RD SHARMA
Solutions
Class 7 Maths
Chapter 15
Ex 15.2

Q1. Two angles of a triangle are of measures 150° and 30° . Find the measure of the third angle.

Let the third angle be x

Sum of all the angles of a triangle= $180^{\circ}\,$

$$105^{\circ} + 30^{\circ} + x = 180^{\circ}$$

$$135^{\circ} + x = 180^{\circ}$$

$$x=180^{\circ}-135^{\circ}$$

$$x=45^{\circ}$$

Therefore the third angle is 45°

Q2. One of the angles of a triangle is 130° , and the other two angles are equal What is the measure of each of these equal angles?

Let the second and third angle be x

Sum of all the angles of a triangle= 180°

$$130^{\circ} + x + x = 180^{\circ}$$

$$130^{\circ} + 2x = 180^{\circ}$$

$$2x=180^{\circ}-130^{\circ}$$

$$2x=50^{\circ}$$

$$\chi = \frac{50}{2}$$

Therefore the two other angles are 25° each

Q3. The three angles of a triangle are equal to one another. What is the measure of each of the angles?

Let the each angle be x

Sum of all the angles of a triangle= 180°

$$x+x+x=180^{\circ}$$

$$3x = 180^{\circ}$$

$$\chi = \frac{180}{3}$$

Therefore angle is 60° each

Q4. If the angles of a triangle are in the ratio 1:2:3, determine three angles.

If angles of the triangle are in the ratio 1:2:3 then take first angle as 'x', second angle as '2x' and third angle as '3x' Sum of all the angles of a triangle= 180°

$$x+2x+3x=180^{\circ}$$

$$6x = 180^{\circ}$$

$$\chi = \frac{180}{6}$$

$$x=30^{\circ}$$

$$2x=30^{\circ} \times 2=60^{\circ}$$

$$3x=30^{\circ} \times 3=90^{\circ}$$

Therefore the first angle is 30° , second angle is 60° and third angle is 90°

Q5. The angles of a triangle are $(x-40)^\circ$, $(x-20)^\circ$ and $(\frac{1}{2}-10)^\circ$. Find the value of x.

Sum of all the angles of a triangle= 180°

$$(x-40)^{\circ} + (x-20)^{\circ} + (\frac{x}{2}-10)^{\circ} = 180^{\circ}$$

$$x + x + \frac{x}{2} - 40^{\circ} - 20^{\circ} - 10^{\circ} = 180^{\circ}$$

$$x + x + \frac{x}{2} - 70^{\circ} = 180^{\circ}$$

$$x + x + \frac{x}{2} = 180^{\circ} + 70^{\circ}$$

$$\frac{5x}{2} = 250^{\circ}$$

$$x = \frac{2}{5} \times 250^{\circ}$$

$$x = 100^{\circ}$$

Hence we can conclude that x is equal to 100°

Q6. The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10° . Find the three angles.

Let the first angle be x

Second angle be $x+10^{\circ}$

Third angle be x+10°+ 10°

Sum of all the angles of a triangle= 180°

$$x + x + 10^{\circ} + x + 10^{\circ} + 10^{\circ} = 180^{\circ}$$

3x+30=180 3x=180-30 3x=150 $x=\frac{150}{3}$ $x=50^{\circ}$ First angle is 50

Second angle $x+10^{\circ}=50+10=60^{\circ}$

Third angle $x+10^{\circ}+10^{\circ}=50+10+10=70^{\circ}$

Q7. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° . Determine all the angles of the triangle

