RD SHARMA
Solutions
Class 7 Maths
Chapter 14
Ex 14.2

Q1. In Figure, line n is a transversal to line I and m. Identify the following:

- (i) Alternate and corresponding angles in Fig. 58 (i)
- (ii) Angles alternate to $\angle d$ and $\angle g$ and angles corresponding to $\angle RQF$ and angle alternate to $\angle PQE$ in Fig. 58 (ii)
- (iii) Angle alternate to $\angle PQR$, angle corresponding to $\angle RQF$ and angle alternate to $\angle PQE$ in Fig. 58 (iii)
- (iv) Pairs of interior and exterior angles on the same side of the transversal in Fig. 58 (iii)

Sol:

(i) Figure (i)

Corresponding angles:

∠EGB and ∠GHD

 $\angle HGB$ and $\angle FHD$

 $\angle EGA$ and $\angle GHC$

∠AGH and ∠CHF

The alternate angles are:

∠EGB and ∠CHF

∠HGB and ∠CHG

∠EGA and ∠FHD

∠AGH and ∠GHD

(ii) Figure (ii)

The alternate angle to $\angle d$ is $\angle e$.

The alternate angle to $\angle g$ is $\angle b$.

The corresponding angle to $\angle f$ is $\angle c$.

The corresponding angle to $\angle h$ is $\angle a$.

(iii) Figure (iii)

Angle alternate to $\angle PQR$ is $\angle QRA$.

Angle corresponding to $\angle RQF$ is $\angle ARB$.

Angle alternate to $\angle POE$ is $\angle ARB$.

(iv) Figure (ii)

Pair of interior angles are

∠a is ∠e.

 $\angle d$ is $\angle f$.

Pair of exterior angles are

 $\angle b$ is $\angle h$.

∠c is ∠g.

Q2. In Figure, AB and CD are parallel lines intersected by a transversal PQ at L and M respectively, If $\angle CMQ = 60^{\circ}$, find all other angles in the figure.

Sol:

Corresponding angles :

$$\angle ALM = \angle CMQ = 60^{\circ}$$

Vertically opposite angles:

$$\angle LMD = \angle CMQ = 60^{\circ}$$

Vertically opposite angles:

$$\angle ALM = \angle PLB = 60^{\circ}$$

Here,

 $\angle CMQ + \angle QMD = 180^{\circ}$ are the linear pair

$$=> \angle QMD = 180^{\circ} - 60^{\circ}$$

 $=120^{\circ}$

Corresponding angles:

$$\angle QMD = \angle MLB = 120^{\circ}$$

Vertically opposite angles

$$\angle QMD = \angle CML = 120^{\circ}$$

Vertically opposite angles

$$\angle$$
MLB = \angle ALP = 120°

Q3. In Fig. 60, AB and CD are parallel lines intersected by a transversal by a transversal PQ at L and M respectively. If $\angle LMD = 35^{\circ}$ find $\angle ALM$ and $\angle PLA$.

Given that,

 $\angle LMD = 35^{\circ}$

 $\angle LMD$ and $\angle LMC$ is a linear pair

$$\angle LMD + \angle LMC = 180^{\circ}$$

$$\Rightarrow$$
 $\angle LMC = 180^{\circ} - 35^{\circ}$

= 145°

So,
$$\angle LMC = \angle PLA = 145^{\circ}$$

And,
$$\angle LMC = \angle MLB = 145^{\circ}$$

 $\angle MLB$ and $\angle ALM$ is a linear pair

$$\angle MLB + \angle ALM = 180^{\circ}$$

$$=>$$
 $\angle ALM = 180^{\circ} - 145^{\circ}$

$$\Rightarrow$$
 $\angle ALM = 35^{\circ}$

Therefore, $\angle ALM = 35^{\circ}$, $\angle PLA = 145^{\circ}$.

Q4. The line n is transversal to line I and m in Fig. 61. Identify the angle alternate to $\angle 13$, angle corresponding to $\angle 15$, and angle alternate to $\angle 15$.

