RD SHARMA
Solutions
Class 7 Maths
Chapter 8
Ex 8.1

Q 1. Verify by substitution that:

(i).
$$x = 4$$
 is the root of $3x - 5 = 7$

(ii).
$$x = 3$$
 is the root of $5 + 3x = 14$

(iii).
$$x = 2$$
 is the root of $3x - 2 = 8x - 12$

(iv).
$$x = 4$$
 is the root of $3x/2 = 6$

(v).
$$y = 2$$
 is the root of $y - 3 = 2y - 5$

(vi).
$$x = 8$$
 is the root of $\frac{1}{2}X + 7 = 11$

SOLUTION:

(i).
$$x = 4$$
 is the root of $3x - 5 = 7$.

Now, substituting x = 4 in place of 'x' in the given equation 3x - 5 = 7,

$$3(4) - 5 = 7$$

$$12 - 5 = 7$$

$$7 = 7$$

Since,
$$LHS = RHS$$

Hence,
$$x = 4$$
 is the root of $3x - 5 = 7$.

(ii).
$$x = 3$$
 is the root of $5 + 3x = 14$.

Now, substituting x = 3 in place of 'x' in the given equation 5 + 3x = 14,

$$5 + 3(3) = 14$$

$$5 + 9 = 14$$

$$14 = 14$$

Since,
$$LHS = RHS$$

Hence,
$$x = 3$$
 is the root of $5 + 3x = 14$.

(iii).
$$x = 2$$
 is the root of $3x - 2 = 8x - 12$.

Now, substituting x = 2 in place of 'x' in the given equation 3x - 2 = 8x - 12,

$$3(2) - 2 = 8(2) - 12$$

$$6 - 2 = 16 - 12$$

$$4 = 4$$

Since,
$$LHS = RHS$$

Hence,
$$x = 2$$
 is the root of $3x - 2 = 8x - 12$.

(iv).
$$x = 4$$
 is the root of $3x/2 = 6$.

Now, substituting x = 4 in place of 'x' in the given equation 3x/2 = 6,

$$(3 \times 4)/2 = 6$$

$$12/2 = 6$$

$$6 = 6$$

Since,
$$LHS = RHS$$

Hence,
$$x = 4$$
 is the root of $3x/2 = 6$.

(v).
$$y = 2$$
 is the root of $y - 3 = 2y - 5$.

Now, substituting y = 2 in place of 'y' in the given equation y - 3 = 2y - 5,

$$2 - 3 = 2(2) - 5$$

$$-1 = 4 - 5$$

$$-1 = -1$$

Since,
$$LHS = RHS$$

Hence,
$$y = 2$$
 is the root of $y - 3 = 2y - 5$.

(vi).
$$x = 8$$
 is the root of $\frac{1}{2}x + 7 = 11$.

Now, substituting x = 8 in place of 'x' in the given equation $\frac{1}{2}x + 7 = 11$,

$$\frac{1}{2}(8) + 7 = 11$$

$$4 + 7 = 11$$

11 = 11

Since, LHS = RHS

Hence, x = 8 is the root of $\frac{1}{2}x + 7 = 11$.

\boldsymbol{Q} 2. Solve each of the following equations by trial and error method :

- (i). x + 3 = 12
- (ii). x 7 = 10
- (iii). 4x = 28
- (iv). $\frac{x}{2} + 7 = 11$
- (v). 2x + 4 = 3x
- (vi). $\frac{x}{4} = 12$
- (vii). $\frac{15}{x} = 3$
- (viii). $\frac{x}{18} = 20$

SOLUTION:

(i). x + 3 = 12

Here, LHS = x + 3 and RHS = 12

X	LHS	RHS	Is LHS = RHS
1	1 + 3 = 4	12	No
2	2 + 3 = 5	12	No
3	3 + 3 = 6	12	No
4	4 + 3 = 7	12	No
5	5 + 3 = 8	12	No
6	6 + 3 = 9	12	No
7	7 + 3 = 10	12	No
8	8 + 3 = 11	12	No
9	9 + 3 = 12	12	Yes

Therefore, if x = 9, LHS = RHS.

Hence, x = 9 is the solution to this equation.