Let the first and second angle be x

The third angle is greater than the first and second by 30° =x+ 30°

The first and the second angles are equal

Sum of all the angles of a triangle= 180°

 $x+x+x+30^{\circ} = 180^{\circ}$

3x+30=180

3x=180-30

3x=150

 $\chi = \frac{150}{3}$

 $x=50^{\circ}$

Third angle= $x+30^{\circ}=50^{\circ}+30^{\circ}=80^{\circ}$

The first and the second angle is 50° and the third angle is 80°

Q8. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

One angle of a triangle is equal to the sum of the other two

x=y+z

Let the measure of angles be x,y,z

 $x+y+z=180^{\circ}$

 $x+x=180^{\circ}$

 $2x = 180^{\circ}$

$$\chi = \frac{180^{\circ}}{2}$$

$$x=90^{\circ}$$

If one angle is 90° then the given triangle is a right angled triangle

Q9. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Each angle of a triangle is less than the sum of the other two

Measure of angles be x,y and z

x>y+z

y<x+z

z<x+y

Therefore triangle is an acute triangle

Q10. In each of the following, the measures of three angles are given. State in which cases the angles can possibly be those of a triangle:

(i)
$$63^{\circ}$$
, 37° , 80°

(iii)
$$59^{\circ}$$
, 72° , 61°

(iv)
$$45^{\circ}$$
, 45° , 90°

(v)
$$30^{\circ}$$
, 20° , 125°

(i)
$$63^{\circ}$$
, 37° , 80° = 180°

Angles form a triangle

(ii)
$$45^{\circ}$$
, 61° , 73° is not equal to 180°

Therefore not a triangle

(iii)
$$59^\circ$$
 , 72° , 61° is not equal to 180°

Therefore not a triangle

(iv)
$$45^{\circ}$$
, 45° , 90° = 180

Angles form a triangle

(v)
$$30^{\circ}$$
, 20° , 125° is not equal to 180°

Q11. The angles of a triangle are in the ratio 3: 4:5. Find the smallest angle

Given that

Angles of a triangle are in the ratio: 3: 4: 5

Measure of the angles be 3x, 4x, 5x

Sum of the angles of a triangle= 180°

 $3x+4x+5x=180^{\circ}$

 $12x=180^{\circ}$

$$\chi = \frac{180^{\circ}}{12}$$

$$x=15^{\circ}$$

Smallest angle=3x

$$=3 \times 15^{\circ}$$

Q12. Two acute angles of a right triangle are equal. Find the two angles.

Given acute angles of a right angled triangle are equal

Right triangle: whose one of the angle is a right angle

Measured angle be $x_1x_190^{\circ}$

$$x+x+180^{\circ} = 180^{\circ}$$

$$2x=90^{\circ}$$

$$\chi = \frac{90^{\circ}}{2}$$

$$x=45^{\circ}$$

The two angles are 45° and 45°

Q13. One angle of a triangle is greater than the sum of the other two. What can you say about the measure of this angle? What type of a triangle is this?

Angle of a triangle is greater than the sum of the other two

Measure of the angles be x,y,z

x>y+z or

y>x+z or

Z>X+y

x or y or $z>90^{\circ}$ which is obtuse

Therefore triangle is an obtuse angle

Q14. AC, AD and AE are joined. Find $\angle FAB + \angle ABC + \angle BCD + \angle CDE + \angle DEF + \angle EFA$

 $\angle FAB + \angle ABC + \angle BCD + \angle CDE + \angle DEF + \angle EFA$ We know that sum of the angles of a triangle is 180°

Therefore in $\triangle ABC$, we have

$$\angle CAB + \angle ABC + \angle BCA = 180^{\circ} - (i)$$

In $\triangle ACD$, we have

$$\angle DAC + \angle ACD + \angle CDA = 180^{\circ}$$
 –(ii)

In $\triangle ADE$, we have

$$\angle EAD + \angle ADE + \angle DEA = 180^{\circ} - (iii)$$

In $\triangle AEF$, we have

$$\angle FAE + \angle AEF + \angle EFA = 180^{\circ} - (iv)$$

Adding (i),(ii),(iii),(iv) we get

Therefore $\angle FAB + \angle ABC + \angle BCD + \angle CDE + \angle DEF + \angle EFA = 720^{\circ}$