Given that, $1 \parallel m$

So,

The angle alternate to $\angle 13$ is $\angle 7$

The angle corresponding to $\angle 15$ is $\angle 7$

The angle alternate to $\angle 15$ is $\angle 5$

Q5. In Fig. 62, line l \parallel m and n is transversal. If $\angle 1 = 40^{\circ}$, find all the angles and check that all corresponding angles and alternate angles are equal.

Sol:

Given that,

 $\angle 1 = 40^{\circ}$

 $\angle 1$ and $\angle 2$ is a linear pair

 $=> \angle 1 + \angle 2 = 180^{\circ}$

 $=> \angle 2 = 180^{\circ} - 40^{\circ}$

=> ∠2 = 140°

 $\angle 2$ and $\angle 6$ is a corresponding angle pair

So,
$$\angle 6 = 140^{\circ}$$

 $\angle 6$ and $\angle 5$ is a linear pair

$$=> \angle 6 + \angle 5 = 180^{\circ}$$

$$=> \angle 5 = 180^{\circ} - 140^{\circ}$$

$$=> \angle 5 = 40^{\circ}$$

 $\angle 3$ and $\angle 5$ are alternative interior angles

So,
$$\angle 5 = \angle 3 = 40^{\circ}$$

 $\angle 3$ and $\angle 4$ is a linear pair

$$=> \angle 3 + \angle 4 = 180^{\circ}$$

$$=> \angle 4 = 180^{\circ} - 40^{\circ}$$

$$=> \angle 4 = 140^{\circ}$$

 $\angle 4$ and $\angle 6$ are a pair interior angles

So,
$$\angle 4 = \angle 6 = 140^{\circ}$$

 $\angle 3$ and $\angle 7$ are pair of corresponding angles

So,
$$\angle 3 = \angle 7 = 40^{\circ}$$

Therefore, $\angle 7 = 40^{\circ}$

 $\angle 4$ and $\angle 8$ are a pair corresponding angles

So,
$$\angle 4 = \angle 8 = 140^{\circ}$$

Therefore, $\angle 8 = 140^{\circ}$

So,
$$\angle 1 = 40^{\circ}$$
, $\angle 2 = 140^{\circ}$, $\angle 3 = 40^{\circ}$, $\angle 4 = 140^{\circ}$, $\angle 5 = 40^{\circ}$, $\angle 6 = 140^{\circ}$, $\angle 7 = 40^{\circ}$, $\angle 8 = 140^{\circ}$

Q6. In Fig. 63, line l \parallel m and a transversal n cuts them P and Q respectively. If $\angle 1 = 75^{\circ}$, find all other angles.

Sol:

Given that, $1 \parallel m$ and $\angle 1 = 75^{\circ}$

We know that,

$$\angle 1 + \angle 2 = 180^{\circ}$$
 — (linear pair)

$$=> \angle 2 = 180^{\circ} - 75^{\circ}$$

$$=> \angle 2 = 105^{\circ}$$

here, $\angle 1 = \angle 5 = 75^{\circ}$ are corresponding angles

 $\angle 5 = \angle 7 = 75^{\circ}$ are vertically opposite angles.

 $\angle 2 = \angle 6 = 105^{\circ}$ are corresponding angles

 $\angle 6 = \angle 8 = 105^{\circ}$ are vertically opposite angles

 $\angle 2 = \angle 4 = 105^{\circ}$ are vertically opposite angles

 $S_0, \angle 1 = 75^{\circ}, \angle 2 = 105^{\circ}, \angle 3 = 75^{\circ}, \angle 4 = 105^{\circ}, \angle 5 = 75^{\circ}, \angle 6 = 105^{\circ}, \angle 7 = 75^{\circ}, \angle 8 = 105^{\circ}$

Q7. In Fig. 64, AB \parallel CD and a transversal PQ cuts at L and M respectively. If \angle QMD = 100° , find all the other angles.

