RD SHARMA Solutions Class 7 Maths Chapter 16 Ex 16.4 Q1. Which of the following pairs of triangle are congruent by ASA condition? Answer: i) We have, Since \angle ABO = \angle CDO = 45° and both are alternate angles, AB // DC, \angle BAO = \angle DCO (alternate angle, AB // CD and AC is a transversal line) \angle ABO = \angle CDO = 45° (given in the figure) Also, AB = DC (Given in the figure) Therefore, by ASA \triangle AOB \cong \triangle DOC ii) In ABC, Now AB =AC (Given) \angle ABD = \angle ACD = 40° (Angles opposite to equal sides) \angle ABD + \angle ACD + \angle BAC = 180° (Angle sum property) $40^{\circ} + 40^{\circ} + \angle BAC=180^{\circ}$ ∠ BAC =180°- 80° =100° \angle BAD + \angle DAC = \angle BAC \angle BAD = \angle BAC - \angle DAC = 100° - 50° = 50° \angle BAD = \angle CAD = 50° Therefore, by ASA, $\triangle ABD \cong \triangle ADC$ iii) In Δ ABC, \angle A + \angle B + \angle C = 180°(Angle sum property) \angle C = 180°- \angle A - \angle B \angle C = 180° - 30° - 90° = 60° In PQR, $\angle P + \angle Q + \angle R = 180^{\circ}$ (Angle sum property) $\angle P = 180^{\circ} - \angle Q - \angle R \angle P = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$ \angle BAC = \angle QPR = 30 $^{\circ}$ \angle BCA = \angle PRQ = 60° and AC = PR (Given) Therefore, by ASA, $\triangle ABC \cong \triangle PQR$ iv) We have only BC = QR but none of the angles of Δ ABC and Δ PQR are equal. Therefore, ΔABC and cong ΔPRQ - Q2. In figure, AD bisects A and AD and AD \perp BC. - (i) Is $\triangle ADB \cong \triangle ADC$? - (ii) State the three pairs of matching parts you have used in (i) - (iii) Is it true to say that BD = DC? Answer: - (i) Yes, $\triangle ADB \cong \triangle ADC$, by ASA criterion of congruency. - (ii) We have used \angle BAD = \angle CAD \angle ADB = \angle ADC = 90° Since, AD \perp BC and AD = DA (iii) Yes, BD = DC since, $\triangle ADB \cong \triangle ADC$ Q3. Draw any triangle ABC. Use ASA condition to construct other triangle congruent to it. Answer: We have drawn \triangle ABC with \angle ABC = 65° and \angle ACB = 70° We now construct $\Delta PQR \cong \Delta ABC$ has $\angle PQR = 65^{\circ}$ and $\angle PRQ = 70^{\circ}$ Also we construct Δ PQR such that BC = QR Therefore by ASA the two triangles are congruent Q4. In \triangle ABC, it is known that \angle B = C. Imagine you have another copy of \triangle ABC - (i) Is $\triangle ABC \cong \triangle ACB$ - (ii) State the three pairs of matching parts you have used to answer (i). - (iii) Is it true to say that AB = AC? Answer: - (i) Yes $\triangle ABC \cong \triangle ACB$ - (ii) We have used \angle ABC = \angle ACB and \angle ACB = \angle ABC again. Also BC = CB (iii) Yes it is true to say that AB = AC since $\angle ABC = \angle ACB$. Q5. In Figure, AX bisects \angle BAC as well as \angle BDC. State the three facts needed to ensure that \triangle ACD \cong \triangle ABD Answer: As per the given conditions, \angle CAD = \angle BAD and \angle CDA = \angle BDA (because AX bisects \angle BAC) AD = DA (common) Therefore, by ASA, $\Delta ACD \cong \Delta ABD$ ## Q6. In Figure, AO = OB and \angle A = \angle B. - (i) Is $\triangle AOC \cong \triangle BOD$ - (ii) State the matching pair you have used, which is not given in the question. - (iii) Is it true to say that \angle ACO = \angle ## BDO? ## Answer: We have \angle OAC = \angle OBD, AO = OB Also, \angle AOC = \angle BOD (Opposite angles on same vertex) Therefore, by ASA $\triangle AOC \cong \triangle BOD$