Q15.Find x,y,z(whichever is required) from the figures given below

(i)

In $\triangle ABC$ and $\triangle ADE$ we have :

 $\angle ADE = \angle ABC$ (corresponding angles)

 $x=40^{\circ}$

 $\angle AED = \angle ACB$ (corresponding angles)

y=30°

We know that the sum of all the three angles of a triangle is equal to $180\ensuremath{^\circ}$

 $x + y + z = 180^{\circ}$ (Angles of A ADE)

Which means : $40^{\circ} + 30^{\circ} + z = 180^{\circ}$

 $z=180^{\circ}-70^{\circ}$

 $z=110^{\circ}$

Therefore, we can conclude that the three angles of the given triangle are 40° , 30° and 110° .

(ii) We can see that in $\triangle ADC$, $\angle ADC$ is equal to 90° .

 $(\triangle ADC)$ is a right triangle

We also know that the sum of all the angles of a triangle is equal to 180° .

Which means : $45^{\circ} + 90^{\circ} + y = 180^{\circ}$ (Sum of the angles of $\triangle ADC$)

$$135^{\circ} + y = 180^{\circ}$$

$$y = 180^{\circ} - 135^{\circ}$$
.

 $y = 45^{\circ}$.

We can also say that in $\triangle ABC$, $\angle ABC + \angle ACB + \angle BAC$ is equal to 180° .

(Sum of the angles of A ABC)

$$40^{\circ} + y + (x + 45^{\circ}) = 180^{\circ}$$

$$40^{\circ} + 45^{\circ} + x + 45^{\circ} = 180^{\circ}$$

 $(y = 45^{\circ})$

$$x = 180^{\circ} - 130^{\circ}$$

 $x = 50^{\circ}$

Therefore, we can say that the required angles are 45° and 50° .

(iii) We know that the sum of all the angles of a triangle is equal to 180° .

Therefore, for $\triangle ABD$:

$$\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$$
 (Sum of the angles of $\triangle ABD$)

$$50^{\circ} + x + 50^{\circ} = 180^{\circ}$$

$$100^{\circ} + x = 180^{\circ}$$

$$x = 180^{\circ} - 100^{\circ}$$

$$x = 80^{\circ}$$

For $\triangle ABC$:

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$
 (Sum of the angles of $\triangle ABC$)

$$50^{\circ} + z + (50^{\circ} + 30^{\circ}) = 180^{\circ}$$

$$50^{\circ} + z + 50^{\circ} + 30^{\circ} = 180^{\circ}$$

$$z = 180^{\circ} - 130^{\circ}$$

$$z = 50^{\circ}$$

Using the same argument for $\triangle ADC$:

$$\angle ADC + \angle ACD + \angle DAC = 180^{\circ}$$
 (Sum of the angles of $\triangle ADC$)

$$y + z + 30^{\circ} = 180^{\circ}$$

$$y + 50^{\circ} + 30^{\circ} = 180^{\circ} \quad (z = 50^{\circ})$$

$$y = 180^{\circ} - 80^{\circ}$$

$$y = 100^{\circ}$$

Therefore, we can conclude that the required angles are 80° , 50° and 100° .

(iv) In $\triangle ABC$ and $\triangle ADE$ we have :

$$\angle ADE = \angle ABC$$
 (Corresponding angles)

$$v = 50^{\circ}$$

Also,
$$\angle AED = \angle ACB$$
 (Corresponding angles)

$$z = 40^{\circ}$$

We know that the sum of all the three angles of a triangle is equal to 180° .

Which means : $x+50^{\circ} + 40^{\circ} = 180^{\circ}$ (Angles of $\triangle ADE$)

$$x = 180^{\circ} - 90^{\circ}$$

$$x = 90^{\circ}$$

Therefore, we can conclude that the required angles are 50° , 40° and 90° .