Sol:

Given that, AB \parallel CD and \angle QMD = 100°

We know that,

Linear pair,

$$\angle QMD + \angle QMC = 180^{\circ}$$

$$\Rightarrow$$
 \angle QMC = 180° \angle QMD

$$=> \angle QMC = 180^{\circ} - 100^{\circ}$$

$$\Rightarrow \angle QMC = 80^{\circ}$$

Corresponding angles,

$$\angle DMQ = \angle BLM = 100^{\circ}$$

$$\angle$$
CMQ = \angle ALM = 80°

Vertically Opposite angles,

$$\angle DMQ = \angle CML = 100^{\circ}$$

$$\angle BLM = \angle PLA = 100^{\circ}$$

$$\angle$$
CMQ = \angle DML = 80°

$$\angle ALM = \angle PLB = 80^{\circ}$$

Q8. In Fig. 65, $l \parallel m$ and $p \parallel q$. Find the values of x,y,z,t.

Give that , angle is 80°

 $\angle z$ and 80° are vertically opposite angles

 \Rightarrow $\angle z = 80^{\circ}$

 $\angle z$ and $\angle t$ are corresponding angles

 \Rightarrow $\angle z = \angle t$

Therefore, $\angle t = 80^{\circ}$

 $\angle z$ and $\angle y$ are corresponding angles

 \Rightarrow $\angle z = \angle y$

Therefore, $\angle y = 80^{\circ}$

 $\angle x$ and $\angle y$ are corresponding angles

 $\Rightarrow \angle y = \angle x$

Therefore, $\angle x = 80^{\circ}$

Q9. In Fig. 66, line I || m, $\angle 1$ = 120° and $\angle 2$ = 100° , find out $\angle 3$ and $\angle 4$.

Given that, $\angle 1 = 120^{\circ}$ and $\angle 2 = 100^{\circ}$

 $\angle 1$ and $\angle 5$ a linear pair

$$=> \angle 1 + \angle 5 = 180^{\circ}$$

$$=> \angle 5 = 180^{\circ} - 120^{\circ}$$

Therefore, $\angle 5 = 60^{\circ}$

 $\angle 2$ and $\angle 6$ are corresponding angles

$$=> \angle 2 = \angle 6 = 100^{\circ}$$

Therefore, $\angle 6 = 100^{\circ}$

 $\angle 6$ and $\angle 3$ a linear pair

$$=> \angle 6 + \angle 3 = 180^{\circ}$$

$$=> \angle 3 = 180^{\circ} - 100^{\circ}$$

Therefore, $\angle 3 = 80^{\circ}$

By, angles of sum property

$$=> \angle 3 + \angle 5 + \angle 4 = 180^{\circ}$$

$$=> \angle 4 = 180^{\circ} - 80^{\circ} - 60^{\circ}$$

$$=> \angle 4 = 40^{\circ}$$

Therefore, $\angle 4 = 40^{\circ}$

Q10. In Fig. 67, 1 || m. Find the values of a,b,c,d. Give reasons.

Sol:

Given that, $l \parallel m$

Vertically opposite angles,

$$\angle a = 110^{\circ}$$

Corresponding angles,

$$\angle a = \angle b$$

Therefore, $\angle b = 110^{\circ}$

Vertically opposite angle,

 $\angle d = 85^{\circ}$

Corresponding angles,

 $\angle d = \angle c$

Therefore, $\angle c = 85^{\circ}$

Hence, $\angle a = 110^{\circ}$, $\angle b = 110^{\circ}$, $\angle c = 85^{\circ}$, $\angle d = 85^{\circ}$

Q11. In Fig. 68, AB \parallel CD and $\angle 1$ and $\angle 2$ are in the ratio of 3 : 2. Determine all angles from 1 to 8.

