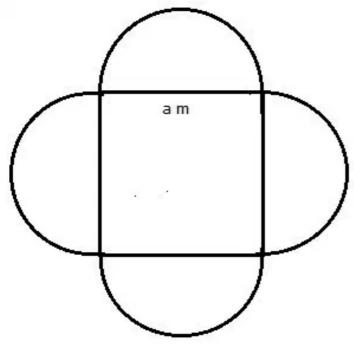

Question 39:

Let A, B, C be the centers of these circles. Join AB, BC, CA Required area= (area of \triangle ABC with each side 2) – 3[area of sector with r = a cm, θ = 60°]

$$= \left[\frac{\sqrt{3}}{4} \times (2a)^2 - \frac{3\pi a^2 \times 60}{360} \right]$$
$$= \left(1.73a^2 - 1.57a^2 \right)$$
$$= 0.16a^2$$
$$= \frac{16}{100}a^2$$
$$= \left(\frac{4}{25}a^2 \right)$$
sq. unit


Question 40:

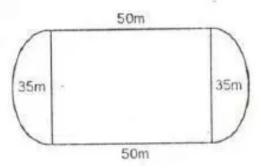
Let A, B, C, D be the centres of these circles Join AB, BC, CD and DA Side of square = 10 cm Area of square ABCD = (10×10) cm² = 100 cm² Area of each sector = $(\pi^2 \times \frac{\theta}{360}) = 3.14 \times 5 \times 5 \times \frac{90}{360}$


Area of each sector = (300 300 300= 19.625 cm² Required area = [area of sq. ABCD - 4(area of each sector)] = (100 - 4 × 19.625) cm² = (100 - 78.5) = 21.5 cm²

Question 41:

Required area = [area of square – areas of quadrants of circles] Let the side = 2a unit and radius = a units Area of square = (side × side) = (2a × 2a) sq. units = 4a² sq.units Area of quadrant = $\frac{1}{4}\pi r^2$ Area of 4 quadrants = $4 \times \frac{1}{4}\pi r^2 = \pi r^2 = \frac{22}{7} \times a \times a = \frac{22}{7}a^2$ sq.unit Required area = $\left(4a^2 - \frac{22}{7}a^2\right)$ sq.unit = $\frac{6a^2}{7}$

Question 42:


Let the side of square = a m Area of square = $(a \times a)$ cm = a^2m^2

∴ a² = 1600 a = √1600 m a = 40 m

Side of square = 40 m Therefore, radius of semi circle = 20 m

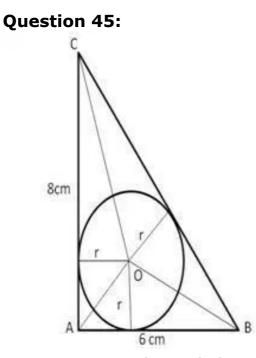
Area of semi circle =
$$\frac{1}{2}\pi^2 - (\frac{1}{2} \times 3.14 \times 20 \times 20)m^2$$

= 628 m²
Area of four semi circles = (4 × 628) m² = 2512 m²
Cost of turfing the plot of of area 1 m² = Rs. 1.25
Cost of turfing the plot of area 2512 m² = Rs. (1.25 × 2512)
= Rs. 3140

Question 43:

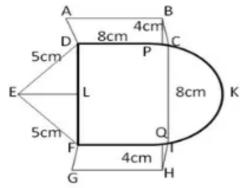
Area of rectangular lawn in the middle = $(50 \times 35) = 1750 \text{ m}^2$ Radius of semi circles = $\frac{35}{2} = 17.5 \text{ m}$

Area of two semicirdes - 2(area of semi circle)


$$-\left[2\left(\frac{1}{2}\pi^2\right)\right]m^2$$

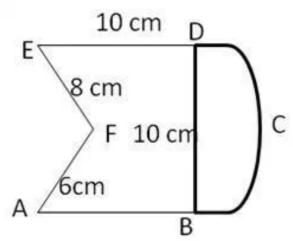
- $\left(2\times\frac{1}{2}\times\frac{22}{7}\times17.5\times17.5\right)m^2$
= 962.5 m²