Q16. If one angle of a triangle is 60° and the other two angles are in the ratio 1 :2, find the angles

We know that one of the angles of the given triangle is 60° . (Given)

We also know that the other two angles of the triangle are in the ratio 1:2.

Let one of the other two angles be \boldsymbol{x} .

Therefore, the second one will be 2x.

We know that the sum of all the three angles of a triangle is equal to 180° .

$$60^{\circ}$$
 +x + 2x = 180°

$$3x = 180^{\circ} - 60^{\circ}$$

$$3x = 120^{\circ}$$

$$x = \frac{120^{\circ}}{3}$$

$$x = 40^{\circ}$$

$$2x = 2 \times 40$$

$$2x = 80^{\circ}$$

Hence, we can conclude that the required angles are 40° and 80° .

Q17. It one angle of a triangle is 100° and the other two angles are in the ratio 2 : 3. find the angles.

We know that one of the angles of the given triangle is 100° .

We also know that the other two angles are in the ratio 2:3.

Let one of the other two angles be 2x.

Therefore, the second angle will be 3x.

We know that the sum of all three angles of a triangle is 180° .

$$100^{\circ} + 2x + 3x = 180^{\circ}$$

$$5x = 180^{\circ} - 100^{\circ}$$

$$5x = 80^{\circ}$$

$$\chi = \frac{80^{\circ}}{5}$$

$$2x = 2 \times 16$$

$$2x = 32^{\circ}$$

$$3x = 3 \times 16$$

$$3x = 48^{\circ}$$

Thus, the required angles are 32° and 48° .

Q18. In $\triangle ABC$, if $3\angle A=4\angle B=6\angle C$, calculate the angles.

We know that for the given triangle, $3\angle A = 6\angle C$

$$\angle A = 2 \angle C - (i)$$

We also know that for the same triangle, $4\angle B = 6\angle C$

$$\angle \mathbf{B} = \frac{6}{4} \angle \mathbf{C} - (ii)$$

We know that the sum of all three angles of a triangle is 180° .

Therefore, we can say that:

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (Angles of $\triangle ABC$)–(iii)

On putting the values of $\angle A \ and \ \angle B$ in equation (iii), we get :

$$2\angle C + \frac{6}{4}\angle C + \angle C = 180^{\circ} \frac{18}{4} \text{ angle} C = 180^{\circ} \text{ angle} C = 40^{\circ}$$
 From equation (i), we have:

$$angleA = 2\angle C = 2 \times 40 \ angleA = 80^{\circ}$$

From equation (ii), we have:

angleB =
$$\frac{6}{4} \angle C = \frac{6}{4} \times 40^{\circ}$$
 angleB = 60° angleA = 80° , angleB = 60° , angleC = 40°

Therefore, the three angles of the given triangle are 80° , 60° , and 40° .

Q19. Is it possible to have a triangle, in which

(i) Two of the angles are right?

(ii) Two of the angles are obtuse?

(iii) Two of the angles are acute?

(iv) Each angle is less than 60° ?

(v) Each angle is greater than 60° ?

(vi) Each angle is equal to 60°

Give reasons in support of your answer in each case.

(i) No, because if there are two right angles in a triangle, then the third angle of the triangle must be zero, which is not possible.

(ii) No, because as we know that the sum of all three angles of a triangle is always 180° . If there are two obtuse angles, then their sum will be more than 180° , which is not possible in case of a triangle.

(iii) Yes, in right triangles and acute triangles, it is possible to have two acute angles.

(iv) No, because if each angle is less than 60° , then the sum of all three angles will be less than 180° , which is not possible in case of a triangle.

Proof:

Let the three angles of the triangle be $\angle A$, $\angle B$ and $\angle C$.