Sol:

Given that,

 $\angle 1$ and $\angle 2$ are 3 : 2

Let us take the angles as 3x, 2x

 $\angle 1$ and $\angle 2$ are linear pair

$$=> 3x + 2x = 180^{\circ}$$

$$=> 5x = 180^{\circ}$$

$$=> x = \frac{180^{\circ}}{5}$$

$$=> x = 36^{\circ}$$

Therefore, $\angle 1 = 3x = 3(36) = 108^{\circ}$

$$\angle 2 = 2x = 2(36) = 72^{\circ}$$

 $\angle 1$ and $\angle 5$ are corresponding angles

Therefore, $\angle 5 = 108^{\circ}$

 $\angle 2$ and $\angle 6$ are corresponding angles

Therefore, $\angle 6 = 72^{\circ}$

 $\angle 4$ and $\angle 6$ are alternate pair of angles

Therefore, $\angle 4 = 72^{\circ}$

 $\angle 3$ and $\angle 5$ are alternate pair of angles

$$=> \angle 3 = \angle 5 = 108^{\circ}$$

Therefore, $\angle 5 = 108^{\circ}$

 $\angle 2$ and $\angle 8$ are alternate exterior of angles

$$\Rightarrow$$
 $\angle 2 = \angle 8 = 72^{\circ}$

Therefore, $\angle 8 = 72^{\circ}$

 $\angle 1$ and $\angle 7$ are alternate exterior of angles

Therefore, $\angle 7 = 108^{\circ}$

Hence, $\angle 1 = 108^{\circ}$, $\angle 2 = 72^{\circ}$, $\angle 3 = 108^{\circ}$, $\angle 4 = 72^{\circ}$, $\angle 5 = 108^{\circ}$, $\angle 6 = 72^{\circ}$, $\angle 7 = 108^{\circ}$, $\angle 8 = 72^{\circ}$

Q12. In Fig. 69 l, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.

Sol:

Linear pair,

$$=> \angle 4 + 60^{\circ} = 180^{\circ}$$

$$=> \angle 4 = 180^{\circ} - 60^{\circ}$$

 $\angle 4$ and $\angle 1$ are corresponding angles

$$=> \angle 4 = \angle 1$$

Therefore, $\angle 1 = 120^{\circ}$

 $\angle 1$ and $\angle 2$ are corresponding angles

Therefore, $\angle 2 = 120^{\circ}$

 $\angle 2$ and $\angle 3$ are vertically opposite angles

$$\Rightarrow$$
 $\angle 2 = \angle 3$

Therefore, $\angle 3 = 120^{\circ}$

Given that,

Corresponding angles :

$$\angle 1 = \angle 3$$

$$=> \angle 1 = 60^{\circ}$$

Therefore, $\angle 3 = 60^{\circ}$

 $\angle 3$ and $\angle 4$ are linear pair

$$=> \angle 3 + \angle 4 = 180^{\circ}$$

$$=> \angle 4 = 180^{\circ} - 60^{\circ}$$

 $\angle 3$ and $\angle 4$ are alternative interior angles

Therefore, $\angle 2 = 120^{\circ}$

Q14. In Fig. 71, if AB \parallel CD and CD \parallel EF, find \angle ACE.

Given that,

Sum of the interior angles,

$$\Rightarrow$$
 \angle CEF + \angle ECD = 180°

$$=> 130^{\circ} + \angle ECD = 180^{\circ}$$

$$=> \angle ECD = 180^{\circ} - 130^{\circ}$$

$$\Rightarrow$$
 $\angle ECD = 50^{\circ}$

We know that alternate angles are equal

$$\Rightarrow \angle BAC = \angle ACD$$

$$\Rightarrow \angle BAC = \angle ECD + \angle ACE$$

$$\Rightarrow$$
 $\angle ACE = 70^{\circ} - 50^{\circ}$

$$\Rightarrow$$
 $\angle ACE = 20^{\circ}$

Therefore, $\angle ACE = 20^{\circ}$

Q15. In Fig. 72, if $1 \parallel m$, $n \parallel p$ and $\angle 1 = 85^{\circ}$, find $\angle 2$.