(ii). x - 7 = 10

Here, LHS = x - 7 and RHS = 10.

x	LHS	RHS	Is $LHS = RHS$
9	9 - 7 = 2	10	No
10	10 - 7 = 3	10	No
11	11 - 7 = 4	10	No
12	12 - 7 = 5	10	No
13	13 - 7 = 6	10	No

14	14 - 7 = 7	10	No
15	15 - 7 = 8	10	No
16	16 - 7 = 9	10	No
17	17 - 7 = 10	10	Yes

Therefore, if x = 17, LHS = RHS.

Hence, x = 17 is the solution to this equation.

(iii). 4x = 28

Here, LHS = 4x and RHS = 28.

x	LHS	RHS	Is LHS = RHS
1	4 x 1 = 4	28	No
2	$4 \times 2 = 8$	28	No
3	4 x 3 = 12	28	No
4	4 x 4 = 16	28	No
5	4 x 5 = 20	28	No
6	$4 \times 6 = 24$	28	No
7	4 x 7 = 28	28	Yes

Therefore, if x = 7, LHS = RHS

Hence, x = 7 is the solution to this equation.

(iv).
$$\frac{x}{2} + 7 = 11$$

Here, LHS = $\frac{x}{2} + 7$ and RHS = 11.

Since RHS is a natural number, $\frac{x}{2}$ must also be a natural number, so we must substitute values of x that are multiples of 2.

X	LHS	RHS	Is LHS = RHS
2	$\frac{2}{2}$ + 7=8	11	No
4	$\frac{4}{2}$ + 7=9	11	No
6	$\frac{6}{2}$ + 7=10	11	No
8	$\frac{8}{2} + 7 = 11$	11	Yes

Therefore, if x = 8, LHS = RHS.

Hence, x = 8 is the solution to this equation.

(v). 2x + 4 = 3x

Here, LHS = 2x + 4 and RHS = 3x.

X	LHS	RHS	Is $LHS = RHS$
1	2(1) + 4 = 6	3(1) = 3	No

2	2(2) + 4 = 8	3(2) = 6	No	
3	2(3) + 4 = 10	3(3) = 9	No	
4	2(4) + 5 = 12	3(4)= 12	Yes	

Therefore, if x = 4, LHS = RHS.

Hence, x = 4 is the solution to this equation.

(vi). $\frac{x}{4} = 12$

Here, LHS = $\frac{x}{4}$ and RHS = 12.

Since RHS is a natural number, $\frac{x}{4}$ must also be a natural number, so we must substitute values of x that are multiples of 4.

X	LHS	RHS	Is LHS = RHS
16	$\frac{16}{4} = 4$	12	NO
20	$\frac{20}{4} = 5$	12	NO
24	$\frac{24}{4} = 6$	12	NO
28	$\frac{28}{4} = 7$	12	NO
32	$\frac{32}{4} = 8$	12	NO
36	$\frac{36}{4} = 9$	12	NO
40	$\frac{40}{4} = 10$	12	NO
44	$\frac{44}{4} = 11$	12	NO
48	$\frac{48}{4} = 12$	12	Yes

Therefore, if x = 48, LHS = RHS.

Hence, x = 48 is the solution to this equation.

(vii).
$$\frac{15}{x} = 3$$

Here, LHS = $\frac{15}{x}$ and RHS = 3.

Since RHS is a natural number, $\frac{15}{x}$ must also be a natural number, so we must substitute values of x that are factors of 15.

x	LHS	RHS	Is LHS = RHS
1	$\frac{15}{1} = 15$	3	No
3	$\frac{15}{3} = 5$	3	No
5	$\frac{15}{5} = 3$	3	Yes

Therefore, if x = 5, LHS = RHS.

Hence, x = 5 is the solution to this equation.

(viii).
$$\frac{x}{18} = 20$$

Here, LHS = $\frac{x}{18}$ and RHS = 20.

Since RHS is a natural number, $\frac{x}{18}$ must also be a natural number, so we must substitute values of x that are multiples of 18.

X	LHS	RHS	Is LHS = RHS
324	$\frac{324}{18} = 18$	20	No
342	$\frac{342}{18} = 19$	20	No
360	$\frac{360}{18} = 20$	20	Yes

Therefore, if x = 360, LHS = RHS.

Hence, x = 360 is the solution to this equation.