As per the given information,

$$\angle A < 60^{\circ}$$
 ... (i)

On adding (i), (ii) and (iii), we get:

$$\angle A + \angle B + \angle C < 60^{\circ} + 60^{\circ} + 60^{\circ}$$

$$\angle A + \angle B + \angle C < 180^{\circ}$$

We can see that the sum of all three angles is less than 180° , which is not possible for a triangle.

Hence, we can say that it is not possible for each angle of a triangle to be less than 60° .

(v) No, because if each angle is greater than 60° , then the sum of all three angles will be greater than 180° , which is not possible.

Proof:

Let the three angles of the triangle be $\angle A$, $\angle B$ and $\angle C$. As per the given information,

$$\angle A > 60^{\circ}$$
 ... (i)

On adding (i), (ii) and (iii), we get:

$$\angle A + \angle B + \angle C > 60^{\circ} + 60^{\circ} + 60^{\circ}$$

$$\angle A + \angle B + \angle C > 180^{\circ}$$

We can see that the sum of all three angles of the given triangle are greater than 180° , which is not possible for a triangle.

Hence, we can say that it is not possible for each angle of a triangle to be greater than 60° .

(vi) Yes, if each angle of the triangle is equal to 60° , then the sum of all three angles will be 180° , which is possible in case of a triangle.

Proof:

Let the three angles of the triangle be $\angle A$, $\angle B$ and $\angle C$. As per the given information,

$$\angle A = 60^{\circ}$$
 ... (i)

$$\angle C = 60^{\circ}$$
 ... (iii)

On adding (i), (ii) and (iii), we get:

$$\angle A + \angle B + \angle C = 60^{\circ} + 60^{\circ} + 60^{\circ}$$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

We can see that the sum of all three angles of the given triangle is equal to 180° , which is possible in case of a triangle. Hence, we can say that it is possible for each angle of a triangle to be equal to 60° .

Q20. In $\triangle ABC$, $\angle A=100^{\circ}$, AD bisects $\angle A$ and AD perpendicular BC. Find $\angle B$

Consider $\triangle ABD$

$$\angle BAD = \frac{100}{2}$$
 (AD bisects $\angle A$)

$$\angle ADB = 90^{\circ}$$
 (AD perpendicular to BC)

We know that the sum of all three angles of a triangle is 180° .

Thus.

$$\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$$
 (Sum of angles of $\triangle ABD$)

$$\angle ABD + 50^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\angle ABD = 180^{\circ} - 140^{\circ}$$

Q21. In $\triangle ABC$, $\angle A=50^\circ$, $\angle B=100^\circ$ and bisector of $\angle C$ meets AB in D. Find the angles of the triangles ADC and BDC

We know that the sum of all three angles of a triangle is equal to 180° .

Therefore, for the given $\triangle ABC$, we can say that :

$$\angle A$$
 + $\angle B$ + $\angle C$ = 180° (Sum of angles of $\triangle ABC$)

$$50^{\circ} + 70^{\circ} + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - 120^{\circ}$$

$$\angle ACD = \angle BCD = \frac{\angle C}{2}$$
 (CD bisects $\angle C$ and meets AB in D.)

$$\angle ACD = \angle BCD = \frac{60^{\circ}}{2} = 30^{\circ}$$

Using the same logic for the given $\triangle ACD$, we can say that :

$$\angle DAC + \angle ACD + \angle ADC = 180^{\circ}$$

$$\angle ADC = 180^{\circ} - 80^{\circ}$$

If we use the same logic for the given ΔBCD , we can say that

$$\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$$

$$70^{\circ} + 30^{\circ} + \angle BDC = 180^{\circ}$$

$$\angle BDC = 180^{\circ} - 100^{\circ}$$

$$\angle BDC = 80^{\circ}$$

Thus,

For $\triangle ADC$: $\angle A = 50^{\circ}$, $\angle D = 100^{\circ}$ $\angle C = 30^{\circ}$

$$\triangle BDC$$
: $\angle B = 70^{\circ}$, $\angle D = 80^{\circ}$ $\angle C = 30^{\circ}$

Q22. In $\triangle ABC$, $\angle A=60^{\circ}$, $\angle B=80^{\circ}$, and the bisectors of $\angle B$ and $\angle C$, meet at 0. Find

(i) ∠C

(ii) ∠BOC

We know that the sum of all three angles of a triangle is 180° .