Sol:

Given that, $\angle 1 = 85^{\circ}$

 $\angle 1$ and $\angle 3$ are corresponding angles

So,
$$\angle 1 = \angle 3$$

Sum of the interior angles

$$=> \angle 3 + \angle 2 = 180^{\circ}$$

$$=> \angle 2 = 180^{\circ} - 85^{\circ}$$

$$=> \angle 2 = 95^{\circ}$$

We know that if the alternate exterior angles of the two lines are equal, then the lines are parallel.

Here, $\, \angle 1$ and $\angle 7$ are alternate exterior angles , but they are not equal

 \Rightarrow $\angle 1 \neq \angle 7 \neq 80^{\circ}$

Q17. In Fig. 74, a transversal n cuts two lines I and m such that $\angle 2 = 65^{\circ}$ and $\angle 8 = 65^{\circ}$. Are the lines parallel?

Sol:

vertically opposite angels,

$$\angle 2 = \angle 3 = 65^{\circ}$$

$$\angle 8 = \angle 6 = 65^{\circ}$$

Therefore, $\angle 3 = \angle 6$

Hence , $l \parallel m$

We know that,

$$\angle ACD = \angle ACE + \angle ECD$$

$$=> \angle ACD = 35^{\circ} + 22^{\circ}$$

$$\Rightarrow$$
 \angle ACD = 57° = \angle BAC

Thus, lines BA and CD are intersected by the line AC such that, $\angle ACD = \angle BAC$

So, the alternate angles are equal

Therefore, AB || CD _____1

Now,

$$\angle$$
ECD + \angle CEF = 35° + 45° = 180°

This, shows that sum of the angles of the interior angles on the same side of the transversal CE is 180 degrees

So, they are supplementary angles

Therefore, EF || CD _______2

From eq 1 and 2 $\,$

We can say that, AB \parallel EF

Q19. In Fig. 76, AB || CD. Find the values of x,y,z.

Linear pair,

$$=> \angle x + 125^{\circ} = 180^{\circ}$$

$$=> \angle x = 180^{\circ} - 125^{\circ}$$

$$\Rightarrow$$
 $\angle x = 55^{\circ}$

Corresponding angles

$$\Rightarrow$$
 $\angle z = 125^{\circ}$

Adjacent interior angles

$$\Rightarrow$$
 $\angle x + \angle z = 180^{\circ}$

$$=> \angle x + 125^{\circ} = 180^{\circ}$$

$$=> \angle x = 180^{\circ} - 125^{\circ}$$

$$=> \angle x = 55^{\circ}$$

Adjacent interior angles

$$\Rightarrow$$
 $\angle x + \angle y = 180^{\circ}$

$$=> \angle y + 55^{\circ} = 180^{\circ}$$

$$=> \angle y = 180^{\circ} - 55^{\circ}$$

$$=> \angle y = 125^{\circ}$$

Q20. In Fig. 77, find out $\angle PXR$, if PQ || RS.

Sol:

We need to find $\angle P\,XR$

$$\angle XRS = 50^{\circ}$$

$$\angle XPR = 70^{\circ}$$

Given, that PQ || RS

$$\angle PXR = \angle XRS + \angle XPR$$

$$\angle PXR = 50^{\circ} + 70^{\circ}$$

$$\angle PXR = 120^{\circ}$$

Therefore, $\angle PXR = 120^{\circ}$

Q21. In Fig. 78, we have

(i) $\angle MLY = 2\angle LMQ$

Sol:

 $\angle MLY$ and $\angle LMQ$ are interior angles

$$=> \angle MLY + \angle LMQ = 180^{\circ}$$

$$\Rightarrow 2\angle LMQ + \angle LMQ = 180^{\circ}$$

$$\Rightarrow 3\angle LMQ = 180^{\circ}$$

$$=> \angle LMQ = \frac{180^{\circ}}{3}$$

$$\Rightarrow$$
 $\angle LMQ = 60^{\circ}$

(ii)
$$\angle XLM = (2x - 10)^{\circ}$$
 and $\angle LMQ = (x + 30)^{\circ}$, find x.

