RD SHARMA
Solutions
Class 7 Maths
Chapter 23
Ex 23.4

Q1) Find the mode and median of the data: 13, 16, 12, 14, 19, 12, 14, 13, 14

By using the empirical relation also find the mean.

Solution:

Arranging the data in ascending order such that same numbers are put together, we get:

Here,
$$n = 9$$
.

Median = Value of $\frac{n+1}{2}$ th observation = Value of the 5thobservation = 14.

Here, 14 occurs the maximum number of times, i.e., three times. Therefore, 14 is the mode of the data.

Now,

Mode = 3 Median - 2 Mean

$$=> 14 = 3 \times 14 - 2 \text{ Mean}$$

$$=> 2 \text{ Mean} = 42 - 14 = 28$$

$$=>$$
 Mean $= 28 \div 2 = 14$.

Q2) Find the median and mode of the data: 35, 32, 35, 42, 38, 32, 34

Solution:

Arranging the data in ascending order such that same numbers are put together, we get:

Here,
$$n = 7$$

Median = Value of $\frac{n+1}{2}$ th observation = Value of the 4thobservation = 35.

Here, 32 and 35, both occur twice. Therefore, 32 and 35 are the two modes.

Q3) Find the mode of the data: 2, 6, 5, 3, 0, 3, 4, 3, 2, 4, 5, 2, 4

Solution:

Arranging the data in ascending order such that same values are put together, we get:

Here, 2, 3 and 4 occur three times each. Therefore, 2, 3 and 4 are the three modes.

Q4) The runs scored in a cricket match by 11 players are as follows:

Find the mean, mode and median of this data.

Solution:

Arranging the data in ascending order such that same values are put together, we get:

Here,
$$n = 11$$

Median = Value of $\frac{n+1}{2}$ th observation = Value of the 6thobservation = 15.

Here, 10 occur three times. Therefore, 10 is the mode of the given data.

Now.

Mode = 3 Median - 2 Mean

$$=> 10 = 3 \times 15 - 2 \text{ Mean}$$

$$=> 2 \text{ Mean} = 45 - 10 = 35$$

$$=>$$
 Mean $= 35 \div 2 = 17.5$

Q5) Find the mode of the following data:

Solution:

Arranging the data in ascending order such that same values are put together, we get:

10, 12, 12, 14, 14, 14, 14, 14, 14, 16, 18

Here, clearly, 14 occurs the most number of times.

Therefore, 14 is the mode of the given data.

Q6) Heights of 25 children (in cm) in a school are as given below:

168, 165, 163, 160, 163, 161, 162, 164, 163, 162, 164, 163, 160, 163, 163, 164, 163, 160, 165, 163, 162

What is the mode of heights?

Also, find the mean and median.

Solution:

Arranging the data in tabular form, we get:

Height of Children (cm)	Tally Bars	Frequency
160	111	3
161	1	1
162	1111	4
163	1111 1111	10
164	111	3
165	111	3
168	1	1
Total		25

Here, n = 25

Median = Value of $\frac{n+1}{2}$ th observation = Value of the 13thobservation = 163 cm.

Here, clearly, 163 cm occurs the most number of times. Therefore, the mode of the given data is 163 cm.

Mode = 3 Median – 2 Mean

$$\Rightarrow$$
 163 = 3 x 163 – 2 Mean

Q7) The scores in mathematics test (out of 25) of 15 students are as follows:

Find the mode and median of this data. Are they same?

Solution:

Arranging the data in ascending order such that same values are put together, we get:

$$5,\,9,\,10,\,12,\,15,\,16,\,19,\,20,\,20,\,20,\,20,\,23,\,24,\,25,\,25$$

Here,
$$n = 15$$

Median = Value of $\frac{n+1}{2}$ th observation = Value of the 8thobservation = 20.

Here, clearly, 20 occurs most number of times, i.e., 4 times. Therefore, the mode of the given data is 20.

Yes, the median and mode of the given data are the same.

Q8) Calculate the mean and median for the following data:

5

Marks:

3

20

1

Using empirical formula, find its mode.

Solution:

Calculation of Mean

Number of students: 3

Marks (X _i)	10	11	12	13	14	16	19	20	Total
Number of Students (f_i)	3	5	4	5	2	3	2	1	$\sum f_i = 25$
$f_i x_i$	30	55	48	65	28	48	38	20	$\sum f_i x_i = 332$

Mean =
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{332}{25} = 13.28$$

Here, n = 25, which is an odd number. Therefore,

Median = Value of $\frac{n+1}{2}$ th observation = Value of the 13thobservation = 13.

Now,

Mode = 3Median - 2 Mean

$$=>$$
 Mode $= 3 (13) - 2 (13.28)$

$$=>$$
 Mode $= 39 - 26.56$

$$=> Mode = 12.44$$

Q9) The following table shows the weights of 12 persons.

Weight (in kg):

52

54 58

Number of persons:

2

1

Find the median and mean weights. Using empirical relation, calculate its mode.

50

3

Solution:

Weight (X _i)	48	50	52	54	58	Total
Number of Persons (f_i)	4	3	2	2	1	$\sum f_i = 12$
$f_i x_i$	192	150	104	108	58	$\sum f_i x_i = 612$

Mean =
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{612}{12} = 51 \text{ kg}.$$

Here,
$$n = 12$$

$$Median = \frac{n}{2}th observation + \frac{n}{2} + 1^{th} observation$$

$$=>$$
 Median $=\frac{50+50}{2}=50$ kg.

Now,

Mode = 3 Median - 2 Mean

$$=>$$
 Mode $= 3 \times 50 - 2 \times 51$

=> Mode = 150 - 102

=> Mode = 48 kg.

Thus, Mean = 51 kg, Median = 50 kg and Mode = 48 kg.