Hence, for $\triangle ABC$, we can say that :

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (Sum of angles of $\triangle ABC$)

$$60^{\circ} + 80^{\circ} + \angle C = 180^{\circ}$$
.

$$\angle C = 180^{\circ} - 140^{\circ}$$

For $\triangle OBC$,

$$\angle OBC = \frac{\angle B}{2} = \frac{80^{\circ}}{2}$$
 (OB bisects $\angle B$)

$$\angle OBC = 40^{\circ}$$

$$\angle OCB = \frac{\angle C}{2} = \frac{40^{\circ}}{2}$$
 (OC bisects $\angle C$)

$$\angle OCB = 20^{\circ}$$

If we apply the above logic to this triangle, we can say that:

$$\angle OCB + \angle OBC + \angle BOC = 180^{\circ}$$
 (Sum of angles of $\triangle OBC$)

$$20^{\circ} + 40^{\circ} + \angle BOC = 180^{\circ}$$

∠BOC=120°

Q23. The bisectors of the acute angles of a right triangle meet at O. Find the angle at O between the two bisectors.

We know that the sum of all three angles of a triangle is $180^{\circ}.$

Hence, for $\triangle ABC$, we can say that :

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + 90^{\circ} + \angle C = 180^{\circ}$$

$$\angle A + \angle C = 180^{\circ} - 90^{\circ}$$

$$\angle A + \angle C = 90^{\circ}$$

For $\triangle OAC$:

$$\angle OAC = \frac{\angle A}{2}$$
 (OA bisects LA)

$$\angle OCA = \frac{\angle C}{2}$$
 (OC bisects LC)

On applying the above logic to $\triangle OAC$, we get :

$$\angle AOC + \angle OAC + \angle OCA = 180^{\circ}$$
 (Sum of angles of $\triangle AOC$)

$$\angle AOC + \frac{\angle A}{2} + \frac{\angle C}{2} = 180^{\circ}$$

$$\angle AOC + \frac{\angle A + \angle C}{2} = 180^{\circ}$$

$$\angle AOC + \frac{90^{\circ}}{2} = 180^{\circ}$$

$$\angle AOC = 180^{\circ} - 45^{\circ}$$

Q24. In $\triangle ABC$, $\angle A=50^\circ$ and BC is produced to a point D. The bisectors of $\angle ABC$ and $\angle ACD$ meet at E. Find $\angle E$.

In the given triangle,

 $\angle ACD = \angle A + \angle B$. (Exterior angle is equal to the sum of two opposite interior angles.)

We know that the sum of all three angles of a triangle is 180° .

Therefore, for the given triangle, we can say that :

$$\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$$
 (Sum of all angles of $\triangle ABC$)

$$\angle A + \angle B + \angle BCA = 180^{\circ}$$

$$\angle BCA=180^{\circ}-(\angle A+\angle B)$$

$$\angle ECA = \frac{\angle ACD}{2}$$
 (EC bisects $\angle ACD$)

$$\angle ECA = \frac{\angle A + \angle B}{2}$$
 ($\angle ACD = \angle A + \angle B$)

$$\angle EBC = \frac{\angle ABC}{2} = \frac{\angle B}{2} (EBbisects \angle ABC)$$

$$\angle ECB = \frac{\angle A + \angle B}{2} + 180^{\circ} - (\angle A + \angle B)$$