Sol:

$$\angle XLM = (2x - 10)^{\circ}$$
 and $\angle LMQ = (x + 30)^{\circ}$

 $\angle XLM$ and $\angle LMQ$ are alternate interior angles

$$\Rightarrow$$
 $\angle XLM = \angle LMQ$

$$=> (2x - 10)^{\circ} = (x + 30)^{\circ}$$

$$=> 2x - x = 30^{\circ} + 10^{\circ}$$

$$\Rightarrow$$
 $_{X} = 40^{\circ}$

Therefore, $x = 40^{\circ}$

(iii)
$$\angle XLM = \angle PML$$
, find $\angle ALY$

Sol:

$$\angle XLM = \angle PML$$

Sum of interior angles is 180 degrees

$$\Rightarrow$$
 $\angle XLM + \angle PML = 180^{\circ}$

$$\Rightarrow$$
 $\angle XLM + \angle XLM = 180^{\circ}$

$$\Rightarrow$$
 2 \angle XLM = 180°

$$\Rightarrow \angle XLM = \frac{180^{\circ}}{2}$$

$$\Rightarrow$$
 $\angle XLM = 90^{\circ}$

 $\angle XLM$ and $\angle ALY$ are vertically opposite angles

Therefore, $\angle ALY = 90^{\circ}$

(iv)
$$\angle ALY = (2x - 15)^{\circ}$$
, $\angle LMQ = (x + 40)^{\circ}$, find x.

Sol

 $\angle ALY$ and $\angle LMQ$ are corresponding angles

$$\Rightarrow$$
 $\angle ALY = \angle LMQ$

$$=> (2x - 15)^{\circ} = (x + 40)^{\circ}$$

$$=> 2x - x = 40^{\circ} + 15^{\circ}$$

$$=> x = 55^{\circ}$$

Therefore, $x = 55^{\circ}$

Q22. In Fig. 79, DE \parallel BC. Find the values of x and y.

Sol:

We know that, ABC, DAB are alternate interior angles

$$\angle ABC = \angle DAB$$

So,
$$x = 40^{\circ}$$

And ACB, EAC are alternate interior angles

$$\angle ACB = \angle EAC$$

So, $y = 40^{\circ}$

Q23. In Fig. 80, line AC || line DE and $\angle ABD = 32^{\circ}$, Find out the angles x and y if $\angle E = 122^{\circ}$.

∠BDE = ∠ABD =
$$32^{\circ}$$
 – alternate interior angles
=> ∠BDE + y = 180° – linear pair
=> 32° + y = 180°
=> y = 180° – 32°
=> y = 148°
∠ABE = ∠E = 32° – alternate interior angles
=> ∠ABD + ∠DBE = 122°

$$=> 32^{\circ} + x = 122^{\circ}$$

$$=> x = 122^{\circ} - 32^{\circ}$$

$$=> x = 90^{\circ}$$

Q24. In Fig. 81, side BC of \triangle ABC has been produced to D and CE || BA. If \angle ABC = 65°, \angle BAC = 55°, find \angle ACE, \angle ECD, \angle ACD.

Sol:

Corresponding angles,

$$\angle ABC = \angle ECD = 55^{\circ}$$

Alternate interior angles,

$$\angle BAC = \angle ACE = 65^{\circ}$$

Now,
$$\angle ACD = \angle ACE + \angle ECD$$

$$=> \angle ACD = 55^{\circ} + 65^{\circ}$$

 $=120^{\circ}$

Q25. In Fig. 82, line CA \perp AB \parallel line CR and line PR \parallel line BD. Find \angle X, \angle y, \angle Z.

