RD SHARMA Solutions Class 7 Maths Chapter 16 Ex 16.5 Q1. In each of the following pairs of right triangles, the measures of some part are indicated along side. State by the application of RHS congruence conditions which are congruent, and also state each result in symbolic form. Answer: i) \angle ADC = \angle BCA = 90° AD = BC and hyp AB = hyp AB Therefore, by RHS $\Delta ADB \cong \! \Delta ACB$ ii) AD = AD (Common) hyp AC = hyp AB (Given) \angle ADB + \angle ADC = 180° (Linear pair) \angle ADB + 90° = 180° \angle ADB = $180^{\circ} - 90^{\circ} = 90^{\circ}$ \angle ADB = \angle ADC = 90° Therefore, by RHS Δ ADB = Δ ADC iii) hyp AO = hyp DOBO = CO \angle B = \angle C = 90° Therefore, by RHS, \triangle AOB \cong \triangle DOC iv) Hyp A = Hyp CABC = DC \angle ABC = \angle ADC = 90° Therefore, by RHS, \triangle ABC \cong \triangle ADC v) BD = DB Hyp AB = Hyp BC, as per the given figure, \angle BDA + \angle BDC = 180° \angle BDA + 90° = 180° ∠ BDA= 180°- 90° = 90° \angle BDA = \angle BDC = 90 $^{\circ}$ Therefore, by RHS, $\triangle ABD \cong \triangle CBD$ Q2. \triangle ABC is isosceles with AB = AC. AD is the altitude from A on BC. - i) Is \triangle ABD $\cong \triangle$ ACD? - (ii) State the pairs of matching parts you have used to answer (i). - (iii) Is it true to say that BD= DC? Answer: - (i)Yes, $\triangle ABD \cong \triangle ACD$ by RHS congruence condition. - (ii) We have used Hyp AB = Hyp AC AD = DA \angle ADB = \angle ADC = 90° (AD \bot BC at point D) (iii)Yes, it is true to say that BD = DC (c.p.c.t) since we have already proved that the two triangles are congruent. Q3. \triangle ABC is isosceles with AB = AC. Also. AD \perp BC meeting BC in D. Are the two triangles ABD and ACD congruent? State in symbolic form. Which congruence condition do you use? Which side of ADC equals BD? Which angle of \triangle ADC equals \angle B? ## Answer: We have AB = AC (i) $AD = DA \text{ (common)} \dots \dots (ii)$ And, \angle ADC = \angle ADB (AD \bot BC at point D)(iii Therefore, from (i), (ii) and (iii), by RHS congruence condition, $\triangle ABD \cong \triangle ACD$, the triangles are congruent. Therefore, BD = CD. And \angle ABD = \angle ACD (c.p.c.t) Q4. Draw a right triangle ABC. Use RHS condition to construct another triangle congruent to it. ## Answer: Consider Δ ABC with \angle B as right angle. We now construct another triangle on base BC, such that \angle C is a right angle and AB = DC Also, BC = CB Therefore, BC = CB Therefore by RHS, $\triangle ABC \cong \triangle DCB$ Q5. In figure, BD and CE are altitudes of Δ ABC and BD = CE. - (i) Is $\triangle BCD \cong \triangle CBE$? - (ii) State the three pairs or matching parts you have used to answer (i) ## Answer: - (i) Yes, $\Delta BCD \cong \Delta CBE$ by RHS congruence condition. - (ii) We have used hyp BC = hyp CB BD = CE (Given in question) And \angle BDC = \angle CBE = 90°