Area of lawn = (area of rectangle + area of semi circle) = $(1750 + 962.5) \text{ m}^2 = 2712.5 \text{ m}^2$


Question 44:

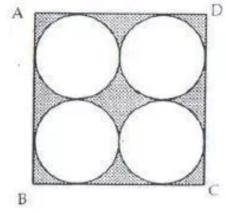
Area of plot which cow can graze when $r = 16 \text{ m is } \pi r^2$ = $\left(\frac{22}{7} \times 10.5 \times 10.5\right)$ = 804.5 m² Area of plot which cow can graze when radius is increased to 23 m = $\left(\frac{22}{7} \times 10.5 \times 10.5\right)$ = 1662.57 m² Additional ground = Area covered by increased rope = old area

Additional ground = Area covered by increased rope – old area = $(1662.57 - 804.5)m^2 = 858 m^2$



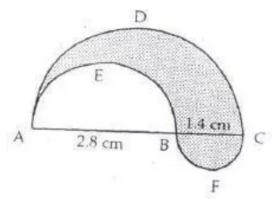
Given: ABC is right angled at A with AB = 6 cm and AC = 8 cm BC = $\sqrt{AB^2 + AC^2} = \sqrt{(6)^2 + (8)^2}$ cm = $\sqrt{36 + 64}$ cm BC = $\sqrt{100}$ cm = 10 cm Let us join OA, OB and OC ar(ΔAOC) + ar(ΔOAB) + ar(ΔBOC) = ar(ΔABC) $\Rightarrow (\frac{1}{2} \times 8 \times r) + (\frac{1}{2} \times 6 \times r) + (\frac{1}{2} \times 10 \times r)$ $= \frac{1}{2} \times 6 \times 8$ 4r + 3r + 5r = 24 12r = 24 $\Rightarrow r = \frac{24}{12} = 2$ Radius = 2 cm **Question 46:**

Given BP ⊥ CD, HQ ⊥ FI and EL ⊥DF, DC=8 cm, BP = HQ = 4 cm and DE = EF = 5 cm Area of parallelogram ABCD = $BP \times DC$ $= 4 \times 8 = 32 \text{ cm}^2$ Area of parallelogram FGHI = FI × HQ $= 8 \times 4 = 32 \text{ cm}^2$ Area of semicircle CKI = $\frac{1}{2}\pi r^2$ $=\frac{1}{2} \times 3.14 \times (4)^2 = 25.12 \text{ cm}^2$ Area of isosceles $\Delta DEF = \frac{1}{4}b\sqrt{4a^2 - b^2}$ $=\frac{1}{4}(8)\sqrt{4(5)^2-(8)^2}=2\sqrt{100-64}$ $= 2\sqrt{36} = 12 \text{ cm}^2$ Area of square CDFI = $(side)^2 = (8)^2 = 64 \text{ cm}^2$ Area of whole figure = area of ||^{gm} ABCD + area of ||^{gm} FGHI + area of semi-drde CKI+ area of ∆DEF + area of square CDFI =(32+32+25.12+12+64) cm² $= 165.12 \text{ cm}^2$

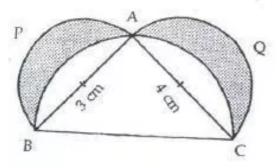

Question 47:

Area of region ABCDEFA = area of square ABDE + area of semi circle BCD – area of ΔAFE

- $= \left[10 \times 10 + \frac{1}{2} \times 3.14 \times 5 \times 5 \frac{1}{2} \times 6 \times 8\right] \text{cm}^2$
- = [100 + 39.25 24] cm² = 115.25 cm²


Question 48:

Side of the square ABCD = 14 cm Area of square ABCD = $14 \times 14 = 196 \text{ cm}^2$ Radius of each circle = $\frac{14}{4}$ = 3.5 cm Area of the circles = 4 × area of one circle


=
$$4 \times \pi (3.5)^2$$

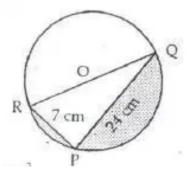
= $4 \times \frac{22}{7} \times 3.5 \times 3.5$
= 154 cm²

Area of shaded region = Area of square – area of 4 circles = $196 - 154 = 42 \text{ cm}^2$

Diameter AC = 2.8 + 1.4= 4.2 cmRadius $r_1 = \frac{4.2}{2} = 2.1 \text{ cm}$ Length of semi-circle ADC = $\pi r_1 = \pi \times 2.1 = 2.1 \pi \text{ cm}$ Diameter AB = 2.8 cmRadius $r_2 = 1.4 \text{ cm}$ Length of semi- circle AEB = $\pi r_2 = \pi \times 1.4 = 1.4 \pi \text{ cm}$ Diameter BC = 1.4 cmRadius $r_3 = \frac{1.4}{2} = 0.7 \text{ cm}$ Length of semi - circle BFC = $\pi \times 0.7 = 0.7 \pi \text{ cm}$ Perimeter of shaded region = $2.1 + 1.4 + 0.7 = 4.2 \pi \text{ cm}$ = $4.2 \times \frac{22}{7} = 13.2 \text{ cm}$

Question 50:

Area of shaded region = Area of $\triangle ABC$ + Area of semi-circle APB + Area of semi circle AQC – Area of semicircle BAC


Now, Area of a $\triangle ABC = \frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^2 - -(1)$ Area of semi - drde APB = $\frac{1}{2}\pi r^2 = \frac{1}{2}\pi \times \left(\frac{3}{2}\right)^2 = \frac{9}{8}\pi - -(2)$ Area of semi - drde AQC = $\frac{1}{2}\pi r_2^2$ = $\frac{1}{2}\pi \left(\frac{4}{2}\right)^2 = 2\pi \text{ cm}^2 - ---(3)$ Further in $\triangle ABC$, $\angle A = 90^{\circ}$

: $BC^{2} = AB^{2} + AC^{2} = 9 + 16 = 25$: BC = 5Area of semi - drdeBAC = $\frac{1}{2}\pi \left(\frac{5}{2}\right)^{2} = \frac{25}{8}\pi - -(4)$

Adding (1), (2), (3) and subtracting (4)

:. Area of shaded region =
$$6 + \frac{9}{8}x + 2x - \frac{25}{8}x$$

= $6 + \frac{25}{8}x - \frac{25}{8}x = 6$ cm²

Question 51:

In $\triangle PQR$, $\angle P = 90^{\circ}$, PQ = 24 cm, PR = 7 cm

: $QR^2 = RP^2 + PQ^2 = 7^2 + 24^2$ = 49 + 576 = 625 : QR = 25cm

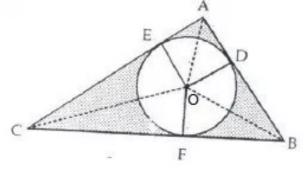
Area of semicircle

$$= \frac{1}{2} \times \pi \times \left(\frac{25}{2}\right)^{2}$$

$$= \frac{1}{2} \times 3.14 \times \frac{25 \times 25}{4} \text{ cm}^{2}$$

$$= \frac{625 \times 3.14}{8} = 245.31 \text{ cm}^{2}$$
Area of $\triangle PQR = \frac{1}{2} \times 7 \times 24 \text{ cm}^{2} = 84 \text{ cm}^{2}$
Shaded area = 245.31 - 84 = 161.31 \text{ cm}^{2}

Question 52:


ABCDEF is a hexagon. $\angle AOB = 60^{\circ}$, Radius = 35 cm Area of sector AOB $= \pi r^{2} \times \frac{60^{\circ}}{360^{\circ}} = \frac{\pi \times 35 \times 35}{6} \text{ cm}^{2}$ $= \frac{3.14 \times 35 \times 35}{6} \text{ cm}^{2}$ $= 641.083 \text{ cm}^{2}$

$$\frac{\sqrt{3}}{4} \times r^2 = \frac{\sqrt{3}}{4} \times 35 \times 35 \text{ cm}^2$$

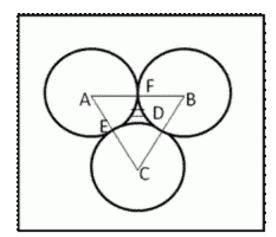
Area of $\triangle AOB =$ = 530.425 cm²

Area of segment APB = $(641.083 - 530.425) \text{ cm}^2 = 110.658 \text{ cm}^2$ Area of design (shaded area) = $6 \times 110.658 \text{ cm}^2 = 663.948 \text{ cm}^2$ = 663.95 cm^2

Question 53:

In $\triangle ABC$, $\angle A = 90^{\circ}$, AB = 6cm, BC = 10 cm

$$BC^2 = AC^2 + AB^2$$


$$\therefore AC^2 = BC^2 - AB^2 = 10^2 - 6^2 = 100 - 36 = 64$$

$$\therefore AC = 8 \text{ cm}$$

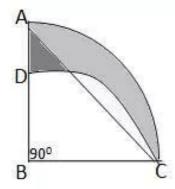
Area of $\triangle ABC = \frac{1}{2} \times AC \times AB = \frac{1}{2} \times 8 \times 6 \text{ cm}^3 = 24 \text{ cm}^2$

Let r be the radius of circle of centre O
Area of
$$\triangle OCB = \frac{1}{2} \times 10 \times r \text{ cm}^2 = 5r \text{ cm}^2$$

Area of $\triangle OAB = \frac{1}{2} \times 6 \times r \text{ cm}^2 = 3r \text{ cm}^2$
Area of $\triangle OCA = \frac{1}{2} \times 8 \times r \text{ cm}^2 = 4r \text{ cm}^2$
Area of $(\triangle OCB + \triangle OAB + \triangle OCA) = \text{Area of } \triangle ABC$
 $\therefore 5r + 3r + 4r = 24$
or $12r = 24$ $\therefore r = 2 \text{ cm}$
 $\therefore \text{ Area of indice} = \pi r^2 = 3.14 \times 2 \times 2 \text{ cm}^2$
 $= 12.56 \text{ cm}^2$
 $\Rightarrow \text{ Shaded area} = \text{ Area of } \triangle ABC - \text{ Area of indice}$
 $= (24 - 12.56) \text{ cm}^2 = 11.44 \text{ cm}^2$

Question 54:

Area of equilateral triangle ABC = $49\sqrt{3}$ cm²


Let a be its side

$$\therefore \frac{\sqrt{3}}{4}a^{2} = 49\sqrt{3}$$

or $a^{2} = 49 \times 4$
 $\therefore a = 7 \times 2$
 $\Rightarrow a = 14$ cm
Area of sector BDF = $\pi^{2} \times \frac{\theta}{360^{\circ}}$
 $= \frac{22}{7} \times 7 \times 7 \times \frac{60}{360}$ cm

$$=\frac{11\times7}{3}$$
 cm² $=\frac{77}{3}$ cm²

Area of sector BDF = Area of sector CDE = Area of sector AEFSum of area of all the sectors $=\frac{77}{3}$ × 3 cm² = 77 cm² Shaded area = Area of ΔABC – sum of area of all sectors = 49√3 – 77 = (84.77 – 77.00) cm² = 77.7 cm²

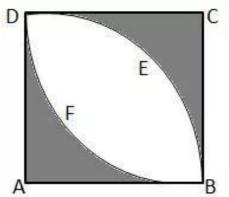
Question 55:

In $\triangle ABC$, $\angle B = 90^{\circ}$, AB = 48 cm, BC = 14 cm

:
$$AC^2 = AB^2 + AC^2 = 48^2 + 14^2$$

= 2304 + 196 = 2500
: AC = 50 cm
Area of $\triangle ABC = \frac{1}{2} \times 48 \times 14 \text{ cm}^2 = 336 \text{ cm}^2$

Area of semi-circle APC


$$= \frac{1}{2}\pi^2 = \frac{1}{2}\times\frac{22}{7}\times25\times25 \text{ cm}^2$$
$$= \frac{11\times625}{7}\text{ cm}^2 = \frac{6875}{7}\text{ cm}^2$$
$$= 982.14 \text{ cm}^2$$

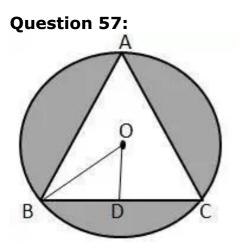
Area of quadrant BDC with radius 14 cm

$$=\frac{1}{4}\times\frac{22}{7}\times14\times14$$
 cm² = 154 cm²

Shaded area = Area of \triangle ABC + Area of semi-circle APC - Area of quadrant BDC = (336+982.14-154) cm² = (1318.14-154) cm² = 1164.14 cm²

Question 56:

Radius of quadrant ABED = 16 cm


Its area =
$$\frac{1}{4} \times \frac{22}{7} \times 16 \times 16 \text{ cm}^2$$

Area of $\triangle ABD = (\frac{1}{2} \times 16 \times 16) \text{ cm}^2$ = 128 cm² Area of segment DEB

$$= \frac{11 \times 128}{7} - 128$$
$$= 128 \left(\frac{11 - 7}{7}\right) \text{ cm}^2 = \frac{128 \times 4}{7} \text{ cm}^2 = \frac{512}{7} \text{ cm}^2$$

Area of segment DFB = $\frac{512}{7}$ cm² Total area of segments = 2 × $\frac{512}{7}$ cm² = $\frac{1024}{7}$ cm² Shaded area = Area of square ABCD – Total area of segments

$$= \left(16 \times 16 - \frac{1024}{7}\right) \text{ cm}^2$$
$$= \left(256 - \frac{1024}{7}\right) \text{ cm}^2 = \frac{1792 - 1024}{7} \text{ cm}^2$$
$$= \frac{768}{7} \text{ cm}^2 = 109.7 \text{ cm}^2$$

Radius of circular table cover = 70 cm

Area of the circular cover = $\pi^2 = \frac{22}{7} \times 70 \times 70 \text{ cm}^2 = 15400 \text{ cm}^2$

In ∆ BOD, ∠D = 90°, ∠OBD = 30°
∴
$$\frac{BD}{OB} = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

⇒ BD = OB cos 30°
= 70 × $\frac{\sqrt{3}}{2}$ cm
= 35 $\sqrt{3}$ cm
⇒ BC = 2BD = 2 × 35 $\sqrt{3}$ = 70 $\sqrt{3}$

Area of ABC =
$$\frac{\sqrt{3}}{4} \times a^2 = \frac{\sqrt{3}}{4} \times 70\sqrt{3} \times 70\sqrt{3}$$

[$\therefore \Delta ABC$ is equilateral]
= $\frac{4900 \times 3 \times \sqrt{3}}{4}$ cm² = 1225 $\times 3 \times \sqrt{3}$
= 3675 $\sqrt{3}$ cm² = 6365.1 cm²

Shaded area = Area of circle – Area of $\triangle ABC$ = (15400 – 6365.1)

Question 58:

Area of the sector of circle = $\frac{3600}{3600}$

 $r = 14 \text{ cm and } \theta = 45^{\circ}$ $\int_{\mathbf{B}} \frac{14 \text{ cm}}{9} \frac{1$

Question 59:

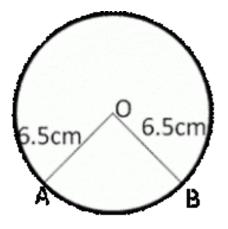
Length of the arc $=\frac{2\pi r\theta}{360}$, r = 21 cm, θ = 150°

$$= \left(\frac{2\pi \times 21 \times 150}{360}\right) \text{cm} = (17.5\pi) \text{cm}$$

Length of arc = (17.5 × $\frac{22}{7}$) cm = 55 cm

Area of the sector =
$$\frac{\pi^2 \theta}{360} - \left(\frac{\pi \times 21 \times 21 \times 150}{360}\right) \text{ cm}^2$$

= (
$$\frac{22}{7} \times 183.75$$
) cm² = 577.5 cm²


Question 60:

Length of arc of circle = 44 cmRadius of circle = 17.5 cm

Area of sector =
$$\frac{1}{2}$$
 lr - $(\frac{1}{2} \times 44 \times 17.5)$ cm²
= (22 × 17.5) cm² = 385 cm²

Question 61:

Let sector of circle is OAB Perimeter of a sector of circle =31 cm OA + OB + length of arc AB = 31 cm

6.5 + 6.5 + arc AB = 31 cm arc AB = 31 - 13 = 18 cm Area of cirde= $\frac{1}{2}$ lr $= \frac{1}{2} \times 18 \times 6.5 = 58.5 \text{ cm}^2$

Question 62:

Area of the sector of circle = $\frac{\pi^2 \theta}{360} = 69.3$ Radius = 10.5 cm

$$\Rightarrow \frac{\pi \times (10.5)^2 \times \theta}{360} = 69.3$$
$$\Rightarrow \qquad \theta = \frac{69.3 \times 360 \times 7}{10.5 \times 10.5 \times 22} = 72^{\circ}$$

Question 63:

Length of the pendulum = radius of sector = r cm

Arc length =
$$8.8 \Rightarrow 2 \times \frac{22}{7} \times r \times \frac{30}{360} = 8.8$$

⇒ $r = \frac{8.8 \times 7 \times 360}{2 \times 22 \times 30} = 16.8$ cm

Question 64:

Length of arc = $\frac{2\pi r \theta}{360}$ = 16.5 cm

$$2 \times \frac{22}{7} \times r \times \frac{54^{9}}{360^{9}} = 16.5$$
$$r = \frac{16.5 \times 7 \times 360}{2 \times 22 \times 54} = 17.5 \text{ cm}$$

Circumference of circle = 2π r

$$\left(2\times\frac{22}{7}\times17.5\right) = 110 \text{ cm}$$

Area of circle =

$$\pi r^2 - \left(\frac{22}{7} \times 17.5 \times 17.5\right) \text{ cm}^2$$

 $= 962.5 \text{ cm}^2$

Question 65: Circumference of circle = 2π r

$$2\pi r = 88 \Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14 \text{ cm}$$

Area of sector = $\frac{\pi r^2 \theta}{360}$
= $\left(\frac{22}{7} \times 14 \times 14 \times \frac{72}{360}\right) \text{ cm}^2 = 123.2 \text{ cm}^2$

Question 66:

Angle described by the minute hand in 60 minutes $\theta = 360^{\circ}$ Angle described by minute hand in 20 minutes

$$-\left(\frac{360}{60}\times20\right)-120^{\circ}$$

Required area swept by the minute hand in 20 minutes = Area of the sector(with r = 15 cm and $\theta = 120^{\circ}$)

$$= \left(\frac{\pi r^2 \theta}{360^{\circ}}\right) \text{cm}^2 = \left(3.14 \times 15 \times 15 \times \frac{120^{\circ}}{360^{\circ}}\right)$$
$$= 235.5 \text{ cm}^2$$