Given that, $CA \perp AB$

$$\Rightarrow$$
 $\angle CAB = 90^{\circ}$

$$\Rightarrow$$
 $\angle AQP = 20^{\circ}$

By, angle of sum property

In ΔAPD

$$\Rightarrow$$
 $\angle CAB + \angle AQP + \angle APQ = 180^{\circ}$

$$=> \angle APQ = 180^{\circ} - 90^{\circ} - 20^{\circ}$$

$$\Rightarrow$$
 $\angle APQ = 70^{\circ}$

y and $\angle APQ$ are corresponding angles

$$\Rightarrow$$
 y = $\angle APQ = 70^{\circ}$

 $\angle AP\,Q$ and $\angle z$ are interior angles

$$\Rightarrow$$
 $\angle APQ + \angle z = 180^{\circ}$

$$=> \angle z = 180^{\circ} - 70^{\circ}$$

$$=> \angle z = 110^{\circ}$$

Q26. In Fig. 83, PQ \parallel RS. Find the value of x.

Given,

Linear pair,

$$\angle RCD + \angle RCB = 180^{\circ}$$

$$=> \angle RCB = 180^{\circ} - 130^{\circ}$$

 $=50^{\circ}$

In ΔABC,

$$\angle BAC + \angle ABC + \angle BCA = 180^{\circ}$$

By, angle sum property

$$=> \angle BAC = 180^{\circ} - 55^{\circ} - 50^{\circ}$$

$$\Rightarrow \angle BAC = 75^{\circ}$$

Q27. In Fig. 84, AB \parallel CD and AE \parallel CF, \angle F CG = 90 $^{\circ}$ and \angle BAC = 120 $^{\circ}$. Find the value of x, y and z.

Sol:

Alternate interior angle

$$\angle BAC = \angle ACG = 120^{\circ}$$

$$\Rightarrow$$
 $\angle ACF + \angle FCG = 120^{\circ}$

So,
$$\angle ACF = 120^{\circ} - 90^{\circ}$$

 $=30^{\circ}$

Linear pair,

$$\angle DCA + \angle ACG = 180^{\circ}$$

$$=> \angle x = 180^{\circ} - 120^{\circ}$$

 $=60^{\circ}$

$$\angle BAC + \angle BAE + \angle EAC = 360^{\circ}$$

$$\angle CAE = 360^{\circ} - 120^{\circ} - (60^{\circ} + 30^{\circ})$$

= 150°

Q28. In Fig. 85, AB \parallel CD and AC \parallel BD. Find the values of x,y,z.

Sol:

Since, AC \parallel BD and CD \parallel AB, ABCD is a parallelogram

Adjacent angles of parallelogram,

$$\angle CAD + \angle ACD = 180^{\circ}$$

$$=> \angle ACD = 180^{\circ} - 65^{\circ}$$

Opposite angles of parallelogram,

$$\Rightarrow$$
 $\angle CAD = \angle CDB = 65^{\circ}$

$$\Rightarrow$$
 \angle ACD $=$ \angle DBA $=$ 115 $^{\circ}$

(ii)

here,

AC \parallel BD and CD \parallel AB

Alternate interior angles,

$$\angle DCA = x = 40^{\circ}$$

$$\angle DAB = y = 35^{\circ}$$

Q29. In Fig. 86, state which lines are parallel and why?

Sol

Let, F be the point of intersection of the line CD and the line passing through point E.

Here, $\angle ACD$ and $\angle CDE$ are alternate and equal angles.

So, $\angle ACD = \angle CDE = 100^{\circ}$

Therefore, AC \parallel EF

Q30. In Fig. 87, the corresponding arms of $\angle ABC$ and $\angle DEF$ are parallel. If $\angle ABC = 75^{\circ}$, find $\angle DEF$.

Sol:

Let, G be the point of intersection of the lines BC and DE

Since, AB || DE and BC || EF

The corresponding angles,

 \Rightarrow \angle ABC = \angle DGC = \angle DEF = 100°