2. Exponents

Exercise 2A

1. Question

Evaluate:

(i) 4^{-3} (ii) $\left(\frac{1}{2}\right)^{-5}$ (iii) $\left(\frac{4}{3}\right)^{-3}$ (iv) $(-3)^{-4}$

$$(\mathsf{v})\left(\frac{-2}{3}\right)^{-5}$$

Answer

Some basic formulas are:

$$a^{-n} = \frac{1}{a^n}$$
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Now,(i)

$$4^{-3} = \left(\frac{1}{4}\right)^3 = \frac{1}{64}$$

(ii) $\left(\frac{1}{2}\right)^{-5} = 2^5 = 32$
(iii) $\left(\frac{4}{3}\right)^{-3} = \left(\frac{3}{4}\right)^3 = \frac{3^3}{4^3} = \frac{27}{64}$
(iv) $(-3)^{-4} = \left(-3\right)^{-4} = \left(\frac{1}{-3}\right)^4 = \left(\frac{-1^4}{3^4}\right) = \frac{1}{81}$

$$(v)\left(\frac{-2}{3}\right)^{-5} = \left(\frac{-3}{2}\right)^{5} = \frac{(-3)^{5}}{2^{5}} = \frac{-243}{32}$$

Evaluate:

(i) $\left(\frac{5}{3}\right)^2 \times \left(\frac{5}{3}\right)^2$ (ii) $\left(\frac{5}{6}\right)^6 \times \left(\frac{5}{6}\right)^{-4}$ (iii) $\left(\frac{2}{3}\right)^{-3} \times \left(\frac{2}{3}\right)^{-2}$ (iv) $\left(\frac{9}{8}\right)^{-3} \times \left(\frac{9}{8}\right)^2$

Answer

As we know from the rule of exponents that powers of the same base adds up to acquire new power.

(i)
$$\left(\frac{5}{3}\right)^2 \times \left(\frac{5}{3}\right)^2 = \left(\frac{5}{3}\right)^4$$

$$= \frac{5^4}{3^4} = \frac{625}{81}$$
(ii) $\left(\frac{5}{6}\right)^6 \times \left(\frac{5}{6}\right)^{-4} = \left(\frac{5}{6}\right)^{(6+(-4))}$

$$= \left(\frac{5}{6}\right)^{(6-4)} = \left(\frac{5}{6}\right)^2 = \frac{5^2}{6^2} = \frac{25}{36}$$
(iii) $\left(\frac{2}{3}\right)^{-3} \times \left(\frac{2}{3}\right)^{-2} = \left(\frac{2}{3}\right)^{(-3)+(-2)}$

$$= \left(\frac{2}{3}\right)^{-3-2} = \left(\frac{2}{3}\right)^{-5} = \left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5} = \frac{243}{32}$$
(iv) $\left(\frac{9}{8}\right)^{-3} \times \left(\frac{9}{8}\right)^2 = \left(\frac{9}{8}\right)^{-3+2} = \left(\frac{9}{8}\right)^{-1} = \frac{8}{9}$

3. Question

Evaluate:

(i)
$$\left(\frac{5}{9}\right)^{-2} \times \left(\frac{3}{5}\right)^{-3} \times \left(\frac{3}{5}\right)^{0}$$

(ii)
$$\left(\frac{-3}{5}\right)^{-4} \times \left(\frac{-2}{5}\right)^{2}$$

(iii) $\left(\frac{-2}{3}\right)^{-3} \times \left(\frac{-2}{3}\right)^{-2}$

(i)
$$\left(\frac{5}{9}\right)^{-2} \times \left(\frac{3}{5}\right)^{-3} \times \left(\frac{3}{5}\right)^{0}$$

First we add the power of the same base,

$$= \left(\frac{5}{9}\right)^{-2} \times \left(\frac{3}{5}\right)^{-3+0}$$

Convert the powers in to positive numbers,

$$= \left(\frac{5}{9}\right)^{-2} \times \left(\frac{3}{5}\right)^{-3} = \left(\frac{9}{5}\right)^2 \times \left(\frac{5}{3}\right)^3$$
$$= \frac{9^2}{5^2} \times \frac{5^3}{3^3}$$
$$= \frac{(3^2)^2}{5^2} \times \frac{5^3}{3^3}$$

By cross multiplying we get,

$$= \frac{3^{4}}{5^{2}} \times \frac{5^{3}}{3^{3}}$$

$$= (3^{(4-3)}) \times (5^{(3-2)}) = 3 \times 15 = 15$$
(ii) $\left(\frac{-3}{5}\right)^{-4} \times \left(\frac{-2}{5}\right)^{2} = \left(\frac{5}{-3}\right)^{4} \times \left(\frac{-2}{5}\right)^{2}$

$$= \frac{5^{4}}{-3^{4}} \times \frac{-2^{2}}{5^{2}}$$

$$= 5^{(4-2)} \times \frac{-2^{2}}{-3^{4}} = 5^{2} \times \frac{-2^{2}}{-3^{4}}$$

$$= 25 \times \frac{4}{81} = \frac{100}{81}$$
(iii) $\left(\frac{-2}{3}\right)^{-3} \times \left(\frac{-2}{3}\right)^{-2} = \left(\frac{3}{-2}\right)^{3} \times \left(\frac{3}{-2}\right)^{2}$

$$= \frac{3^{3}}{-2^{3}} \times \frac{3^{2}}{-2^{2}}$$

$$=\frac{3^{(3+2)}}{-2^{(3+2)}}=\frac{3^5}{-2^5}=\frac{-243}{32}$$

Evaluate:

(i)
$$\left\{ \left(\frac{-2}{3}\right)^2 \right\}^{-2}$$

(ii) $\left[\left\{ \left(\frac{-1}{3}\right)^2 \right\}^{-2} \right]^{-1}$
(iii) $\left\{ \left(\frac{3}{2}\right)^{-2} \right\}^2$

Answer

(i)
$$\left\{ \left(\frac{-2}{3}\right)^2 \right\}^{-2} = \left(\frac{-2}{3}\right)^{-4} = \left(\frac{3}{-2}\right)^4$$

 $= \frac{3^4}{(-2)^4} = \frac{3^4}{2^4} = \frac{81}{16}$
(ii) $\left[\left\{ \left(\frac{-1}{3}\right)^2 \right\}^{-2} \right]^{-1} = \left[\left(\frac{1}{3}\right)^{2 \times (-2)} \right]^{-1} = \left[\left(\frac{-1}{3}\right)^{-4} \right]^{-1}$
 $= \left(\frac{-1}{3}\right)^{-4 \times -1} = \left(\frac{-1}{3}\right)^4$
 $= \frac{-1^4}{3^4} = \frac{1^4}{3^4} = \frac{1}{81}$
(iii) $\left\{ \left(\frac{3}{2}\right)^{-2} \right\}^2 = \left(\frac{3}{2}\right)^{-2 \times 2}$
 $= \left(\frac{3}{2}\right)^{-4} = \left(\frac{2}{3}\right)^4 = \frac{2^4}{3^4} = \frac{16}{81}$

5. Question

Evaluate
$$\left\{ \left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3}$$

Answer

Consider
$$\left\{ \left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3}$$
,

As we know,

$$a^{-m} = \frac{1}{a^{m}}$$
$$= \left\{ \left(\frac{1}{3}\right)^{-3} \times - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3}$$
$$= \{3^{3} - 2^{3}\} \div 4^{3}$$
$$= \{27 - 8\} \div 64 = \frac{19}{64}$$

6. Question

Evaluate $\left\{ \left(\frac{4}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1}$

Answer

Consider
$$\left\{ \left(\frac{4}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1}$$

As we know,

$$a^{-m} = \frac{1}{a^{m}}$$
$$= \left\{ \left(\frac{4}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1} = \left\{ \left(\frac{3}{4}\right)^{1} - \left(\frac{4}{1}\right)^{1} \right\}^{-1} = \left\{ \left(\frac{3}{4}\right) - \left(\frac{4}{1}\right) \right\}^{-1}$$

Now take the LCM of 4 and 1 which is 4.

$$\therefore \left\{ \left(\frac{3 \times 1}{4 \times 1}\right) - \left(\frac{4 \times 4}{1 \times 4}\right) \right\}^{-1} = \left\{ \frac{3}{4} - \frac{16}{4} \right\}^{-1}$$
$$= \left\{ \frac{3 - 16}{4} \right\}^{-1} = \left\{ \frac{-13}{4} \right\}^{-1}$$
$$= \left\{ \frac{4}{-13} \right\}^{1} = \frac{4}{-13}$$

7. Question

Evaluate $[(5^{-1} \times 3^{-1})^{-1} \div 6^{-1}]$

For any number a $\neq 0a^{-1} = 1/aSo,[(5^{-1} \times 3^{-1})^{-1} \div 6^{-1}]$

$$= \left[\left(\frac{1}{5} \times \frac{1}{3}\right)^{-1} \div \frac{1}{6} \right]$$
$$= \left[\left(\frac{1}{15}\right)^{-1} \div \frac{1}{6} \right]$$

= 90

8. Question

Find the value of:

(i) $(2^{0} + 3^{-1}) \times 3^{2}$ (ii) $(2^{-1} \times 3^{-1}) \div 2^{-3}$ (iii) $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$

Answer

(i) $(2^0 + 3^{-1}) \times 3^2$

As we know that by the rule $a^0 = 1$

So,

$$\begin{pmatrix} 1 + \frac{1}{3} \end{pmatrix} \times 3^{2} = \left(\frac{1 \times 3}{1 \times 3} + \frac{1 \times 1}{3 \times 1}\right) \times 3^{2} = \left(\frac{3}{3} + \frac{1}{3}\right) \times 3^{2} = \left(\frac{4}{3}\right) \times 3^{2} = 4 \times 3^{(2-1)} = 4 \times 3 = 12 \text{ Ans. (ii) } (2^{-1} \times 3^{-1}) \div 2^{-3} = \left(\frac{1}{2} \times \frac{1}{3}\right) \div \left(\frac{1}{2}\right)^{3} = \left(\frac{1}{6}\right) \div \frac{1^{3}}{2^{3}} = \left(\frac{1}{6}\right) \div \left(\frac{1}{8}\right)$$

$$= \frac{1}{6} \times 8 = \frac{8}{6} = \frac{4}{3}$$

(iii) $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$
$$= \left(\frac{2}{1}\right)^{2} + \left(\frac{3}{1}\right)^{2} + \left(\frac{4}{1}\right)^{2}$$

$$= 2^{2} + 3^{2} + 4^{2}$$

$$= 4 + 9 + 16 = 29 \text{ Ans.}$$

Find the value of x for which

$$\left(\frac{5}{3}\right)^{-4} \times \left(\frac{5}{3}\right)^{-5} = \left(\frac{5}{3}\right)^{3x}$$