If we use the same logic for $\Delta EBC\,$, we can say that :

$$\angle EBC + \angle ECB + \angle BEC = 180^{\circ}$$
 (Sum of all angles of $\triangle EBC$)

$$\frac{\angle B}{2} + \frac{\angle A + \angle B}{2} + 180^{\circ} - (\angle A + \angle B) + \angle BEC = 180^{\circ} \angle BEC = \angle A + \angle B - (\frac{\angle A + \angle B}{2} - \frac{\angle B}{2})$$

$$\angle BEC = \frac{\angle A}{2} \angle BEC = \frac{50^{\circ}}{2} = 25^{\circ}$$

Q25. In $\triangle ABC$, $\angle B=60^\circ$, $\angle C=40^\circ$, AL perpendicular BC and AD bisects $\angle A$ such that L and D lie on side BC. Find $\angle LAD$

We know that the sum of all angles of a triangle is 180°

Therefore, for $\triangle ABC$, we can say that :

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Or,

$$\angle A + 60^{\circ} + 40^{\circ} = 180^{\circ}$$

$$\angle DAC = \frac{\angle A}{2}$$
 (AD bisects $\angle A$)

$$\angle DAC = \frac{80^{\circ}}{2}$$

If we use the above logic on $\triangle ADC$, we can say that :

$$\angle ADC + \angle DCA + \angle DAC = 180^{\circ}$$
 (Sum of all the angles of $\triangle ADC$)

$$\angle ADC + 40^{\circ} + 40^{\circ} = 180^{\circ}$$

$$\angle ADC = 180^{\circ} + 80^{\circ}$$

 $\angle ADC = \angle ALD + \angle LAD(Exterior angle is equal to the sum of two Interior opposite angles.)$

$$100^{\circ} = 90^{\circ} + \angle LAD$$
 (AL perpendicular toBC)

$$\angle LAD = 90^{\circ}$$

Q26. Line segments AB and CD intersect at 0 such that AC perpendicular DB. It $\angle CAB = 35^\circ$ and $\angle CDB = 55^\circ$. Find $\angle BOD$.

We know that AC parallel to BD and AB cuts AC and BD at A and B, respectively.

 $\angle CAB = \angle DBA$ (Alternate interior angles)

 $\angle DBA = 35^{\circ}$

We also know that the sum of all three angles of a triangle is 180° .

Hence, for $\triangle OBD$, we can say that :

 $\angle DBO + \angle ODB + \angle BOD = 180^{\circ}$

 $35^{\circ} + 55^{\circ} + \angle BOD = 180^{\circ} (\angle DBO = \angle DBA \text{ and } \angle ODB = \angle CDB)$

 $\angle BOD = 180^{\circ} - 90^{\circ}$

∠BOD = 90°

Q27. In Fig. 22, $\triangle ABC$ is right angled at A, Q and R are points on line BC and P is a point such that QP perpendicular to AC and RP perpendicular to AB. Find $\angle P$

In the given triangle, AC parallel to QP and BR cuts AC and QP at C and Q, respectively.

 $\angle QCA = \angle CQP$ (Alternate interior angles)

Because RP parallel to AB and BR cuts AB and RP at B and R, respectively,

 $\angle ABC = \angle PRQ$ (alternate interior angles).

We know that the sum of all three angles of a triangle is 180° .

Hence, for $\triangle ABC$, we can say that :

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

$$\angle ABC + \angle ACB + 90^{\circ} = 180^{\circ}$$
 (Right angled at A)

$$\angle ABC + \angle ACB = 90^{\circ}$$

Using the same logic for $\Delta P\,QR$, we can say that :

$$\angle PQR + \angle PRQ + \angle QPR = 180^{\circ}$$

$$\angle ABC$$
 + $\angle ACB$ + $\angle QPR$ =180° ($\angle ABC$ = $\angle PRQ$ and $\angle QCA$ = $\angle CQP$)

Or,

$$90^{\circ} + \angle QPR = 180^{\circ} (\angle ABC + \angle ACB = 90^{\circ})$$

$$\angle QPR = 90^{\circ}$$