RD SHARMA
Solutions
Class 7 Maths
Chapter 16
Ex 16.4

Q1. Which of the following pairs of triangle are congruent by ASA condition?

Answer:

i)



We have,

Since  $\angle$  ABO =  $\angle$  CDO = 45° and both are alternate angles, AB // DC,  $\angle$ BAO =  $\angle$  DCO (alternate angle, AB // CD and AC is a transversal line)  $\angle$  ABO =  $\angle$  CDO = 45° (given in the figure) Also, AB = DC (Given in the figure)

Therefore, by ASA  $\triangle$ AOB  $\cong$   $\triangle$ DOC

ii)



In ABC,

Now AB =AC (Given)

 $\angle$  ABD =  $\angle$  ACD = 40° (Angles opposite to equal sides)

 $\angle$  ABD +  $\angle$  ACD +  $\angle$  BAC = 180° (Angle sum property)

 $40^{\circ} + 40^{\circ} + \angle BAC=180^{\circ}$ 

∠ BAC =180°- 80° =100°

 $\angle$  BAD +  $\angle$  DAC =  $\angle$  BAC  $\angle$  BAD =  $\angle$  BAC -  $\angle$  DAC =  $100^{\circ}$  -  $50^{\circ}$  =  $50^{\circ}$ 

 $\angle$  BAD =  $\angle$  CAD = 50°

Therefore, by ASA,  $\triangle ABD \cong \triangle ADC$ 

iii)



In  $\Delta$  ABC,

 $\angle$  A +  $\angle$  B +  $\angle$  C = 180°(Angle sum property)

 $\angle$  C = 180°-  $\angle$  A -  $\angle$  B  $\angle$  C = 180° - 30° - 90° = 60°

In PQR,

 $\angle P + \angle Q + \angle R = 180^{\circ}$  (Angle sum property)

 $\angle P = 180^{\circ} - \angle Q - \angle R \angle P = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ}$ 

 $\angle$  BAC =  $\angle$  QPR = 30 $^{\circ}$ 

 $\angle$  BCA =  $\angle$  PRQ = 60° and AC = PR (Given)

Therefore, by ASA,  $\triangle ABC \cong \triangle PQR$ 

iv)



We have only

BC = QR but none of the angles of  $\Delta$  ABC and  $\Delta$  PQR are equal.

Therefore,  $\Delta ABC$  and cong  $\Delta PRQ$ 

- Q2. In figure, AD bisects A and AD and AD  $\perp$  BC.
- (i) Is  $\triangle ADB \cong \triangle ADC$ ?
- (ii) State the three pairs of matching parts you have used in (i)
- (iii) Is it true to say that BD = DC?



Answer:

- (i) Yes,  $\triangle ADB \cong \triangle ADC$ , by ASA criterion of congruency.
- (ii) We have used  $\angle$  BAD =  $\angle$  CAD  $\angle$  ADB =  $\angle$  ADC = 90°

Since, AD  $\perp$  BC and AD = DA

(iii) Yes, BD = DC since,  $\triangle ADB \cong \triangle ADC$ 

Q3. Draw any triangle ABC. Use ASA condition to construct other triangle congruent to it.



Answer:

We have drawn

 $\triangle$  ABC with  $\angle$  ABC = 65° and  $\angle$  ACB = 70°

We now construct  $\Delta PQR \cong \Delta ABC$  has  $\angle PQR = 65^{\circ}$  and  $\angle PRQ = 70^{\circ}$ 

Also we construct  $\Delta$  PQR such that BC = QR

Therefore by ASA the two triangles are congruent

Q4. In  $\triangle$  ABC, it is known that  $\angle$  B = C. Imagine you have another copy of  $\triangle$  ABC

- (i) Is  $\triangle ABC \cong \triangle ACB$
- (ii) State the three pairs of matching parts you have used to answer (i).
- (iii) Is it true to say that AB = AC?



Answer:

- (i) Yes  $\triangle ABC \cong \triangle ACB$
- (ii) We have used  $\angle$  ABC =  $\angle$  ACB and  $\angle$  ACB =  $\angle$  ABC again.

Also BC = CB

(iii) Yes it is true to say that AB = AC since  $\angle ABC = \angle ACB$ .

Q5. In Figure, AX bisects  $\angle$  BAC as well as  $\angle$  BDC. State the three facts needed to ensure that  $\triangle$ ACD  $\cong$  $\triangle$ ABD



Answer:

As per the given conditions,  $\angle$  CAD =  $\angle$  BAD and  $\angle$  CDA =  $\angle$  BDA (because AX bisects  $\angle$  BAC )

AD = DA (common)

Therefore, by ASA,  $\Delta ACD \cong \Delta ABD$ 

## Q6. In Figure, AO = OB and $\angle$ A = $\angle$ B.

- (i) Is  $\triangle AOC \cong \triangle BOD$
- (ii) State the matching pair you have used, which is not given in the question.
- (iii) Is it true to say that  $\angle$  ACO =  $\angle$

## BDO?



## Answer:

We have

 $\angle$  OAC =  $\angle$  OBD,

AO = OB

Also,  $\angle$  AOC =  $\angle$  BOD (Opposite angles on same vertex)

Therefore, by ASA  $\triangle AOC \cong \triangle BOD$