Answer

$$\left(\frac{5}{3}\right)^{-4} \times \left(\frac{5}{3}\right)^{-5} = \left(\frac{5}{3}\right)^{3x}$$

Consider the left side;

$$\left(\frac{5}{3}\right)^{-4} \times \left(\frac{5}{3}\right)^{-5} = \left(\frac{5}{3}\right)^{(-4+(-5))} = \left(\frac{5}{3}\right)^{-9}$$

Given:

$$\left(\frac{5}{3}\right)^{-9} = \left(\frac{5}{3}\right)^{3x}$$

Comparing the powers;

-9 = 3x

$$= x = \frac{-9}{3}$$

10. Question

Find the value of x for which

$$\left(\frac{4}{9}\right)^4 \times \left(\frac{4}{9}\right)^{-7} = \left(\frac{4}{9}\right)^{2x-1}$$

Answer

Given,

 $\left(\frac{4}{9}\right)^{4} \times \left(\frac{4}{9}\right)^{-7} = \left(\frac{4}{9}\right)^{2x-1}$ $\therefore \left(\frac{4}{9}\right)^{(4-7)} = \left(\frac{4}{9}\right)^{-3} = \left(\frac{4}{9}\right)^{2x-1}$ = 2x - 1 = -32x = -3 + 1 = -2= x = -1

11. Question

By what number should $(-6)^{-1}$ be multiplied so that the product becomes 9^{-1} ?

Answer

Let take that number be x;

 $(x) \times (-6)^{-1} = 9^{-1}$

 $x \times \frac{1}{-6} = \frac{1}{9} = \frac{x}{-6} = \frac{1}{9} \text{ or } x = \frac{-6}{9}$

The greatest common divisor for the numerator and denominator is 3.

$$\therefore x = \frac{-6}{9} = \frac{(-6) \div 3}{9 \div 3} = \frac{-2}{3}$$

12. Question

By what number should $\left(\frac{-2}{3}\right)^{-3}$ be divided so that the quotient may be $\left(\frac{4}{27}\right)^{-2}$?

Answer

Let the number be x,

$$\therefore \left(\frac{-2}{3}\right)^{-3} \div x = \left(\frac{4}{27}\right)^{-2}$$
$$\Rightarrow \left(\frac{3}{-2}\right)^3 \div x = \left(\frac{27}{4}\right)^2$$
$$\Rightarrow \left(\frac{-3}{2}\right)^3 \div x = \left(\frac{27}{4}\right)^2$$
$$\Rightarrow \left(\frac{-3}{2}\right)^3 \times \frac{1}{x} = \left(\frac{27}{4}\right)^2$$
$$\Rightarrow \left(\frac{-3}{2^3}\right)^3 \times \frac{1}{x} = \frac{27^2}{4^2}$$

$$\Rightarrow \frac{27}{8} \times \frac{1}{x} = \frac{27^2}{4^2} = \frac{27 \times 27}{4 \times 4} = \frac{27 \times 27}{4 \times 2 \times 2} = \frac{27 \times 27}{8 \times 2}$$
$$\therefore \frac{1}{x} = \frac{\left(\frac{27 \times 27}{8 \times 2}\right)}{\left(\frac{-27}{8}\right)}$$
$$\Rightarrow x = \frac{\left(\frac{-27}{8}\right)}{\left(\frac{27 \times 27}{8 \times 2}\right)} = \left(\frac{-27}{8}\right) \times \left(\frac{8 \times 2}{27 \times 27}\right) = \frac{-2}{27}$$

If $5^{2x+1} \div 25 = 125$, find the value of x.

Answer

Given,

 $5^{2x+1} \div 25 = 125$

We know that,

 $25 = 5 \times 5 = 5^2$

 $125 = 5 \times 5 \times 5 = 5^3$

$$\therefore \frac{5^{2x+1}}{5^2} = 5^3 = 5^{[(2x+1)-2]} = 5^3$$

$$5^{[(2x+1)-2]} = 5^{[2x-1]} = 5^3$$

= 2x - 1 = 3

2x = 3 + 1 = 4

$$x = \frac{4}{2} = 2$$

∴ x = 2

Exercise 2B

1. Question

Write each of the following numbers in standard form:

(i) 57.36

(ii) 3500000

(iii) 273000

(iv) 168000000

(v) 463000000000

(vi) 345 x10⁵

Answer

(i) $57.36 = 5.736 \times 10$ (ii) $3500000 = 35 \times 10^5 = 3.5 \times 10^6$ (iii) $273000 = 273 \times 10^3 = 2.73 \times 10^5$ (iv) $168000000 = 168 \times 10^6 = 1.68 \times 10^8$ (v) $463000000000 = 463 \times 10^{10} = 4.63 \times 10^{12}$ (vi) $345 \times 10^5 = 34500000 = 3.45 \times 10^7$