Question 67: $\theta = 56^{\circ}$ and let radius is r cm Area of sector = $\frac{\pi^2 \theta}{360^{\circ}} = 17.6 \text{ cm}^2$

$$\Rightarrow \frac{22}{7} \times r^2 \times \frac{56^\circ}{360^\circ} = 17.6$$

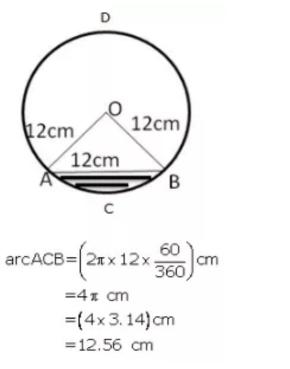
$$r^2 = \left(\frac{17.6 \times 360 \times 7}{22 \times 56}\right) \text{cm}^2$$

$$r^2 = 36 \text{ cm}^2 \Rightarrow r = \sqrt{36} \text{ cm} = 6 \text{ cm}$$

Hence radius = 6cm

Question 68:

$$\frac{\text{Area of sector with } \theta = 150^{\circ}}{\text{Area of the circle}} = \frac{\pi \times (6)^2 \times \frac{150}{360}}{\pi \times (6)^2}$$
$$= \frac{150}{360} = \frac{5}{12}$$
Required ratio = $\left(36\pi \times \frac{90}{360}\right): \left(36\pi \times \frac{120}{360}\right): \left(36\pi \times \frac{150}{360}\right)$
$$= \frac{1}{4}: \frac{1}{3}: \frac{5}{12} = 3: 4: 5$$

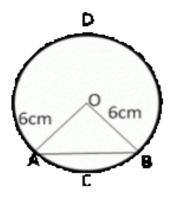

150

Question 69:

In 2 days, the short hand will complete 4 rounds \therefore Distance travelled by its tip in 2 days =4(circumference of the circle with r = 4 cm) = (4 × 2 × 4) cm = 32 cm In 2 days, the long hand will complete 48 rounds \therefore length moved by its tip = 48(circumference of the circle with r = 6cm) = (48 × 2 × 6) cm = 576 cm \therefore Sum of the lengths moved = (32 + 576) = 608 cm = (608 × 3.14) cm = 1909.12 cm

Question 70:

 $\triangle OAB$ is equilateral. So, $\angle AOB = 60^{\circ}$



Length of arc BDA = $(2\pi \times 12 - \text{arc ACB})$ cm = $(24\pi - 4\pi)$ cm = (20π) cm = (20×3.14) cm = 62.8 cm Area of the minor segment ACBA

$$= \left[\frac{1}{2} \times (12)^2 \times \frac{60}{360} - \frac{\sqrt{3}}{4} \times (12)^2 \right] \text{ cm}^2$$
$$= \left(3.14 \times 12 \times 12 \times \frac{60}{360} - \frac{1.73}{4} \times 12 \times 12 \right) \text{ cm}^2$$
$$= (75.36 - 62.28) \text{ cm}^2 = 13.08 \text{ cm}^2$$

Question 71:

Let AB be the chord of circle of centre O and radius = 6 cm such that $\angle AOB = 90^{\circ}$

Area of sector = OACBO

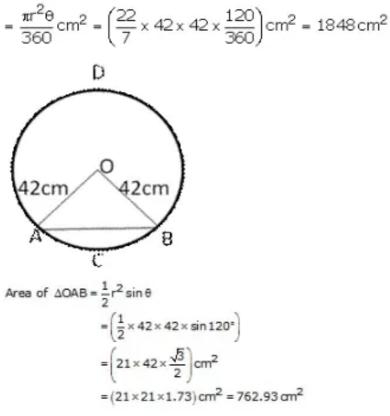
$$-\frac{\pi^2 \theta}{360} \text{ cm}^2$$
$$-\left(\frac{22}{7} \times 6 \times 6 \times \frac{90}{360}\right) \text{ cm}^2$$

= 28.29cm²

Area of $\triangle AOB = \frac{1}{2}r^2\sin\theta - \left(\frac{1}{2}\times6\times6\times\sin90^{\circ}\right) - 18 \text{ cm}^2$

Area of minor segment ACBA = (area of sector OACBO) – (area of $\triangle OAB$) = (28.29 – 18) cm² = 10.29 cm² Area of major segment BDAB

= (area of circle) - (area of minor segment) = $\left[\left(\frac{22}{7} \times 6 \times 6\right) - 10.29\right]$ cm² = (113.14 - 10.29) cm² = 102.85 cm²


$$= \frac{\pi r^2 \theta}{360} \text{ cm}^2$$

= $\left(3.14 \times \left(5\sqrt{2}\right) \times \left(5\sqrt{2}\right) \times \frac{90}{360}\right) \text{ cm}^2$
= 39.25 cm²

Area of $\triangle AOB = \frac{1}{2}r^2\sin\theta = \left(\frac{1}{2}\times 5\sqrt{2}\times 5\sqrt{2}\times \sin 90^{\circ}\right)$

= 25 cm²
Area of minor segment = (area of sector OACBO) - (area of
$$\triangle OAB$$
)
= (39.25 - 25) cm² = 14.25 cm²
Area of the major segment BDAB
= area of cirde - area of minor segment
= $\left(\frac{22}{7} \times 5\sqrt{2} \times 5\sqrt{2} - 14.25\right)$ cm²
= $\left(\frac{1100}{7} - 14.25\right)$ cm² = (157 - 14.25) cm²
= 142.75 cm²

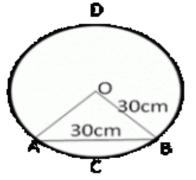
Question 73:

Area of sector OACBO

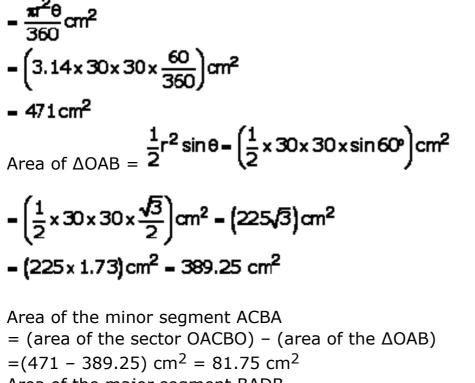
Area of minor segment ACBA

- (area of sector OACBO) (area of the ∆OAB)
- $= (1848 762.93) \text{ cm}^2 = 1085.07 \text{ cm}^2$

Area of major segment BADB


(area of the drde) – (area of minor segment)

$$=\frac{22}{7} \times 42 \times 42 - 1085.07$$

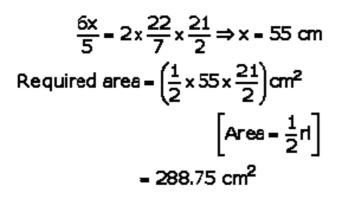

= (5544 - 1085.07) cm² = 4458.93 cm²

Question 74:

Let AB be the chord of circle of centre O and radius = 30 cm such that AOB = 60°

Area of the sector OACBO

Area of the major segment BADB


= (area of circle) – (area of the minor segment)

= $[(3.14 \times 30 \times 30) - 81.75)]$ cm² = 2744.25 cm²

Question 75:

Let the major arc be x cm long Then, length of the minor arc = $\frac{1}{5}$ x cm

Circumference =
$$\left(x + \frac{1}{5}x\right)$$
 cm - $\frac{6x}{5}$ cm

Question 76:

Radius of the front wheel = 40 cm = $\frac{2}{5}$ m

Circumference of the front wheel = $\left(2\pi \times \frac{2}{5}\right)m - \frac{4\pi}{5}m$ Distance moved by it in 800 revolution

$$-\left(\frac{4\pi}{5}\times800\right)m-(640\pi)m$$

Circumference of rear wheel = $(2\pi \times 1)m = (2\pi)m$

Required number of revolutions =
$$\left(\frac{640\pi}{2\pi}\right) = 320$$