2. Question

Write each of the following numbers in usual form:

- (i) 3.74×10^5
- (ii) 6.912×10^8
- (iii) 4.1253×10^7
- (iv) 2.5×10^4
- (v) 5.17×10^8
- (vi) 1.679×10^9

Answer

(i)
$$3.74 \times 10^5 = \frac{374}{100} \times 10^5 = \frac{374 \times 10^5}{10^2} = 374 \times 10^{(5-2)} = 374 \times 10^3 = 374000$$

(ii) $6.912 \times 10^8 = \frac{6912}{1000} \times 10^8 = \frac{6912 \times 10^8}{10^3} = 6912 \times 10^{(8-3)} = 6912 \times 10^5 = 691200000$
(iii) $4.1253 \times 10^7 = \frac{41253}{10000} \times 10^7 = \frac{41253 \times 10^7}{10^4} = 41253 \times 10^{(7-4)} = 41253 \times 10^3 = 41253000$
(iv) $2.5 \times 10^4 = \frac{25}{10} \times 10^4 = \frac{25 \times 10^4}{10} = 25 \times 10^{(4-1)} = 25 \times 10^3 = 25000$
(v) $5.17 \times 10^6 = \frac{517}{100} \times 10^6 = \frac{517 \times 10^6}{10^2} = 517 \times 10^{(6-2)} = 517 \times 10^4 = 5170000$
(vi) $1.679 \times 10^9 = \frac{1679}{1000} \times 10^9 = \frac{1679 \times 10^9}{10^3} = 1679 \times 10^{(9-3)} = 1679 \times 10^6 = 1679000000$

3 A. Question

The height of Mount Everest is 8848 m. Write it in standard form.

Answer

Height of the Mount Everest = 8848m

If we wrights it in standard form we have,

 $8848 = 8.848 \times 1000 \text{m} = 8.848 \times 10^3 \text{m}.$

3 B. Question

The speed of light is 300000000 m/sec. express it in standard form.

Answer

Speed of the light = 30000000 m/sec

In standard for we will get,

 $30000000 = 3 \times 10000000 \text{ m/sec} = 3 \times 10^8 \text{ m/sec}$

3 C. Question

The distance from the earth to the sun is 14960000000 m. Write it in standard form.

Answer

Distance from earth to sun = 14960000000 m

In standard form we have,

 $14960000000 = 1496 \times 100000000$

 $= 1.496 \times 1000 \times 10000000$

= $1.496 \times 10^3 \times 10^8 = 1.496 \times 10^{11}$ m.

4. Question

Mass of earth is (5.97×10^{24}) kg and mass of moon is (7.35×10^{22}) kg. What is the total mass of the two?

Answer

Given,

Mass of the earth = 5.97×10^{24} kg

Mass of the moon = 7.35×10^{22} kg

Now,

Mass of the earth = $5.97 \times 10^{24} = 5.97 \times 10^{(2+22)} = 5.97 \times 10^2 \times 10^{22} = 597 \times 10^{22}$

So,

We can also Wright the mass of the earth as 597×10^{22} kg

Sum of the masses of the earth and the moon;

 $= (597 \times 10^{22}) + (7.35 \times 10^{22}) = (597+7.35) \times 10^{22} = 604.35 \times 10^{22} \text{ kg}$

 $= 6.0435 \times 100 \times 10^{22} = 6.0435 \times 10^2 \times 10^{22} = 6.0435 \times 10^{(2+22)} = 6.0435 \times 10^{24} \text{ kg}$

5. Question

Write each of the following numbers in standard form:

(i) 0.0006

- (ii) 0.0000083
- (iii) 0.000000534
- (iv) 0.0027
- (v) 0.00000165
- (vi) 0.0000000689

Answer

(i)
$$0.0006 = \frac{6}{10^4} = 6 \times 10^{-4}$$

(ii) $0.0000083 = \frac{83}{10^8} = \frac{8.3 \times 10}{10^8} = 8.3 \times 10^{(1-8)} = 8.3 \times 10^{-7}$
(iii) $0.000000534 = \frac{534}{10^{10}} = \frac{5.34 \times 10^2}{10^{10}} = 5.34 \times 10^{(2-10)} = 5.34 \times 10^{-8}$
(iv) $0.0027 = \frac{27}{10^4} = \frac{27 \times 10}{10^4} = 2.7 \times 10^{(1-4)} = 2.7 \times 10^{-3}$
(v) $0.00000165 = \frac{165}{10^8} = \frac{1.65 \times 10^2}{10^8} = 1.65 \times 10^{(2-8)} = 1.65 \times 10^{-6}$
(vi) $0.0000000689 = \frac{689}{10^{11}} = \frac{6.89 \times 10^2}{10^{11}} = 6.89 \times 10^{(2-11)} = 6.89 \times 10^{-9}$

6 A. Question

1 micron = $\frac{1}{100000}$ m. Express it in standard form.

Answer

1 micron =
$$\frac{1}{1000000}m = 1 \times 10^{-6}$$
 m.

6 B. Question

Size of a bacteria = 0.0000004 m. Express it in standard form.

Answer

Size of the bacteria = 0.0000004 m = $\frac{4}{10^7}m$ = (4 × 10⁻⁷)m

6 C. Question

Thickness of a paper = 0.03 mm. Express it in standard form.

Thickness of paper = 0.03 mm = $\frac{1}{10^2}$ mm = (3 × 10^{-2}) mm

7. Question

Write each of the following numbers in usual form:

- (i) 2.06x10⁻⁵
- (ii) 5 x10⁻⁷
- (iii) 6.82 x 10⁻⁶
- (iv) 5.673x10⁻⁴
- (v) 1.8 x10⁻²
- (vi) 4.129 x10⁻³

Answer

(i) $2.06 \times 10^{-5} = \frac{206}{100} \times \frac{1}{10^5}$ $=\frac{206}{10^2 \times 10^5}$ $=\frac{206}{10^{(5+2)}}$ $=\frac{206}{10^7}$ $=\frac{206}{1000000}=0.0000206$ (ii) $5 \times 10^{-7} = \frac{5}{10^7}$ $=\frac{5}{1000000}=0.0000005$ (iii) $6.82 \times 10^{-6} = \frac{682}{100} \times \frac{1}{10^6}$ $=\frac{682}{10^2 \times 10^6}$ $=\frac{682}{10^{(2+6)}}=\frac{682}{10^8}$ $=\frac{682}{10000000}=0.00000682$

(iv)
$$5.673 \times 10^{-4} = \frac{5673}{1000} \times \frac{1}{10^4}$$

$$= \frac{5673}{10^3 \times 10^4} = \frac{5673}{10^{(3+4)}}$$

$$= \frac{5673}{10^7} = \frac{5673}{10000000} = 0.0005673$$
(v) $1.8 \times 10^{-2} = \frac{18}{10} \times \frac{1}{10^2}$

$$= \frac{18}{10 \times 10^2} = \frac{18}{10^{(1+2)}}$$

$$= \frac{18}{10^3} = \frac{18}{1000} = 0.018$$
(vi) $4.129 \times 10^{-3} = \frac{4129}{1000} \times \frac{1}{10^3}$

$$= \frac{4129}{10^3 \times 10^3} = \frac{4129}{10^{(3+3)}}$$

$$= \frac{4129}{10^6} = \frac{4129}{1000000} = 0.004129$$

Exercise 2C

1. Question

The value of
$$\left(\frac{2}{5}\right)^{-3}$$
 is
A. $-\frac{8}{125}$
B. $\frac{25}{4}$
C. $\frac{125}{8}$
D. $-\frac{2}{5}$

Answer

$$\left(\frac{2}{5}\right)^{-3} = \left(\frac{5}{2}\right)^3 = \frac{5^3}{2^3} = \frac{125}{8}$$

2. Question

The value of $(-3)^{-4}$ is A. 12 B. 81 C. $-\frac{1}{12}$ D. $\frac{1}{81}$

Answer

$$(-3)^{-4} = \frac{1}{(-3)^4} = \frac{1}{(-1)^4 \times (3)^4} = \frac{1}{(3)^4} = \frac{1}{81}$$

3. Question

The value of $\left(-2\right)^{-5}$ is

A. -32

B. $\frac{-1}{32}$

C. 32

D. $\frac{1}{32}$

Answer

 $(-2)^{-5} = \frac{1}{(-2)^5} = \frac{1}{-32} = \frac{1 \times (-1)}{-32 \times (-1)} = \frac{-1}{32}$

4. Question

The value of $(2^{-5} \div 2^{-2})$ is

A.
$$\frac{1}{128}$$

B. $\frac{-1}{128}$
C. $-\frac{1}{8}$
D. $\frac{1}{8}$

Answer

Consider $(2^{-5} \div 2^{-2}),$

We know, For any non zero number "a"

$$a^{-1} = \frac{1}{a}$$

So,

$$(2^{-5} \div 2^{-2}) = \left(\frac{1}{2^5} \div \frac{1}{2^2}\right) = \left(\frac{1}{32} \div \frac{1}{4}\right) = \left(\frac{1}{32} \times 4\right) = \frac{4}{32} = \frac{1}{8}$$

5. Question

The value of $\left(3^{\text{--}1}+4^{\text{--}1}\right)\div5^{\text{--}1}$ is

A.
$$\frac{7}{10}$$

B. $\frac{60}{7}$
C. $\frac{7}{5}$
D. $\frac{7}{15}$

Answer

$$(3^{-1} + 4^{-1})^{-1} \div 5^{-1} = \left(\frac{1}{3} + \frac{1}{4}\right)^{-1} \div \frac{1}{5}$$
$$= \left(\frac{4+3}{12}\right)^{-1} \div \frac{1}{5} = \left(\frac{7}{12}\right)^{-1} \div \frac{1}{5}$$
$$= \left(\frac{12}{7}\right) \div \frac{1}{5} = \frac{12}{7} \times 5 = \frac{60}{7}$$

6. Question

Choose the correct answer:
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = ?$$

A.
$$\frac{61}{144}$$

B. $\frac{144}{61}$

C. 29

D.
$$\frac{1}{29}$$

$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = \left(\frac{2}{1}\right)^2 + \left(\frac{3}{1}\right)^2 + \left(\frac{4}{1}\right)^2$$

 $= 2^2 + 3^2 + 4^2$

= 4+9+16

= 29

7. Question

Choose the correct answer: $\left\{ \left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3} = ?$

A. $\frac{19}{64}$ B. $\frac{27}{16}$ C. $\frac{64}{19}$ D. $\frac{16}{25}$

Answer

$$\left\{ \left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3}$$
$$= \{3^3 - 2^3\} \div 4^3$$
$$= \{27 - 8\} \div 64$$
$$= 19 \div 64 = \frac{19}{64}$$

8. Question

Choose the correct answer: $\left[\left\{\left(\frac{-1}{3}\right)^2\right\}^{-2}\right]^{-1} = ?$

A. $\frac{1}{16}$

B. 16

C.
$$-\frac{1}{16}$$

D. -16

Answer

$$\left[\left\{\left(-\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}$$
$$= \left[\left\{-\frac{1}{2}\right\}^{-4}\right]^{-1}$$
$$= \left(-\frac{1}{2}\right)^{(-4 \times -1)}$$
$$= \left(-\frac{1}{2}\right)^{4} = \frac{1}{16}$$

9. Question

The value of x for which $\left(\frac{7}{12}\right)^{-4} \times \left(\frac{7}{12}\right)^{3x} = \left(\frac{7}{12}\right)^{5}$ is

A. -1

B. 1

C. 2

D. 3

Answer

$$\left(\frac{7}{12}\right)^{-4} \times \left(\frac{7}{12}\right)^{3x} = \left(\frac{7}{12}\right)^{5}$$
$$\implies \left(\frac{7}{12}\right)^{-4+3x} = \left(\frac{7}{12}\right)^{5}$$
$$\implies 3x-4 = 5$$
$$3x = 9$$
$$x = \frac{9}{3} = 3$$

10. Question

If $(2^{3x+1}+10)\div 7=6\,\text{, then x is equal to}$

- B. 0
- C. 1
- D. 2

 $(2^{3x-1} + 10) \div 7 = 6$ $= \frac{(2^{3x-1} + 10)}{7} = \frac{6}{1}$

Now by cross multiplying,

$$(2^{3x-1} + 10) \times 1 = 6 \times 7 = 42$$

$$2^{3x-1} = 42 - 10$$

$$2^{3x-1} = 32$$

$$2^{3x-1} = 2^{5}$$

$$3x - 1 = 5$$

$$3x = 6$$

$$x = \frac{6}{3} = 2$$

Therefore x = 2

11. Question

Choose the correct answer: $\left(\frac{2}{3}\right)^0 = ?$

A.
$$\frac{3}{2}$$

B. $\frac{2}{3}$

D. 0

Answer

By using the law of exponents $\left(\frac{a}{b}\right)^0 = 1$

$$\therefore \left(\frac{2}{3}\right)^0 = 1$$

12. Question

Choose the correct answer: $\left(\frac{-5}{3}\right)^{-1} = ?$

A.
$$\frac{5}{3}$$

B. $\frac{3}{5}$

C.
$$\frac{-3}{5}$$

D. None of these

Answer

 $\left(-\frac{5}{3}\right)^{-1} = \frac{1}{-\frac{5}{3}} = -\frac{3}{5}$

13. Question

Choose the correct answer: $\left(-\frac{1}{2}\right)^3 = ?$

- A. $\frac{-1}{6}$
- B. $\frac{1}{6}$
- C. $\frac{1}{8}$
- D. $\frac{-1}{8}$

Answer

$$\left(-\frac{1}{2}\right)^3 = -\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2} = -\frac{1}{8}$$

14. Question

Choose the correct answer: $\left(-\frac{3}{4}\right)^2 = ?$

A.
$$\frac{-9}{16}$$

B. $\frac{9}{16}$
C. $\frac{16}{9}$

D. $\frac{-16}{9}$

$$\left(-\frac{3}{4}\right)^2 = -\frac{3}{4} \times -\frac{3}{4} = \frac{9}{16}$$

15. Question

3670000 in standard form is

A. 367×10^4

B. 36.7×10^{5}

C. 3.67×10^{6}

D. None of these

Answer

 $3670000 = 367 \times 10^4$

The standard form is written as one decimal number with any integer power. Therefore, 3670000 = 367×10^4

 $= 36.7 \times 10^{5}$

 $= 3.67 \times 10^{6}$

Thus, 3.67×10^6 is the standard form.

16. Question

0.0000463 in standard form is

A. 463 × 10^{-7}

B. 4.63×10^{-5}

C. 4.63×10^{-9}

D. 46.3 × 10^{-6}

Answer

0.0000463 in standard form is written as:

0.0000463

 $= 0.463 \times 10^{-4}$

 $= 4.63 \times 10^{-5}$

17. Question

 0.000367×10^4 in usual form is

B. 36.7

C. 0.367

D. 0.0367

Answer

The usual form of 0.000367 $\times 10^4$ is written as:

 0.000367×10^4

 $= 0.00367 \times 10^3$

 $=0.0367 \times 10^{2}$

 $= 0.367 \times 10^1$

= 3.67

CCE Test Paper-2

1. Question

Evaluate

(i) 3⁻⁴

(ii) (-4)³

(iii)
$$\left(\frac{3}{4}\right)^{-2}$$

(iv) $\left(\frac{5}{7}\right)^{0}$

Answer

(i)
$$3^{-4} = \frac{1}{3^4} = \frac{1}{81}$$

(ii) $(-4)^3 = (-1)^3 \times (4)^3 = -1 \times 64 = -64$
(iii) $\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2 = \frac{4^2}{3^3} = \frac{16}{9}$
(iv) $\left(\frac{-2}{3}\right)^{-5} = \left(\frac{3}{-2}\right)^5 = \frac{3^5}{-2^5} = \frac{243}{-32} = \frac{243 \times -1}{-32 \times -1} = \frac{-243}{32}$
(v) Using the property $\left(\frac{a}{b}\right)^0 = 1$ we will get,

 $\left(\frac{5}{7}\right)^0 = 1$

Evaluate: $\left\{ \left(\frac{-2}{3}\right)^3 \right\}^{-2}$

Answer

Consider
$$\left\{ \left(\frac{-2}{3} \right)^3 \right\}^{-2}$$

As we know $(a^m)^n = a^{mn}$

$$\left\{ \left(\frac{-2}{3}\right)^3 \right\}^{-2} = \left(\frac{-2}{3}\right)^{-6} = \left(\frac{3}{-2}\right)^6 = \frac{3^6}{2^6} = \frac{729}{64}$$

3. Question

Simplify: $(3^{-1} + 6^{-1}) \div (\frac{3}{4})^{-1}$

Answer

$$(3^{-1} + 6^{-1}) \div \left(\frac{3}{4}\right)^{-1} = \left(\frac{1}{3} + \frac{1}{6}\right) \div \left(\frac{4}{3}\right)$$
$$= \left(\left[\frac{1 \times 2}{3 \times 2}\right] + \left[\frac{1 \times 1}{6 \times 1}\right]\right) \div \left(\frac{4}{3}\right)$$
$$= \left(\frac{2 + 1}{6}\right) \div \left(\frac{4}{3}\right)$$
$$= \left(\frac{3}{6}\right) \div \left(\frac{4}{3}\right)$$
$$= \left(\frac{1}{2}\right) \div \left(\frac{4}{3}\right)$$
$$= \left(\frac{1}{2}\right) \div \left(\frac{3}{4}\right) = \frac{3}{8}$$

4. Question

By what number should $\left(\frac{-2}{3}\right)^{-3}$ be divided so that the quotient is $\left(\frac{4}{9}\right)^{-2}$?

1

Answer

Suppose the number is \boldsymbol{x}

So we have,

$$\left(\frac{-2}{3}\right)^{-3} \div x = \left(\frac{4}{9}\right)^{-2}$$

$$\Rightarrow \left(\frac{3}{-2}\right)^{3} \div x = \left(\frac{9}{4}\right)^{2}$$

$$\Rightarrow \frac{\left(\frac{3}{-2}\right)^{3}}{x} = \left(\frac{9}{4}\right)^{2}$$

$$\Rightarrow \frac{\left(\frac{3}{-2}\right)^{3}}{x} = \left(\frac{9}{4^{2}}\right)^{2}$$

$$\Rightarrow x = \frac{\left(\frac{3^{2}}{-2^{3}}\right)}{\left(\frac{9^{2}}{4^{2}}\right)}$$

$$= \left(\frac{3^{3}}{-2^{3}}\right) \times \left(\frac{(2^{2})^{2}}{(3^{2})^{2}}\right)$$

$$= \left(\frac{3^{3}}{-2^{3}}\right) \times \left(\frac{2^{4}}{3^{4}}\right)$$

$$= \left(\frac{3^{3}}{-2^{3}}\right) \times \left(\frac{2^{3}}{3^{3}}\right) \times \left(\frac{2^{1}}{3^{1}}\right)$$

$$\Rightarrow \left(\frac{1}{-1}\right) \times \left(\frac{2^{1}}{3^{1}}\right) = \frac{2}{-3}$$

$$= \frac{2 \times -1}{-3 \times -1} = \frac{-2}{3}$$

By what number should $(-3)^{-1}$ be multiplied so that the quotient is 6^{-1} ?

Answer

Let's suppose the number is \boldsymbol{x}

 $(-3)^{-1} \times (x) = (6)^{-1}$

$$\Rightarrow \frac{1}{-3} \times x = \frac{1}{6}$$
$$\Rightarrow \frac{1 \times -1}{-3 \times -1} \times x = \frac{1}{6}$$
$$\therefore \frac{x}{3} = \frac{1}{6}$$

On cross multiplying:

 $(-x) \times 6 = 1 \times 3$ -6x = 3 6x = -3

$$\therefore x = \frac{-3}{6} = \frac{-1}{2}$$

6. Question

Express each of the following in standard form:

(i) 345

(ii) 180000

(iii) 0.000003

(iv) 0.000027

Answer

(i)
$$345 = 3.45 \times 100 = 3.45 \times 10^{2}$$

(ii) $180000 = 18 \times 1000 = 18 \times 10^{4} = 1.8 \times 10 \times 10^{4} = 1.8 \times 10^{(1+4)} = 1.8 \times 10^{5}$
(iii) $0.000003 = \frac{3}{1000000} = 3 \times 10^{-6}$
(iv) $0.000027 = \frac{27}{1000000} = \frac{27}{10^{6}} = \frac{2.7 \times 10}{10^{6}} = 2.7 \times 10^{(1-6)} = 2.7 \times 10^{-5}$

7. Question

The value of $\left(-3\right)^{-3}$ is

A. -27

В. 9

C. $\frac{-1}{27}$

D.
$$\frac{1}{27}$$

$$(-3)^{-3} = \left(\frac{1}{-3}\right)^3 = \frac{1^3}{-3^2} = \frac{1}{-27} = \frac{1 \times -1}{-27 \times -1} = \frac{-1}{27}$$

8. Question

The value of $\left(\frac{3}{4}\right)^{-3}$ is A. $\frac{-27}{64}$ B. $\frac{64}{27}$ C. $\frac{-9}{4}$ D. $\frac{27}{64}$

Answer

$$\left(\frac{3}{4}\right)^{-3} = \left(\frac{4}{3}\right)^3 = \frac{4^3}{3^3} = \frac{64}{27}$$

9. Question

Choose the corret answer: $(3^{-6} \div 3^4) = ?$

A. 3⁻²

В. 3²

C. 3⁻¹⁰

D. 3¹⁰

Answer

$$3^{-6} \div 3^{4} = \left(\frac{1}{3^{6}} \div 3^{4}\right)$$
$$= \frac{1}{3^{6}} \times \frac{1}{3^{4}} = \frac{1}{3^{(6+4)}}$$
$$= \frac{1}{3^{10}} = 3^{-10}$$

10. Question

If
$$\left(\frac{5}{12}\right)^4 \times \left(\frac{5}{12}\right)^{3x} = \left(\frac{5}{12}\right)^5$$
, then x=?

- A. -1
- B. 1
- C. 2
- D. 3

$$\left(\frac{5}{12}\right)^{-4} \times \left(\frac{5}{12}\right)^{3x} = \left(\frac{5}{12}\right)^5$$
$$\implies \left(\frac{5}{12}\right)^{-4+3x} = \left(\frac{5}{12}\right)^5$$
$$\implies -4 + 3x = 5$$
$$\implies 3x = 5 + 4 = 9$$
$$\implies x = \frac{9}{3} = 3$$

11. Question

Choose the correct answer: $\left(\frac{3}{5}\right)^0 = ?$

- A. $\frac{5}{3}$
- B. $\frac{3}{5}$
- C. 1
- D. 0

Answer

By the law of exponents $\left(\frac{a}{b}\right)^0 = 1$

We will get,

$$\left(\frac{3}{5}\right)^0 = 1$$

12. Question

Choose the correct answer:
$$\left(\frac{-6}{5}\right)^{-1} = ?$$

A.
$$\frac{6}{5}$$

B. $\frac{-6}{5}$
C. $\frac{5}{6}$
D. $\frac{-5}{6}$

$$\left(\frac{-6}{5}\right)^{-1} = \left(\frac{5}{-6}\right)^{1} = \frac{5}{-6} = \frac{5 \times -1}{-6 \times -1} = \frac{-5}{6}$$

Choose the correct answer: $\left(\frac{-1}{5}\right)^3 = ?$

A.
$$\frac{-1}{9}$$

B. $\frac{1}{9}$
C. $\frac{-1}{27}$
D. $\frac{1}{27}$

$$\left(\frac{-1}{3}\right)^3 = \frac{-1^3}{3^3} = \frac{-1}{27}$$

14. Question

Fill in the blanks.

(i) 360000 written in standard form is.....

(ii) 0.0000123 written in standard form is.....

(iii)
$$\left(\frac{-2}{3}\right)^{-2} = \dots$$

(iv) 3×10^{-3} in usual form is.....

(v) 5.32×10^{-4} in usual form is.....

Answer

(i) 360000 written in standard form is 3.6 \times 10^5

 $360000 = 36 \times 10^4 = 3.6 \times 10 \times 10^4 = 3.6 \times 10^{(1+4)} = 3.6 \times 10^5$

(ii) 0.0000123 written in standard form is 1.23 \times 10⁻⁵

$$0.0000123 = \frac{123}{1000000} = \frac{123}{10^7}$$
$$= \frac{1.23 \times 100}{10^7} = \frac{1.23 \times 10^2}{10^7}$$
$$= 1.23 \times 10^{(2-7)} = 1.23 \times 10^{-5}$$
$$(\text{iii}) \left(\frac{-2}{3}\right)^{-2} = \frac{9}{4}$$
$$\left(\frac{-2}{3}\right)^{-2} = \left(\frac{3}{-2}\right)^2 = \frac{3^2}{-2^2} = \frac{9}{4}$$
$$(\text{iv}) \ 3 \times 10^{-3} \text{ in usual form is } 0.003$$
$$3 \times 10^{-3} = \frac{3}{10^2} = \frac{3}{1000} = 0.003$$

(v) 5.32 \times 10 $^{-4}$ in usual form is 0.000532

 $5.32 \times 10^{-4} = \frac{5.32}{10^4} = \frac{5.32}{10000} = 0.000532$